Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,653)

Search Parameters:
Keywords = 5G infrastructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 (registering DOI) - 2 Aug 2025
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
16 pages, 1333 KiB  
Article
CampyTube: Seamless Integration of a Molecular Test and Lateral Flow Detection of Campylobacter in a Single Vial
by Natalia Sandetskaya, Andreas Kölsch, Kai Mattern, Vanessa Vater, Dirk Kuhlmeier and Florian Priller
Biosensors 2025, 15(8), 497; https://doi.org/10.3390/bios15080497 (registering DOI) - 1 Aug 2025
Abstract
Background: The efficient control of hygiene and Campylobacter’s contamination status at various steps of poultry meat production is essential for the prevention of Campylobacter transmission to humans. Microbiological methods are laborious and time-consuming, and molecular methods of detection are often too skill- [...] Read more.
Background: The efficient control of hygiene and Campylobacter’s contamination status at various steps of poultry meat production is essential for the prevention of Campylobacter transmission to humans. Microbiological methods are laborious and time-consuming, and molecular methods of detection are often too skill- and infrastructure-demanding. Methods: We have developed CampyTube, a simple and user-friendly format for the integration of isothermal DNA amplification with embedded instrument-free detection on a miniaturized lateral flow test in a single vial. All test components, from the dry amplification reagents to the mini lateral flow tests, are incorporated into a standard single vial, which is closed after the addition of the liquid sample and never has to be opened again. This ensures the absolute prevention of carry-over contamination and makes the system very safe and simple to use in point-of-need settings. Results: As few as 60 Campylobacter genome copies per reaction could be successfully detected with CampyTube. We have primarily developed and evaluated CampyTube for the detection of Campylobacter in chicken neck skin samples and could reach 100% sensitivity and 100% specificity in the samples exceeding the regulatory limit of 1000 CFU/g confirmed microbiologically, while the sensitivity in all samples that tested positive using qPCR (1.4 × 102–2.5 × 106 genome copies/g) was 71.1%. We discuss the impact of sample preparation on CampyTube performance and suggest further options for test optimization. Conclusions: CampyTube is a highly versatile and efficient, yet simple, affordable, and material-saving system that can be adapted for other targets and sample types. Full article
(This article belongs to the Special Issue Biosensors for Monitoring and Diagnostics)
24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 (registering DOI) - 1 Aug 2025
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

36 pages, 2671 KiB  
Article
DIKWP-Driven Artificial Consciousness for IoT-Enabled Smart Healthcare Systems
by Yucong Duan and Zhendong Guo
Appl. Sci. 2025, 15(15), 8508; https://doi.org/10.3390/app15158508 (registering DOI) - 31 Jul 2025
Viewed by 43
Abstract
This study presents a DIKWP-driven artificial consciousness framework for IoT-enabled smart healthcare, integrating a Data–Information–Knowledge–Wisdom–Purpose (DIKWP) cognitive architecture with a software-defined IoT infrastructure. The proposed system deploys DIKWP agents at edge and cloud nodes to transform raw sensor data into high-level knowledge and [...] Read more.
This study presents a DIKWP-driven artificial consciousness framework for IoT-enabled smart healthcare, integrating a Data–Information–Knowledge–Wisdom–Purpose (DIKWP) cognitive architecture with a software-defined IoT infrastructure. The proposed system deploys DIKWP agents at edge and cloud nodes to transform raw sensor data into high-level knowledge and purpose-driven actions. This is achieved through a structured DIKWP pipeline—from data acquisition and information processing to knowledge extraction, wisdom inference, and purpose-driven decision-making—that enables semantic reasoning, adaptive goal-driven responses, and privacy-preserving decision-making in healthcare environments. The architecture integrates wearable sensors, edge computing nodes, and cloud services to enable dynamic task orchestration and secure data fusion. For evaluation, a smart healthcare scenario for early anomaly detection (e.g., arrhythmia and fever) was implemented using wearable devices with coordinated edge–cloud analytics. Simulated experiments on synthetic vital sign datasets achieved approximately 98% anomaly detection accuracy and up to 90% reduction in communication overhead compared to cloud-centric solutions. Results also demonstrate enhanced explainability via traceable decisions across DIKWP layers and robust performance under intermittent connectivity. These findings indicate that the DIKWP-driven approach can significantly advance IoT-based healthcare by providing secure, explainable, and adaptive services aligned with clinical objectives and patient-centric care. Full article
(This article belongs to the Special Issue IoT in Smart Cities and Homes, 2nd Edition)
Show Figures

Figure 1

17 pages, 460 KiB  
Article
Efficient Multi-Layer Credential Revocation Scheme for 6G Using Dynamic RSA Accumulators and Blockchain
by Guangchao Wang, Yanlong Zou, Jizhe Zhou, Houxiao Cui and Ying Ju
Electronics 2025, 14(15), 3066; https://doi.org/10.3390/electronics14153066 (registering DOI) - 31 Jul 2025
Viewed by 40
Abstract
As a new generation of mobile communication networks, 6G security faces many new security challenges. Vehicle to Everything (V2X) will be an important part of 6G. In V2X, connected and automated vehicles (CAVs) need to frequently share data with other vehicles and infrastructures. [...] Read more.
As a new generation of mobile communication networks, 6G security faces many new security challenges. Vehicle to Everything (V2X) will be an important part of 6G. In V2X, connected and automated vehicles (CAVs) need to frequently share data with other vehicles and infrastructures. Therefore, identity revocation technology in the authentication is an important way to secure CAVs and other 6G scenario applications. This paper proposes an efficient credential revocation scheme with a four-layer architecture. First, a rapid pre-filtration layer is constructed based on the cuckoo filter, responsible for the initial screening of credentials. Secondly, a directed routing layer and the precision judgement layer are designed based on the consistency hash and the dynamic RSA accumulator. By proposing the dynamic expansion of the RSA accumulator and load-balancing algorithm, a smaller and more stable revocation delay can be achieved when many users and terminal devices access 6G. Finally, a trusted storage layer is built based on the blockchain, and the key revocation parameters are uploaded to the blockchain to achieve a tamper-proof revocation mechanism and trusted data traceability. Based on this architecture, this paper also proposes a detailed identity credential revocation and verification process. Compared to existing solutions, this paper’s solution has a combined average improvement of 59.14% in the performance of the latency of the cancellation of the inspection, and the system has excellent load balancing, with a standard deviation of only 11.62, and the maximum deviation is controlled within the range of ±4%. Full article
(This article belongs to the Special Issue Connected and Autonomous Vehicles in Mixed Traffic Systems)
Show Figures

Figure 1

27 pages, 6715 KiB  
Article
Structural Component Identification and Damage Localization of Civil Infrastructure Using Semantic Segmentation
by Piotr Tauzowski, Mariusz Ostrowski, Dominik Bogucki, Piotr Jarosik and Bartłomiej Błachowski
Sensors 2025, 25(15), 4698; https://doi.org/10.3390/s25154698 - 30 Jul 2025
Viewed by 198
Abstract
Visual inspection of civil infrastructure for structural health assessment, as performed by structural engineers, is expensive and time-consuming. Therefore, automating this process is highly attractive, which has received significant attention in recent years. With the increasing capabilities of computers, deep neural networks have [...] Read more.
Visual inspection of civil infrastructure for structural health assessment, as performed by structural engineers, is expensive and time-consuming. Therefore, automating this process is highly attractive, which has received significant attention in recent years. With the increasing capabilities of computers, deep neural networks have become a standard tool and can be used for structural health inspections. A key challenge, however, is the availability of reliable datasets. In this work, the U-net and DeepLab v3+ convolutional neural networks are trained on a synthetic Tokaido dataset. This dataset comprises images representative of data acquired by unmanned aerial vehicle (UAV) imagery and corresponding ground truth data. The data includes semantic segmentation masks for both categorizing structural elements (slabs, beams, and columns) and assessing structural damage (concrete spalling or exposed rebars). Data augmentation, including both image quality degradation (e.g., brightness modification, added noise) and image transformations (e.g., image flipping), is applied to the synthetic dataset. The selected neural network architectures achieve excellent performance, reaching values of 97% for accuracy and 87% for Mean Intersection over Union (mIoU) on the validation data. It also demonstrates promising results in the semantic segmentation of real-world structures captured in photographs, despite being trained solely on synthetic data. Additionally, based on the obtained results of semantic segmentation, it can be concluded that DeepLabV3+ outperforms U-net in structural component identification. However, this is not the case in the damage identification task. Full article
(This article belongs to the Special Issue AI-Assisted Condition Monitoring and Fault Diagnosis)
Show Figures

Figure 1

19 pages, 5284 KiB  
Article
Integrating Dark Sky Conservation into Sustainable Regional Planning: A Site Suitability Evaluation for Dark Sky Parks in the Guangdong–Hong Kong–Macao Greater Bay Area
by Deliang Fan, Zidian Chen, Yang Liu, Ziwen Huo, Huiwen He and Shijie Li
Land 2025, 14(8), 1561; https://doi.org/10.3390/land14081561 - 29 Jul 2025
Viewed by 268
Abstract
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments [...] Read more.
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments but also enhance livability by balancing urban expansion and ecological conservation. This study develops a novel framework for evaluating DSP suitability, integrating ecological and socio-economic dimensions, including the resource base (e.g., nighttime light levels, meteorological conditions, and air quality) and development conditions (e.g., population density, transportation accessibility, and tourism infrastructure). Using the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) as a case study, we employ Delphi expert consultation, GIS spatial analysis, and multi-criteria decision-making to identify optimal DSP locations and prioritize conservation zones. Our key findings reveal the following: (1) spatial heterogeneity in suitability, with high-potential zones being concentrated in the GBA’s northeastern, central–western, and southern regions; (2) ecosystem advantages of forests, wetlands, and high-elevation areas for minimizing light pollution; (3) coastal and island regions as ideal DSP sites due to the low light interference and high ecotourism potential. By bridging environmental assessments and spatial planning, this study provides a replicable model for DSP site selection, offering policymakers actionable insights to integrate dark sky preservation into sustainable urban–regional development strategies. Our results underscore the importance of DSPs in fostering ecological resilience, nighttime tourism, and regional livability, contributing to the broader discourse on sustainable landscape planning in high-urbanization contexts. Full article
Show Figures

Figure 1

45 pages, 1090 KiB  
Review
Electric Vehicle Adoption in Egypt: A Review of Feasibility, Challenges, and Policy Directions
by Hilmy Awad, Michele De Santis and Ehab H. E. Bayoumi
World Electr. Veh. J. 2025, 16(8), 423; https://doi.org/10.3390/wevj16080423 - 28 Jul 2025
Viewed by 431
Abstract
This study evaluates the feasibility and visibility of electric vehicles (EVs) in Egypt, addressing critical research gaps and proposing actionable strategies to drive adoption. Employing a systematic review of academic, governmental, and industry sources, the paper identifies underexplored areas such as rural–urban adoption [...] Read more.
This study evaluates the feasibility and visibility of electric vehicles (EVs) in Egypt, addressing critical research gaps and proposing actionable strategies to drive adoption. Employing a systematic review of academic, governmental, and industry sources, the paper identifies underexplored areas such as rural–urban adoption disparities, lifecycle assessments of EV batteries, and sociocultural barriers, including gender dynamics and entrenched consumer preferences. Its primary contribution is an interdisciplinary framework that integrates technical aspects, such as grid resilience and climate-related battery degradation, with socioeconomic dimensions, providing a holistic overview of EV feasibility in Egypt tailored to Egypt’s context. Key findings reveal infrastructure limitations, inconsistent policy frameworks, and behavioral skepticism as major hurdles, and highlight the untapped potential of renewable energy integration, particularly through synergies between solar PV generation (e.g., Benban Solar Park) and EV charging infrastructure. Recommendations prioritize policy reforms (e.g., tax incentives, streamlined tariffs), solar-powered charging infrastructure expansion, public awareness campaigns, and local EV manufacturing to stimulate economic growth. The study underscores the urgency of stakeholder collaboration to transform EVs into a mainstream solution, positioning Egypt as a regional leader in sustainable mobility and equitable development. Full article
Show Figures

Figure 1

17 pages, 3650 KiB  
Article
Towards Intelligent Threat Detection in 6G Networks Using Deep Autoencoder
by Doaa N. Mhawi, Haider W. Oleiwi and Hamed Al-Raweshidy
Electronics 2025, 14(15), 2983; https://doi.org/10.3390/electronics14152983 - 26 Jul 2025
Viewed by 147
Abstract
The evolution of sixth-generation (6G) wireless networks introduces a complex landscape of cybersecurity challenges due to advanced infrastructure, massive device connectivity, and the integration of emerging technologies. Traditional intrusion detection systems (IDSs) struggle to keep pace with such dynamic environments, often yielding high [...] Read more.
The evolution of sixth-generation (6G) wireless networks introduces a complex landscape of cybersecurity challenges due to advanced infrastructure, massive device connectivity, and the integration of emerging technologies. Traditional intrusion detection systems (IDSs) struggle to keep pace with such dynamic environments, often yielding high false alarm rates and poor generalization. This study proposes a novel and adaptive IDS that integrates statistical feature engineering with a deep autoencoder (DAE) to effectively detect a wide range of modern threats in 6G environments. Unlike prior approaches, the proposed system leverages the DAE’s unsupervised capability to extract meaningful latent representations from high-dimensional traffic data, followed by supervised classification for precise threat detection. Evaluated using the CSE-CIC-IDS2018 dataset, the system achieved an accuracy of 86%, surpassing conventional ML and DL baselines. The results demonstrate the model’s potential as a scalable and upgradable solution for securing next-generation wireless networks. Full article
(This article belongs to the Special Issue Emerging Technologies for Network Security and Anomaly Detection)
Show Figures

Figure 1

17 pages, 655 KiB  
Review
Passenger Service Time at the Platform–Train Interface: A Review of Variability, Design Factors, and Crowd Management Implications Based on Laboratory Experiments
by Sebastian Seriani, Vicente Aprigliano, Vinicius Minatogawa, Alvaro Peña, Ariel Lopez and Felipe Gonzalez
Appl. Sci. 2025, 15(15), 8256; https://doi.org/10.3390/app15158256 - 24 Jul 2025
Viewed by 253
Abstract
This paper reviews the variability of passenger service time (PST) at the platform–train interface (PTI), a critical performance indicator in metro systems shaped by the infrastructure design, affecting passenger behavior and accessibility. Despite its operational importance, PST remains underexplored in relation to crowd [...] Read more.
This paper reviews the variability of passenger service time (PST) at the platform–train interface (PTI), a critical performance indicator in metro systems shaped by the infrastructure design, affecting passenger behavior and accessibility. Despite its operational importance, PST remains underexplored in relation to crowd management strategies. This review synthesizes findings from empirical and experimental research to clarify the main factors influencing PST and their implications for platform-level interventions. Key contributors to PST variability include door width, gap dimensions, crowd density, and user characteristics such as mobility impairments. Design elements—such as platform edge doors, yellow safety lines, and vertical handrails—affect flow efficiency and spatial dynamics during boarding and alighting. Advanced tracking and simulation tools (e.g., PeTrack and YOLO-based systems) are identified as essential for evaluating pedestrian behavior and supporting Level of Service (LOS) analysis. To complement traditional LOS metrics, the paper introduces Level of Interaction (LOI) and a multidimensional LOS framework that captures spatial conflicts and user interaction zones. Control strategies such as platform signage, seating arrangements, and visual cues are also reviewed, with experimental evidence showing that targeted design interventions can reduce PST by up to 35%. The review highlights a persistent gap between academic knowledge and practical implementation. It calls for greater integration of empirical evidence into policy, infrastructure standards, and operational contracts. Ultimately, it advocates for human-centered, data-informed approaches to PTI planning that enhance efficiency, inclusivity, and resilience in high-demand transit environments. Full article
(This article belongs to the Special Issue Research Advances in Rail Transport Infrastructure)
Show Figures

Figure 1

28 pages, 9894 KiB  
Article
At-Site Versus Regional Frequency Analysis of Sub-Hourly Rainfall for Urban Hydrology Applications During Recent Extreme Events
by Sunghun Kim, Kyungmin Sung, Ju-Young Shin and Jun-Haeng Heo
Water 2025, 17(15), 2213; https://doi.org/10.3390/w17152213 - 24 Jul 2025
Viewed by 207
Abstract
Accurate rainfall quantile estimation is critical for urban flood management, particularly given the escalating climate change impacts. This study comprehensively compared at-site frequency analysis and regional frequency analysis for sub-hourly rainfall quantile estimation, using data from 27 sites across Seoul. The analysis focused [...] Read more.
Accurate rainfall quantile estimation is critical for urban flood management, particularly given the escalating climate change impacts. This study comprehensively compared at-site frequency analysis and regional frequency analysis for sub-hourly rainfall quantile estimation, using data from 27 sites across Seoul. The analysis focused on Seoul’s disaster prevention framework (30-year and 100-year return periods). Employing L-moment statistics and Monte Carlo simulations, the rainfall quantiles were estimated, the methodological performance was evaluated, and Seoul’s current disaster prevention standards were assessed. The analysis revealed significant spatio-temporal variability in Seoul’s precipitation, causing considerable uncertainty in individual site estimates. A performance evaluation, including the relative root mean square error and confidence interval, consistently showed regional frequency analysis superiority over at-site frequency analysis. While at-site frequency analysis demonstrated better performance only for short return periods (e.g., 2 years), regional frequency analysis exhibited a substantially lower relative root mean square error and significantly narrower confidence intervals for larger return periods (e.g., 10, 30, 100 years). This methodology reduced the average 95% confidence interval width by a factor of approximately 2.7 (26.98 mm versus 73.99 mm). This enhanced reliability stems from the information-pooling capabilities of regional frequency analysis, mitigating uncertainties due to limited record lengths and localized variabilities. Critically, regionally derived 100-year rainfall estimates consistently exceeded Seoul’s 100 mm disaster prevention threshold across most areas, suggesting that the current infrastructure may be substantially under-designed. The use of minute-scale data underscored its necessity for urban hydrological modeling, highlighting the inadequacy of conventional daily rainfall analyses. Full article
(This article belongs to the Special Issue Urban Flood Frequency Analysis and Risk Assessment)
Show Figures

Figure 1

13 pages, 1881 KiB  
Article
Transforming Rice Husk Ash into Road Safety: A Sustainable Approach to Glass Microsphere Production
by Ingrid Machado Teixeira, Juliano Pase Neto, Acsiel Budny, Luis Enrique Gomez Armas, Chiara Valsecchi and Jacson Weber de Menezes
Ceramics 2025, 8(3), 93; https://doi.org/10.3390/ceramics8030093 - 24 Jul 2025
Viewed by 251
Abstract
Glass microspheres are essential components in horizontal road markings due to their retroreflective properties, enhancing visibility and safety under low-light conditions. Traditionally produced from soda-lime glass made with high-purity silica from sand, their manufacturing raises environmental concerns amid growing global sand scarcity. This [...] Read more.
Glass microspheres are essential components in horizontal road markings due to their retroreflective properties, enhancing visibility and safety under low-light conditions. Traditionally produced from soda-lime glass made with high-purity silica from sand, their manufacturing raises environmental concerns amid growing global sand scarcity. This study explores the viability of rice husk ash (RHA)—a high-silica byproduct of rice processing—as a sustainable raw material for microsphere fabrication. A glass composition containing 70 wt% SiO2 was formulated using RHA and melted at 1500 °C. Microspheres were produced through flame spheroidization and characterized following the Brazilian standard NBR 16184:2021 for Type IB beads. The RHA-derived microspheres exhibited high sphericity, appropriate size distribution (63–300 μm), density of 2.42 g/cm3, and the required acid resistance. UV-Vis analysis confirmed their optical transparency, and the refractive index was measured as 1.55 ± 0.03. Retroreflectivity tests under standardized conditions revealed performance comparable to commercial counterparts. These results demonstrate the technical feasibility of replacing conventional silica with RHA in glass microsphere production, aligning with circular economy principles and promoting sustainable infrastructure. Given Brazil’s significant rice production and corresponding RHA availability, this approach offers both environmental and socio-economic benefits for road safety and material innovation. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Graphical abstract

16 pages, 2322 KiB  
Article
Reducing Marine Ecotoxicity and Carbon Burden: A Life Cycle Assessment Study of Antifouling Systems
by Trent Kelly, Emily M. Hunt, Changxue Xu and George Tan
Processes 2025, 13(8), 2356; https://doi.org/10.3390/pr13082356 - 24 Jul 2025
Viewed by 267
Abstract
Marine biofouling significantly impacts the performance and longevity of polymer-based marine structures, particularly those designed for hydrodynamic applications such as Vortex-Induced Vibration suppression systems. Traditional antifouling solutions rely on copper-based multilayer coatings, which present challenges including mechanical vulnerability (e.g., chipping and scratching), high [...] Read more.
Marine biofouling significantly impacts the performance and longevity of polymer-based marine structures, particularly those designed for hydrodynamic applications such as Vortex-Induced Vibration suppression systems. Traditional antifouling solutions rely on copper-based multilayer coatings, which present challenges including mechanical vulnerability (e.g., chipping and scratching), high material and labor demands, and environmental concerns such as volatile organic compound emissions and copper leaching. Recent developments in material science have introduced an alternative system involving the direct incorporation of copper oxide (Cu2O) into high-density polyethylene (HDPE) during the molding process. This study conducts a comparative life cycle assessment (LCA) of two antifouling integration methods—System 1 (traditional coating-based) and System 2 (Cu2O-impregnated HDPE)—evaluating their environmental impact across production, application, use, and end-of-life stages. The functional unit used for this study was 1 square meter for a time period of five years. Using ISO 14040-compliant methodology and data from Ecoinvent and OpenLCA, three impact categories were assessed: global warming potential (GWP), cumulative energy demand (CED), and marine aquatic ecotoxicity Potential (MAETP). The results indicate that System 2 outperforms System 1 in GWP (4.42 vs. 5.65 kg CO2-eq), CED (75.3 vs. 91.0 MJ-eq), and MAETP (327,002 vs. 469,929 kg 1,4-DCB-eq) per functional unit over a five-year lifespan, indicating a 21.8%, 17.3%, and 30.4% reduction in the key impact factors, respectively. These results suggest that direct Cu2O incorporation offers a more environmentally sustainable and mechanically resilient antifouling strategy, supporting the potential of embedded antifouling systems to shift industry practices toward more sustainable marine infrastructure. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

23 pages, 13580 KiB  
Article
Enabling Smart Grid Resilience with Deep Learning-Based Battery Health Prediction in EV Fleets
by Muhammed Cavus and Margaret Bell
Batteries 2025, 11(8), 283; https://doi.org/10.3390/batteries11080283 - 24 Jul 2025
Viewed by 244
Abstract
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful [...] Read more.
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful life (RUL) using machine and deep learning, most existing models fail to capture both short-term degradation trends and long-range contextual dependencies jointly. In this study, we introduce V2G-HealthNet, a novel hybrid deep learning framework that uniquely combines Long Short-Term Memory (LSTM) networks with Transformer-based attention mechanisms to model battery degradation under dynamic vehicle-to-grid (V2G) scenarios. Unlike prior approaches that treat SOH estimation in isolation, our method directly links health prediction to operational decisions by enabling SOH-informed adaptive load scheduling and predictive maintenance across EV fleets. Trained on over 3400 proxy charge-discharge cycles derived from 1 million telemetry samples, V2G-HealthNet achieved state-of-the-art performance (SOH RMSE: 0.015, MAE: 0.012, R2: 0.97), outperforming leading baselines including XGBoost and Random Forest. For RUL prediction, the model maintained an MAE of 0.42 cycles over a five-cycle horizon. Importantly, deployment simulations revealed that V2G-HealthNet triggered maintenance alerts at least three cycles ahead of critical degradation thresholds and redistributed high-load tasks away from ageing batteries—capabilities not demonstrated in previous works. These findings establish V2G-HealthNet as a deployable, health-aware control layer for smart city electrification strategies. Full article
Show Figures

Figure 1

15 pages, 562 KiB  
Article
Transforming Agri-Waste into Health Innovation: A Circular Framework for Sustainable Food Design
by Smita Mortero, Jirarat Anuntagool, Achara Chandrachai and Sanong Ekgasit
Sustainability 2025, 17(15), 6712; https://doi.org/10.3390/su17156712 - 23 Jul 2025
Viewed by 358
Abstract
This study addresses the problem of agricultural waste utilization and nutrition for older adults by developing a food product based on a circular design approach. Pineapple core was used to produce a clean-label dietary powder without chemical or enzymatic treatment, relying on repeated [...] Read more.
This study addresses the problem of agricultural waste utilization and nutrition for older adults by developing a food product based on a circular design approach. Pineapple core was used to produce a clean-label dietary powder without chemical or enzymatic treatment, relying on repeated rinsing and hot-air drying. The development process followed a structured analysis of physical, chemical, and sensory properties. The powder contained 83.46 g/100 g dietary fiber, 0° Brix sugar, pH 4.72, low water activity (aw < 0.45), and no detectable heavy metals or microbial contamination. Sensory evaluation by expert panelists confirmed that the product was acceptable in appearance, aroma, and texture, particularly for older adults. These results demonstrate the feasibility and safety of valorizing agri-waste into functional ingredients. The process was guided by the Transformative Circular Product Blueprint, which integrates clean-label processing, IoT-enabled solar drying, and decentralized production. This model supports traceability, low energy use, and adaptation at the community scale. This study contributes to sustainable food innovation and aligns with Sustainable Development Goals (SDGs) 3 (Good Health and Well-being), 9 (Industry, Innovation and Infrastructure), and 12 (Responsible Consumption and Production). Full article
Show Figures

Figure 1

Back to TopTop