Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = 5G n79 NR band

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4628 KiB  
Article
Design and Performance Evaluation of a Sub-6 GHz Multi-Port Coupled Antenna for 5G NR Mobile Applications
by Cheol Yoon, Yunsub Lee, Wonmo Seong and Woosu Kim
Appl. Sci. 2025, 15(14), 7804; https://doi.org/10.3390/app15147804 - 11 Jul 2025
Viewed by 299
Abstract
This paper describes a compact multi-port sub-6 GHz multiple-input multiple-output (MIMO) antenna system tailored for 5G NR mobile terminals operating in the n77 (3.3–4.2 GHz), n78 (3.3–3.8 GHz), and n79 (4.4–5.0 GHz) frequency bands. The proposed design leverages a shared coupling approach that [...] Read more.
This paper describes a compact multi-port sub-6 GHz multiple-input multiple-output (MIMO) antenna system tailored for 5G NR mobile terminals operating in the n77 (3.3–4.2 GHz), n78 (3.3–3.8 GHz), and n79 (4.4–5.0 GHz) frequency bands. The proposed design leverages a shared coupling approach that exploits the smartphone metal frame as the radiating element, facilitating efficient integration within the spatial constraints of modern mobile devices. A two-stage method is used to mitigate the mutual coupling and correlation issues typically encountered when designing compact MIMO configurations. Initially, a four-port structure is used to evaluate broadband impedance and spatial feasibility. Based on the observed limitations in terms of isolation and the envelope correlation coefficient (ECC), the final configuration was reconfigured as an optimized two-port layout with a refined coupling geometry and effective current path control. The fabricated two-port prototype exhibited a measured voltage standing wave ratio below 3:1 across the n78 band on both ports, with the isolation levels attaining –12.4 dB and ECCs below 0.12. The radiation efficiency exceeded −6 dB across the operational band, and the radiation patterns were stable at 3.3, 3.5, and 3.8 GHz, confirming that the system was appropriate for MIMO deployment. The antenna supports asymmetric per-port efficiency targets ranging from −4.5 to −10 dB. These are the realistic layout constraints of commercial smartphones. In summary, this study shows that a metal frame integrated two-port MIMO antenna enables wideband sub-6 GHz operation by meeting the key impedance and system-level performance requirements. Our method can be used to develop a scalable platform assisting future multi-band antenna integration in mass-market 5G smartphones. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

10 pages, 6226 KiB  
Article
8-W 2-Stage GaN Doherty Power Amplifier Module on 7 × 7 QFN for the 5G N78 Band
by Sooncheol Bae, Kuhyeon Kwon, Hyeongjin Jeon, Young Chan Choi, Soohyun Bin, Kyungdong Bae, Hyunuk Kang, Woojin Choi, Youngyun Woo and Youngoo Yang
Electronics 2025, 14(12), 2398; https://doi.org/10.3390/electronics14122398 - 12 Jun 2025
Viewed by 469
Abstract
This paper presents a 2-stage GaN Doherty power amplifier module (DPAM) on a compact 7×7 quad flat no-lead (QFN) package, designed for the needs of 5G massive MIMO base transceiver systems. The interstage and input matching networks employ high-quality factor integrated [...] Read more.
This paper presents a 2-stage GaN Doherty power amplifier module (DPAM) on a compact 7×7 quad flat no-lead (QFN) package, designed for the needs of 5G massive MIMO base transceiver systems. The interstage and input matching networks employ high-quality factor integrated passive devices (IPDs) to achieve a small form factor. This multi-chip module consists of three GaN-HEMT bare dies used for the driver stage, carrier amplifier, and peaking amplifier. Additionally, two IPD dies are included for the interstage and input matching networks. The external load network is developed using a printed circuit board (PCB). Utilizing a 5G NR signal of 100 MHz bandwidth and a 9.3 dB PAPR within the 3.4–3.8 GHz band, the developed DPAM demonstrated a power gain exceeding 26.8 dB and a power-added efficiency (PAE) greater than 37.8% at a 39 dBm average output power. Full article
Show Figures

Figure 1

15 pages, 12762 KiB  
Review
Advanced Doherty Power Amplifier Architectures for 5G Handset Applications: A Comprehensive Review of Linearity, Back-Off Efficiency, Bandwidth, and Thermal Management
by Shihai He and Huan Chen
Chips 2025, 4(2), 20; https://doi.org/10.3390/chips4020020 - 6 May 2025
Viewed by 1324
Abstract
This paper presents a comprehensive review of GaAs HBT-based Doherty power amplifiers (DPAs) targeting 5G New Radio (NR) handset applications. Focusing on the critical challenges of linearity enhancement, back-off efficiency improvement, bandwidth extension under low-voltage (3.4 V) operation, and chip thermal management, the [...] Read more.
This paper presents a comprehensive review of GaAs HBT-based Doherty power amplifiers (DPAs) targeting 5G New Radio (NR) handset applications. Focusing on the critical challenges of linearity enhancement, back-off efficiency improvement, bandwidth extension under low-voltage (3.4 V) operation, and chip thermal management, the authors analyze state-of-the-art DPAs published in recent years. Key innovations including dynamic power division technique, third order intermodulation (IM3) cancellation technology, and compact output combiners are comparatively studied. Using 5G NR signals, the critical performance of the latest reported PA such as maximum linear power, back-off efficiency, bandwidth, and operating voltage are quantitatively investigated. The measurement results demonstrated that the best performance in recent DPAs achieved high linear power of 31 dBm with 34% PAE and 30 dBm with 31% PAE at the N78 and N77 bands, respectively. The corresponding adjacent channel leakage ratios (ACLRs) were lower than −36.5 dBc without digital pre-distortion (DPD). This review provides a comprehensive understanding of the latest advancements and future directions in highly efficient and linear DPA designs for 5G handset front-end modules. Full article
(This article belongs to the Special Issue IC Design Techniques for Power/Energy-Constrained Applications)
Show Figures

Figure 1

21 pages, 13056 KiB  
Article
Package Integration and System Performance Analysis of Glass-Based Passive Components for 5G New Radio Millimeter-Wave Modules
by Muhammad Ali, Atom Watanabe, Takenori Kakutani, Pulugurtha M. Raj, Rao. R. Tummala and Madhavan Swaminathan
Electronics 2025, 14(8), 1670; https://doi.org/10.3390/electronics14081670 - 20 Apr 2025
Viewed by 2917
Abstract
In this paper, package integration of glass–based passive components for 5G new radio (NR) millimeter–wave (mm wave) bands and an analysis of their system performance are presented. Passive components such as diplexers and couplers covering 5G NR mm wave bands n257, n258 and [...] Read more.
In this paper, package integration of glass–based passive components for 5G new radio (NR) millimeter–wave (mm wave) bands and an analysis of their system performance are presented. Passive components such as diplexers and couplers covering 5G NR mm wave bands n257, n258 and n260 are modeled, designed, fabricated and characterized individually along with their integrated versions. Non–contiguous diplexers are designed using three different types of filters, hairpin, interdigital and edge–coupled, and combined with a broadband coupler to emulate a power detection and control circuitry block in an RF transmitter chain. A panel–compatible semi–additive patterning (SAP) process is utilized to form high–precision redistribution layers (RDLs) on laminated glass substrate, onto which fine features with tight tolerance are added to fabricate these structures. The diplexers exhibit low insertion loss, low VSWR and high isolation, and have a small footprint. A system performance analysis using a co–simulation technique is presented for the first time to quantify the distortion in amplitude and phase produced by the fabricated passive component block in terms of error vector magnitude (EVM). Moreover, the scalability of this approach to compare similar passive components based on their specifications and signatures using a system–level performance metric such as EVM is discussed. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

21 pages, 716 KiB  
Article
Interindividual Variability Response to Resistance and High-Intensity Interval Training on Blood Pressure Reduction in Hypertensive Older Adults
by Johnattan Cano-Montoya, Nicolas Hurtado, Carolina Núñez Vergara, Sebastián Báez Vargas, Marcela Rojas-Vargas, Sergio Martínez-Huenchullán, Cristian Alvarez and Mikel Izquierdo
J. Cardiovasc. Dev. Dis. 2025, 12(1), 30; https://doi.org/10.3390/jcdd12010030 - 16 Jan 2025
Cited by 1 | Viewed by 2035
Abstract
Background: This study evaluated the effects of resistance training (RT) and high-intensity interval training (HIIT) on systolic (SBP) and diastolic blood pressure (DBP) in hypertensive older adults undergoing pharmacological therapy over four and eight weeks. We compared the efficacy of RT and HIIT [...] Read more.
Background: This study evaluated the effects of resistance training (RT) and high-intensity interval training (HIIT) on systolic (SBP) and diastolic blood pressure (DBP) in hypertensive older adults undergoing pharmacological therapy over four and eight weeks. We compared the efficacy of RT and HIIT in reducing non-responders (NRs) between weeks 4 and 8 and analyzed time-course adaptations in NRs and responders (Rs). Methods: Thirty-nine participants were randomized into RT-G (n = 13), HIIT-G (n = 13), or control (CG, n = 13) groups. RT utilized elastic bands, and HIIT involved cycle ergometers, with three weekly 30 min sessions for 8 weeks. SBP and DBP were measured before intervention and at weeks 4 and 8, respectively. Individual responses were classified as NRs or Rs using the Hopkins method (SDIR = √[SDExp2–SDCon2]). Time-course adaptations were evaluated. Results: Both the RT-G and HIIT-G reduced SBP at 8 weeks (RT-G: −13 mmHg; [ES: 1.12]; HIIT-G: −12 mmHg [ES: 0.8]; both p < 0.05). The proportion of NRs for SBP decreased from 46% to 38% in RT-G and 69% to 46% in HIIT-G. Rs showed a peak SBP reduction at 4 weeks (−14.7 and −25.5 mmHg), stabilizing by week 8 (−22.8 and −19.6 mmHg) in RT-G and HIIT-G, respectively. Conclusion: Eight weeks of RT and HIIT effectively reduced SBP and NR prevalence, with time-course adaptations favoring Rs. Full article
(This article belongs to the Section Cardiovascular Clinical Research)
Show Figures

Figure 1

19 pages, 1472 KiB  
Article
Generalized Filter Bank Orthogonal Frequency Division Multiplexing: Low-Complexity Waveform for Ultra-Wide Bandwidth and Flexible Services
by Yu Xin, Jian Hua, Tong Bao, Yaxing Hao, Ziheng Xiao, Xin Nie and Fanggang Wang
Entropy 2024, 26(11), 994; https://doi.org/10.3390/e26110994 - 18 Nov 2024
Cited by 1 | Viewed by 1090
Abstract
Terahertz (THz) communication is a crucial technique in sixth generation (6G) mobile networks, which allow for ultra-wide bandwidths to enable ultra-high data rate wireless communication. However, the current subcarrier spacing and the size of fast Fourier transform (FFT) of the orthogonal frequency division [...] Read more.
Terahertz (THz) communication is a crucial technique in sixth generation (6G) mobile networks, which allow for ultra-wide bandwidths to enable ultra-high data rate wireless communication. However, the current subcarrier spacing and the size of fast Fourier transform (FFT) of the orthogonal frequency division multiplexing (OFDM) in 5G NR are insufficient regarding the bandwidth requirements of terahertz scenarios. In this paper, a novel waveform is proposed to address the ultra-wideband issue, namely the generalized filter bank orthogonal frequency division multiplexing (GFB-OFDM) waveform. The main advantages are summarized as follows: (1) The K-point IFFT is implemented by two levels of IFFTs in smaller sizes, i.e, performing M-point IFFT in N times and performing N-point IFFT in M times, where K=N×M. (2) The proposed waveform can accommodate flexible subcarrier spacings and different numbers of the subbands to provide various services in a single GFB-OFDM symbol. (3) Different bandwidths can be supported using a fixed filter since the filtering is performed on each subband. In contrast, the cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) in 4G/5G requires various filters. (4) The existing detection for CP-OFDM can be directly employed as the detector of the proposed waveform. Lastly, the comprehensive simulation results demonstrate that GFB-OFDM outperforms CP-OFDM in terms of the out-of-band leakage, complexity and error performance. Full article
Show Figures

Figure 1

13 pages, 9369 KiB  
Article
Circularly Polarized Modified Minkowski Metasurface-Based Hybrid Dielectric Resonator Antenna for 5G n79 Wireless Applications
by Rajasekhar Nalanagula, Naresh K. Darimireddy, Runa Kumari and Chan Wang Park
Electronics 2024, 13(16), 3117; https://doi.org/10.3390/electronics13163117 - 7 Aug 2024
Viewed by 1437
Abstract
This paper presents a circularly polarized hybrid cylindrical dielectric resonator antenna (HCDRA) over a modified Minkowski unit-cell-based metasurface for 5G n79 band (4.4–5 GHz) and IEEE 802.11n WLAN (5 GHz) applications. The location of the perturbed probe feed mechanism and the asymmetric nature [...] Read more.
This paper presents a circularly polarized hybrid cylindrical dielectric resonator antenna (HCDRA) over a modified Minkowski unit-cell-based metasurface for 5G n79 band (4.4–5 GHz) and IEEE 802.11n WLAN (5 GHz) applications. The location of the perturbed probe feed mechanism and the asymmetric nature of the metasurface are the factors that influence the circularly polarized (CP) radiation within the DR element. The magnitude of E-field distribution and parametric study of the antenna to obtain the optimized feed location are the pieces of evidence of CP radiation. The return loss (RL) and axial ratio (AR) bandwidths produced by the proposed antenna are 1.837 GHz and 750 MHz with a peak gain of 7.04 dBic. The gain obtained is more than 5 dBic across the offered bandwidth of the proposed antenna. The proposed antenna is fabricated and tested in an anechoic chamber for measured results, and these results closely match with the simulation results. Full article
(This article belongs to the Special Issue Antenna and Propagation Technologies for 5G/6G Communication)
Show Figures

Figure 1

22 pages, 15411 KiB  
Article
Wideband Eight-Antenna Array Designs for 5G Smartphone Applications
by Guan-Long Huang, Ting-Yu Chang and Chow-Yen-Desmond Sim
Electronics 2024, 13(15), 2995; https://doi.org/10.3390/electronics13152995 - 29 Jul 2024
Cited by 2 | Viewed by 1257
Abstract
This paper proposes a broadband eight-antenna array design suitable for Fifth Generation New Radio (5G NR) smartphone applications. To cover the 5G NR bands n77/n78/n79 (3300–5000 MHz) and 5G NR-U n46 band (5150–5925 MHz), the single antenna array unit applied is a modified [...] Read more.
This paper proposes a broadband eight-antenna array design suitable for Fifth Generation New Radio (5G NR) smartphone applications. To cover the 5G NR bands n77/n78/n79 (3300–5000 MHz) and 5G NR-U n46 band (5150–5925 MHz), the single antenna array unit applied is a modified loop antenna element (MLAE) that can generate three different loop modes. To yield good multi-input multi-output (MIMO) performances, the designed MLAE is further arranged as an eight-antenna array, and the experimental results show that the overlapping 6 dB bandwidth can cover the bands-of-interest (3300–5925 MHz) with good isolation and total efficiency of >10 dB and 51–84%, respectively. Finally, good MIMO performances, such as an envelope correlation coefficient (ECC) of lower than 0.1 and desirable channel capacity (CC) of 37–40 bps/Hz, were calculated across the bands-of-interest. Full article
(This article belongs to the Special Issue Advanced Antenna Technologies for B5G and 6G Applications)
Show Figures

Figure 1

14 pages, 11005 KiB  
Article
Development of Wearable Textile MIMO Antenna for Sub-6 GHz Band New Radio 5G Applications
by Pendli Pradeep, Mohammed Mahaboob Basha, Srinivasulu Gundala and Javed Syed
Micromachines 2024, 15(5), 651; https://doi.org/10.3390/mi15050651 - 15 May 2024
Cited by 9 | Viewed by 1919
Abstract
In this paper, an irregular octagonal two-port MIMO patch antenna is designed specifically for New Radio (NR) 5G applications in the mid-band sub-6 GHz. The proposed antenna comprises an irregularly shaped patch antenna equipped with a regular 50-ohm feed line and a parasitic [...] Read more.
In this paper, an irregular octagonal two-port MIMO patch antenna is designed specifically for New Radio (NR) 5G applications in the mid-band sub-6 GHz. The proposed antenna comprises an irregularly shaped patch antenna equipped with a regular 50-ohm feed line and a parasitic strip line antenna, and is partially grounded. Jeans material serves as a substrate with an effective dielectric constant of 1.6 and a thickness of 1 mm. This material is studied experimentally. The proposed antenna design undergoes analysis and optimization using the ANSYS HFSS tool. Furthermore, the design incorporates the influence of the slot on both the ground plane and the parasitic strip line to optimize performance, enhance isolation, and improve impedance matching among antenna elements. The dimensions of the jeans substrate are 40 mm × 50 mm. The simulated impedance bandwidth ranged from 3.6 GHz to 7 GHz and the measured bandwidth was slightly narrower, from 4.35 GHz to 7 GHz. The simulation results demonstrated an isolation level greater than 12 dB between antenna elements, while the measured results reached 28.5 dB, and the peak gain for this proposed antenna stood at 6.74 dB. These qualities made this proposed antenna suitable for various New Radio mid-band 5G wireless applications within the sub-6 GHz band, such as N79, Wi-Fi-5/6, V2X, and DSRC applications. Full article
(This article belongs to the Special Issue Recent Advances in Microwave Components and Devices, 2nd Edition)
Show Figures

Figure 1

15 pages, 18852 KiB  
Article
A Dual-Band 8-Antenna Array Design for 5G/WiFi 5 Metal-Frame Smartphone Applications
by Huiyang Li, Shanshan Xiao, Lefei He, Qibo Cai and Gui Liu
Micromachines 2024, 15(5), 584; https://doi.org/10.3390/mi15050584 - 28 Apr 2024
Cited by 4 | Viewed by 1785
Abstract
This paper presents a dual-band 8-port multiple-input multiple-output (MIMO) antenna specifically designed for fifth-generation (5G) smartphones, featuring two open-slot metal frames. To enhance impedance matching and improve isolation between adjacent antenna elements, each antenna element employed a coupling feed. All simulation results in [...] Read more.
This paper presents a dual-band 8-port multiple-input multiple-output (MIMO) antenna specifically designed for fifth-generation (5G) smartphones, featuring two open-slot metal frames. To enhance impedance matching and improve isolation between adjacent antenna elements, each antenna element employed a coupling feed. All simulation results in this paper come from Ansys HFSS. The operational frequency bands of the proposed antenna spanned 3.36–4.2 GHz for the lower band and 4.37–5.95 GHz for the higher band, covering 5G New Radio (NR) bands N78 (3.4–3.6 GHz) and N79 (4.4–4.9 GHz), as well as WiFi 5 (5.15–5.85 GHz). Notably, the antenna demonstrated outstanding isolation exceeding 16.5 dB within the specified operating bands. The exceptional performance positions the proposed antenna as a promising candidate for integration into 5G metal-frame smartphones. Full article
Show Figures

Figure 1

15 pages, 1409 KiB  
Article
A gm/ID-Based Low-Power LNA for Ka-Band Applications
by David Galante-Sempere, Jeffrey Torres-Clarke, Javier del Pino and Sunil Lalchand Khemchandani
Sensors 2024, 24(8), 2646; https://doi.org/10.3390/s24082646 - 21 Apr 2024
Cited by 3 | Viewed by 2120
Abstract
This article presents the design of a low-power low noise amplifier (LNA) implemented in 45 nm silicon-on-insulator (SOI) technology using the gm/ID methodology. The Ka-band LNA achieves a very low power consumption of only 1.98 mW andis the first [...] Read more.
This article presents the design of a low-power low noise amplifier (LNA) implemented in 45 nm silicon-on-insulator (SOI) technology using the gm/ID methodology. The Ka-band LNA achieves a very low power consumption of only 1.98 mW andis the first time the gm/ID approach is applied at such a high frequency. The circuit is suitable for Ka-band applications with a central frequency of 28 GHz, as the circuit is intended to operate in the n257 frequency band defined by the 3GPP 5G new radio (NR) specification. The proposed cascode LNA uses the gm/ID methodology in an RF/MW scenario to exploit the advantages of moderate inversion region operation. The circuit occupies a total area of 1.23 mm2 excluding pads and draws 1.98 mW from a DC supply of 0.9 V. Post-layout simulation results reveal a total gain of 11.4 dB, a noise figure (NF) of 3.8 dB, and an input return loss (IRL) better than 12 dB. Compared to conventional circuits, this design obtains a remarkable figure of merit (FoM) as the LNA reports a gain and NF in line with other approaches with very low power consumption. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

9 pages, 2714 KiB  
Communication
Low-Noise Amplifier with Bypass for 5G New Radio Frequency n77 Band and n79 Band in Radio Frequency Silicon on Insulator Complementary Metal–Oxide Semiconductor Technology
by Min-Su Kim and Sang-Sun Yoo
Sensors 2024, 24(2), 568; https://doi.org/10.3390/s24020568 - 16 Jan 2024
Cited by 3 | Viewed by 2339
Abstract
This paper presents the design of a low-noise amplifier (LNA) with a bypass mode for the n77/79 bands in 5G New Radio (NR). The proposed LNA integrates internal matching networks for both input and output, combining two LNAs for the n77 and n79 [...] Read more.
This paper presents the design of a low-noise amplifier (LNA) with a bypass mode for the n77/79 bands in 5G New Radio (NR). The proposed LNA integrates internal matching networks for both input and output, combining two LNAs for the n77 and n79 bands into a single chip. Additionally, a bypass mode is integrated to accommodate the flexible operation of the receiving system in response to varying input signal levels. For each frequency band, we designed a low-noise amplifier for the n77 band to expand the bandwidth to 900 MHz (3.3 GHz to 4.2 GHz) using resistive–capacitance (RC) feedback and series inductive-peaking techniques. For the n79 band, only the RC feedback technique was employed to optimize the performance of the LNA for its 600 MHz bandwidth (4.4 GHz to 5.0 GHz). Because wideband techniques can lead to a trade-off between gain and noise, causing potential degradation in noise performance, appropriate bandwidth design becomes crucial. The designed n77 band low-noise amplifier achieved a simulated gain of 22.6 dB and a noise figure of 1.7 dB. Similarly, the n79 band exhibited a gain of 21.1 dB and a noise figure of 1.5 dB with a current consumption of 10 mA at a 1.2 supply voltage. The bypass mode was designed with S21 of −3.7 dB and −5.0 dB for n77 and n79, respectively. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

14 pages, 7195 KiB  
Article
A Miniature Eight-Port Antenna Array Based on Split-Ring Resonators for 5G Sub-6 GHz Handset Applications
by Jianlin Huang, Lingrong Shen, Shanshan Xiao, Xiaojing Shi and Gui Liu
Sensors 2023, 23(24), 9734; https://doi.org/10.3390/s23249734 - 10 Dec 2023
Cited by 4 | Viewed by 1378
Abstract
In this article, a miniature eight-port multiple-input multiple-output (MIMO) antenna array is proposed for fifth-generation (5G) sub-6 GHz handset applications. The individual antenna element comprises a radiator shaped like the Chinese character “王” (phonetically represented as “Wang”) and three split-ring resonators (SRR) on [...] Read more.
In this article, a miniature eight-port multiple-input multiple-output (MIMO) antenna array is proposed for fifth-generation (5G) sub-6 GHz handset applications. The individual antenna element comprises a radiator shaped like the Chinese character “王” (phonetically represented as “Wang”) and three split-ring resonators (SRR) on the metal frame. The size of the individual antenna element is only 6.8 × 7 × 1 mm3 (47.6 mm3). The proposed antenna element has a −10 dB impedance bandwidth of 1.7 GHz (from 3.3 GHz to 5 GHz) that can cover 5G New Radio (NR) sub-6 GHz bands N77 (3.3–4.2 GHz), N78 (3.3–3.8 GHz), and N79 (4.4–5 GHz). The evolution design, the current distribution, the effects of single-handed holding, and the analysis of the parameters are deduced to study the approach used to design the featured antenna. The measured total efficiencies are from 40% to 80%, the isolation is better than 12 dB, the calculated envelope correlation coefficient (ECC) is less than 0.12, and the calculated channel capacity (CC) ranges from 35 to 38 bps/Hz. The presented antenna array is a good alternative to 5G mobile handsets with wideband operation, a metal frame, and minimized spacing. Full article
(This article belongs to the Special Issue 5G Antennas)
Show Figures

Figure 1

20 pages, 7118 KiB  
Article
Quad Element MIMO Antenna for C, X, Ku, and Ka-Band Applications
by Raj Kumar Mistri, Santosh Kumar Mahto, Ajit Kumar Singh, Rashmi Sinha, Ahmed Jamal Abdullah Al-Gburi, Thamer A. H. Alghamdi and Moath Alathbah
Sensors 2023, 23(20), 8563; https://doi.org/10.3390/s23208563 - 18 Oct 2023
Cited by 30 | Viewed by 3375
Abstract
This article presents a quad-element MIMO antenna designed for multiband operation. The prototype of the design is fabricated and utilizes a vector network analyzer (VNA-AV3672D) to measure the S-parameters. The proposed antenna is capable of operating across three broad frequency bands: 3–15.5 GHz, [...] Read more.
This article presents a quad-element MIMO antenna designed for multiband operation. The prototype of the design is fabricated and utilizes a vector network analyzer (VNA-AV3672D) to measure the S-parameters. The proposed antenna is capable of operating across three broad frequency bands: 3–15.5 GHz, encompassing the C band (4–8 GHz), X band (8–12.4 GHz), and a significant portion of the Ku band (12.4–15.5 GHz). Additionally, it covers two mm-wave bands, specifically 26.4–34.3 GHz and 36.1–48.9 GHz, which corresponds to 86% of the Ka-band (27–40 GHz). To enhance its performance, the design incorporates a partial ground plane and a top patch featuring a dual-sided reverse 3-stage stair and a straight stick symmetrically placed at the bottom. The introduction of a defected ground structure (DGS) on the ground plane serves to provide a wideband response. The DGS on the ground plane plays a crucial role in improving the electromagnetic interaction between the grounding surface and the top patch, contributing to the wideband characteristics of the antenna. The dimensions of the proposed MIMO antenna are 31.7 mm × 31.7 mm × 1.6 mm. Furthermore, the article delves into the assessment of various performance metrics related to antenna diversity, such as ECC, DG, TARC, MEG, CCL, and channel capacity, with corresponding values of 0.11, 8.87 dB, −6.6 dB, ±3 dB, 0.32 bits/sec/Hz, and 18.44 bits/sec/Hz, respectively. Additionally, the equivalent circuit analysis of the MIMO system is explored in the article. It’s worth noting that the measured results exhibit a strong level of agreement with the simulated results, indicating the reliability of the proposed design. The MIMO antenna’s ability to exhibit multiband response, good diversity performance, and consistent channel capacity across various frequency bands renders it highly suitable for integration into multi-band wireless devices. The developed MIMO system should be applicable on n77/n78/n79 5G NR (3.3–5 GHz); WLAN (4.9–5.725 GHz); Wi-Fi (5.15–5.85 GHz); LTE5537.5 (5.15–5.925 GHz); WiMAX (5.25–5.85 GHz); WLAN (5.725–5.875 GHz); long-distance radio telecommunication (4–8 GHz; C-band); satellite, radar, space communications and terrestrial broadband (8–12 GHz; X-band); and various satellite communications (27–40 GHz; Ka-band). Full article
(This article belongs to the Special Issue Metasurface-Based Antennas for 5G and Beyond)
Show Figures

Figure 1

8 pages, 2612 KiB  
Communication
A 37–40 GHz 6-Bits Switched-Filter Phase Shifter Using 150 nm GaN HEMT
by Jae-Hyeok Song, Eun-Gyu Lee, Jae-Eun Lee, Jeong-Taek Son, Joon-Hyung Kim, Min-Seok Baek and Choul-Young Kim
Nanomaterials 2023, 13(20), 2752; https://doi.org/10.3390/nano13202752 - 12 Oct 2023
Cited by 4 | Viewed by 1982
Abstract
In this paper, we present a 6-bit phase shifter designed and fabricated using the 150 nm GaN HEMT process. The designed phase shifter operates within the n260 (37~40 GHz) band, as specified in the 5G NR standard, and employs the structure of a [...] Read more.
In this paper, we present a 6-bit phase shifter designed and fabricated using the 150 nm GaN HEMT process. The designed phase shifter operates within the n260 (37~40 GHz) band, as specified in the 5G NR standard, and employs the structure of a switched-filter phase shifter. By serially connecting six single-bit phase shifters, ranging from 180° to 5.625°, the designed phase shifter achieves a phase range of 360°. The fabricated phase shifter exhibits a minimum insertion loss of 5 dB and an RMS phase error of less than 5.36° within the 37 to 40 GHz. This phase shifter is intended for seamless integration with high-power RF circuits. Full article
(This article belongs to the Special Issue Advances in Nanotechnology for RF and Terahertz)
Show Figures

Figure 1

Back to TopTop