Additive Manufacturing of Si-Added 7075 Aluminum Alloys: Microstructural, Mechanical, and Electrochemical Properties via Heat Treatment
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Characterization
3. Results and Discussion
3.1. Microstructure
3.2. Mechanical Responses
3.3. Electrochemical Responses
3.4. Precipitation Behaviors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khalid, M.Y.; Umer, R.; Khan, K.A. Review of Recent Trends and Developments in Aluminium 7075 Alloy and Its Metal Matrix Composites (MMCs) for Aircraft Applications. Results Eng. 2023, 20, 101372. [Google Scholar] [CrossRef]
- Majumdar, S.; Sinha, A.; Das, A.; Datta, P.; Nag, D. An Insight View of Evolution of Advanced Aluminum Alloy for Aerospace and Automotive Industry: Current Status and Future Prospects. J. Inst. Eng. India Ser. D 2024. [Google Scholar] [CrossRef]
- Pan, X.; Zhou, L.; Wang, C.; Yu, K.; Zhu, Y.; Yi, M.; Wang, L.; Wen, S.; He, W.; Liang, X. Microstructure and Residual Stress Modulation of 7075 Aluminum Alloy for Improving Fatigue Performance by Laser Shock Peening. Int. J. Mach. Tools Manuf. 2023, 184, 103979. [Google Scholar] [CrossRef]
- Liu, T.-S.; Qiu, F.; Du, S.; Su, J.; Yang, H.-Y.; Chen, P.; Ng, F.L.; Chew, Y.; Jiang, Q.-C.; Tan, C. Tailored Porosity in Additive Manufacturing of 7075 Aluminum Alloy for Crack Suppression and High Strength. J. Mater. Process. Technol. 2024, 334, 118620. [Google Scholar] [CrossRef]
- Altıparmak, S.C.; Yardley, V.A.; Shi, Z.; Lin, J. Challenges in Additive Manufacturing of High-Strength Aluminium Alloys and Current Developments in Hybrid Additive Manufacturing. Int. J. Light. Mater. Manuf. 2021, 4, 246–261. [Google Scholar] [CrossRef]
- Sharma, S.K.; Grewal, H.S.; Saxena, K.K.; Mohammed, K.A.; Prakash, C.; Davim, J.P.; Buddhi, D.; Raju, R.; Mohan, D.G.; Tomków, J. Advancements in the Additive Manufacturing of Magnesium and Aluminum Alloys through Laser-Based Approach. Materials 2022, 15, 8122. [Google Scholar] [CrossRef]
- Dixit, S.; Liu, S. Laser Additive Manufacturing of High-Strength Aluminum Alloys: Challenges and Strategies. J. Manuf. Mater. Process. 2022, 6, 156. [Google Scholar] [CrossRef]
- Li, G.; Ruan, G.; Huang, Y.; Xu, Z.; Li, X.; Guo, C.; Zhao, C.; Cheng, L.; Hu, X.; Li, X.; et al. Facile and Cost-Effective Approach to Additively Manufacture Crack-Free 7075 Aluminum Alloy by Laser Powder Bed Fusion. J. Alloys Compd. 2022, 928, 167097. [Google Scholar] [CrossRef]
- Ren, W.; Xu, L.; Qin, C.; Han, Y.; Zhao, L.; Hao, K. Laser Directed Energy Deposition Additive Manufacturing of Al7075 Alloy: Process Development, Microstructure, and Porosity. J. Mater. Res. Technol. 2024, 33, 2093–2100. [Google Scholar] [CrossRef]
- Su, Y.; Wang, Y.; Shi, J. Microstructure and Mechanical Properties of Laser DED Produced Crack-Free Al 7075 Alloy: Effect of Process Parameters and Heat Treatment. Mater. Sci. Eng. A 2022, 857, 144075. [Google Scholar] [CrossRef]
- Shakil, S.I.; Hadadzadeh, A.; Shalchi Amirkhiz, B.; Pirgazi, H.; Mohammadi, M.; Haghshenas, M. Additive Manufactured versus Cast AlSi10Mg Alloy: Microstructure and Micromechanics. Results Mater. 2021, 10, 100178. [Google Scholar] [CrossRef]
- Takata, N.; Liu, M.; Kodaira, H.; Suzuki, A.; Kobashi, M. Anomalous Strengthening by Supersaturated Solid Solutions of Selectively Laser Melted Al–Si-Based Alloys. Addit. Manuf. 2020, 33, 101152. [Google Scholar] [CrossRef]
- Hadadzadeh, A.; Amirkhiz, B.S.; Langelier, B.; Li, J.; Mohammadi, M. Microstructural Consistency in the Additive Manufactured Metallic Materials: A Study on the Laser Powder Bed Fusion of AlSi10Mg. Addit. Manuf. 2021, 46, 102166. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, Z.; Xiong, R.; Ren, G.; Yao, M.; Liu, W.; Zang, L. Effect of Post Heat Treatment on Microstructure, Mechanical Property and Corrosion Behavior of AlSi10Mg Alloy Fabricated by Selective Laser Melting. Prog. Nat. Sci. Mater. Int. 2024, 34, 89–101. [Google Scholar] [CrossRef]
- Dash, S.S.; Chen, D. A Review on Processing–Microstructure–Property Relationships of Al-Si Alloys: Recent Advances in Deformation Behavior. Metals 2023, 13, 609. [Google Scholar] [CrossRef]
- Bisht, M.S.; Gaur, V.; Singh, I. V On Mechanical Properties of SLM Al–Si Alloy: Role of Heat Treatment-Induced Evolution of Silicon Morphology. Mater. Sci. Eng. A 2022, 858, 144157. [Google Scholar] [CrossRef]
- Alghamdi, F.; Song, X.; Hadadzadeh, A.; Shalchi-Amirkhiz, B.; Mohammadi, M.; Haghshenas, M. Post Heat Treatment of Additive Manufactured AlSi10Mg: On Silicon Morphology, Texture and Small-Scale Properties. Mater. Sci. Eng. A 2020, 783, 139296. [Google Scholar] [CrossRef]
- Azarniya, A.; Taheri, A.K.; Taheri, K.K. Recent Advances in Ageing of 7xxx Series Aluminum Alloys: A Physical Metallurgy Perspective. J. Alloys Compd. 2019, 781, 945–983. [Google Scholar] [CrossRef]
- Li, S.; Yue, X.; Li, Q.; Peng, H.; Dong, B.; Liu, T.; Yang, H.; Fan, J.; Shu, S.; Qiu, F.; et al. Development and Applications of Aluminum Alloys for Aerospace Industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Sha, J.; Li, M.; Yang, L.; Rong, X.; Pu, B.; Zhao, D.; Sui, S.; Zhang, X.; He, C.; Lan, J.; et al. Si-Assisted Solidification Path and Microstructure Control of 7075 Aluminum Alloy with Improved Mechanical Properties by Selective Laser Melting. Acta Metall. Sin. 2022, 35, 1424–1438. [Google Scholar] [CrossRef]
- Wang, K.; Hu, S.; Wang, T.; Xie, W.; Guo, T.; Li, F.; Luo, R. Microstructural Evolution and Mechanical Properties of 7075 Aluminium Alloy during Semi-Solid Compression Deformation. Crystals 2022, 12, 1119. [Google Scholar] [CrossRef]
- Callegari, B.; Lima, T.N.; Coelho, R.S. The Influence of Alloying Elements on the Microstructure and Properties of Al-Si-Based Casting Alloys: A Review. Metals 2023, 13, 1174. [Google Scholar] [CrossRef]
- Edacherian, A.; Algahtani, A.; Tirth, V. Investigations of the Tribological Performance of A390 Alloy Hybrid Aluminum Matrix Composite. Materials 2018, 11, 2524. [Google Scholar] [CrossRef]
- Wang, Z.; Ummethala, R.; Singh, N.; Tang, S.; Suryanarayana, C.; Eckert, J.; Prashanth, K.G. Selective Laser Melting of Aluminum and Its Alloys. Materials 2020, 13, 4564. [Google Scholar] [CrossRef]
- Montero-Sistiaga, M.L.; Mertens, R.; Vrancken, B.; Wang, X.; Van Hooreweder, B.; Kruth, J.P.; Van Humbeeck, J. Changing the Alloy Composition of Al7075 for Better Processability by Selective Laser Melting. J. Mater. Process. Technol. 2016, 238, 437–445. [Google Scholar] [CrossRef]
- Gharbi, O.; Kumar Kairy, S.; De Lima, P.R.; Jiang, D.; Nicklaus, J.; Birbilis, N. Microstructure and Corrosion Evolution of Additively Manufactured Aluminium Alloy AA7075 as a Function of Ageing. npj Mater. Degrad. 2019, 3, 40. [Google Scholar] [CrossRef]
- Beura, V.K.; Sharma, A.; Karanth, Y.; Sharma, S.; Solanki, K. Corrosion Behavior of 7050 and 7075 Aluminum Alloys Processed by Reactive Additive Manufacturing. Electrochim. Acta 2023, 470, 143357. [Google Scholar] [CrossRef]
- Akram, J.; Chalavadi, P.; Pal, D.; Stucker, B. Understanding Grain Evolution in Additive Manufacturing through Modeling. Addit. Manuf. 2018, 21, 255–268. [Google Scholar] [CrossRef]
- Liu, J.; To, A.C. Quantitative Texture Prediction of Epitaxial Columnar Grains in Additive Manufacturing Using Selective Laser Melting. Addit. Manuf. 2017, 16, 58–64. [Google Scholar] [CrossRef]
- Wei, H.L.; Elmer, J.W.; DebRoy, T. Three-Dimensional Modeling of Grain Structure Evolution during Welding of an Aluminum Alloy. Acta Mater. 2017, 126, 413–425. [Google Scholar] [CrossRef]
- Chae, H.; Huang, E.-W.; Jain, J.; Wang, H.; Woo, W.; Chen, S.W.; Harjo, S.; Kawasaki, T.; Lee, S.Y. Plastic Anisotropy and Deformation-Induced Phase Transformation of Additive Manufactured Stainless Steel. Mater. Sci. Eng. A 2019, 762, 138065. [Google Scholar] [CrossRef]
- Ikeuba, A.I.; Njoku, C.N.; Ekerenam, O.O.; Njoku, D.I.; Udoh, I.I.; Daniel, E.F.; Uzoma, P.C.; Etim, I.I.N.; Okonkwo, B.O. A Review of the Electrochemical and Galvanic Corrosion Behavior of Important Intermetallic Compounds in the Context of Aluminum Alloys. RSC Adv. 2024, 14, 31921–31953. [Google Scholar] [CrossRef] [PubMed]
- Azar, A.S.; Graff, J.S. Corrosion Performance and Degradation Mechanism of a Bi- Metallic Aluminum Structure Processed by Wire-Arc Additive Manufacturing. npj Mater. Degrad. 2021, 5, 26. [Google Scholar] [CrossRef]
- Benoit, M.J.; Tabaie, S.; Waqar, T.; Ganton, T.; Amirkhiz, B.S.; Hadadzadeh, A.; Nasiri, A. Effects of Additive Manufacturing Processes and Isothermal Aging on the Microstructure and Properties of 13-8 Mo Precipitation Hardening Martensitic Stainless Steel. Addit. Manuf. 2023, 72, 103615. [Google Scholar] [CrossRef]
- Karimialavijeh, H.; Chakraborty, A.; Azzi, M.; Proebstle, M.; Martin, E. Effect of Precipitation Hardening on the Microstructure, Mechanical, and Corrosion Properties of Additively Manufactured A20X Aluminum Alloy. Mater. Sci. Eng. A 2024, 913, 147033. [Google Scholar] [CrossRef]
- Jurak, S.; Subeshan, B.; Asmatulu, R. Superhydrophobic-Based Corrosion Mitigation Systems and Their Effectiveness on Dissimilar and Similar Friction Stir Spot-Weld Joint Aerospace Alloys. Next Mater. 2024, 5, 100269. [Google Scholar] [CrossRef]
- Edoziuno, F.O.; Adediran, A.A.; Emereje, P.O.; Akaluzia, R.O.; Jen, T.-C. Development of Lightweight, Creep Resistant Mg–Zn–Al Alloys for Automotive Applications: Influence of Micro-Additions of Quaternary Elements. Results Eng. 2024, 21, 101632. [Google Scholar] [CrossRef]
Sample | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
Wrought (nominal) | 0.04 | 0.13 | 1.51 | 0.14 | 2.41 | 0.22 | 5.54 | 0.03 | Bal. |
Powder (measured) | 3.45 | 0.13 | 1.46 | 0.13 | 2.32 | - | 4.54 | - | Bal. |
As-built (measured) | 5.31 | 0.15 | 2.01 | 0.12 | 2.20 | - | 5.11 | - | Bal. |
Abbreviation | Sample Condition | Description of Heat Treatment Process |
---|---|---|
AB | As-built | As-built condition (no additional heat treatment after SLM) |
DA | Direct aging | Aging directly from as-built condition (120 °C, 24 h) |
SS | Solid solution | Solutionized at 470 °C for 1 h, followed by water quenching |
T6 | T6 heat treatment | Solid-solution treatment (470 °C, 1 h), water quenching, and aging (120 °C, 24 h) |
Sample | Position | Si | Fe | Cu | Mg | Zn | Al | O |
---|---|---|---|---|---|---|---|---|
AB | P1 | 8.12 | 0.09 | 2.97 | 1.34 | 0.06 | 74.92 | 12.51 |
P2 | 82.79 | 0.00 | 0.00 | 0.97 | 0.00 | 9.98 | 6.27 | |
DA | P1 | 1.83 | 0.09 | 3.34 | 0.02 | 0.03 | 85.10 | 9.60 |
P2 | 36.06 | 1.28 | 2.88 | 10.41 | 1.25 | 35.31 | 12.82 | |
SS | P1 | 2.49 | 0.00 | 3.43 | 3.27 | 0.00 | 75.51 | 15.31 |
P2 | 51.93 | 2.18 | 1.40 | 15.99 | 0.03 | 15.32 | 13.05 | |
T6 | P1 | 86.98 | 1.37 | 0.30 | 0.45 | 0.00 | 5.55 | 5.35 |
P2 | 2.21 | 0.01 | 3.24 | 1.29 | 0.00 | 84.19 | 9.06 | |
P3 | 45.98 | 0.47 | 1.06 | 20.42 | 0.06 | 19.46 | 12.56 |
Sample | Hardness [Hv] | Yield Strength [MPa] | Tensile Strength [MPa] | Total Elongation [%] |
---|---|---|---|---|
AB | 154 ± 8.4 | 269 ± 11.1 | 329 ± 26.3 | 0.87 ± 0.45 |
DA | 168 ± 5.9 | 287 ± 7.6 | 332 ± 20.9 | 0.65 ± 0.25 |
SS | 101 ± 3.7 | 151 ± 9.2 | 243 ± 10.5 | 5.0 ± 1.24 |
T6 | 105 ± 4.5 | 177 ± 13.4 | 284 ± 14.2 | 6.6 ± 1.35 |
Sample | ECorr [V] | ICorr [10−6 A/cm2] | Thickness Reduction [mm] | Area Reduction [%] |
---|---|---|---|---|
AB | −0.855 | 3.345 | 1.568 | 15 |
DA | −0.883 | 0.189 | 0.072 | 6 |
SS | −0.765 | 0.259 | 0.039 | 5 |
T6 | −0.766 | 0.214 | 0 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, G.; Chae, H.; Kim, Y.S.; Hong, S.-K.; Shin, E.; Lee, S.Y. Additive Manufacturing of Si-Added 7075 Aluminum Alloys: Microstructural, Mechanical, and Electrochemical Properties via Heat Treatment. Materials 2025, 18, 1544. https://doi.org/10.3390/ma18071544
Choi G, Chae H, Kim YS, Hong S-K, Shin E, Lee SY. Additive Manufacturing of Si-Added 7075 Aluminum Alloys: Microstructural, Mechanical, and Electrochemical Properties via Heat Treatment. Materials. 2025; 18(7):1544. https://doi.org/10.3390/ma18071544
Chicago/Turabian StyleChoi, Gahyun, Hobyung Chae, You Sub Kim, Soon-Ku Hong, Eunjoo Shin, and Soo Yeol Lee. 2025. "Additive Manufacturing of Si-Added 7075 Aluminum Alloys: Microstructural, Mechanical, and Electrochemical Properties via Heat Treatment" Materials 18, no. 7: 1544. https://doi.org/10.3390/ma18071544
APA StyleChoi, G., Chae, H., Kim, Y. S., Hong, S.-K., Shin, E., & Lee, S. Y. (2025). Additive Manufacturing of Si-Added 7075 Aluminum Alloys: Microstructural, Mechanical, and Electrochemical Properties via Heat Treatment. Materials, 18(7), 1544. https://doi.org/10.3390/ma18071544