Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = 3D DNA single crystals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4906 KB  
Article
Ex Vivo Molecular Studies and In Silico Small Molecule Inhibition of Plasmodium falciparum Bromodomain Protein 1
by David O. Oladejo, Titilope M. Dokunmu, Gbolahan O. Oduselu, Daniel O. Oladejo, Olubanke O. Ogunlana and Emeka E. J. Iweala
Drugs Drug Candidates 2025, 4(3), 29; https://doi.org/10.3390/ddc4030029 - 21 Jun 2025
Cited by 1 | Viewed by 680
Abstract
Background: Malaria remains a significant global health burden, particularly in sub-Saharan Africa, accounting for high rates of illness and death. The growing resistance to frontline antimalarial therapies underscores the urgent need for novel drug targets and therapeutics. Bromodomain-containing proteins, which regulate gene expression [...] Read more.
Background: Malaria remains a significant global health burden, particularly in sub-Saharan Africa, accounting for high rates of illness and death. The growing resistance to frontline antimalarial therapies underscores the urgent need for novel drug targets and therapeutics. Bromodomain-containing proteins, which regulate gene expression through chromatin remodeling, have gained attention as potential targets. Plasmodium falciparum bromodomain protein 1 (PfBDP1), a 55 kDa nuclear protein, plays a key role in recognizing acetylated lysine residues and facilitating transcription during parasite development. Methods: This study investigated ex vivo PfBDP1 gene mutations and identified potential small molecule inhibitors using computational approaches. Malaria-positive blood samples were collected. Genomic DNA was extracted, assessed for quality, and amplified using PfBDP1-specific primers. DNA sequencing and alignment were performed to determine single-nucleotide polymorphism (SNP). Structural modeling used the PfBDP1 crystal structure (PDB ID: 7M97), and active site identification was conducted using CASTp 3.0. Virtual screening and pharmacophore modeling were performed using Pharmit and AutoDock Vina, followed by ADME/toxicity evaluations with SwissADME, OSIRIS, and Discovery Studio. GROMACS was used for 100 ns molecular dynamics simulations. Results: The malaria prevalence rate stood at 12.24%, and the sample size was 165. Sequencing results revealed conserved PfBDP1 gene sequences compared to the 3D7 reference strain. Virtual screening identified nine lead compounds with binding affinities ranging from −9.8 to −10.7 kcal/mol. Of these, CHEMBL2216838 had a binding affinity of −9.9 kcal/mol, with post-screening predictions of favorable drug-likeness (8.60), a high drug score (0.78), superior pharmacokinetics, and a low toxicity profile compared to chloroquine. Molecular dynamics simulations confirmed its stable interaction within the PfBDP1 active site. Conclusions: Overall, this study makes a significant contribution to the ongoing search for novel antimalarial drug targets by providing both molecular and computational evidence for PfBDP1 as a promising therapeutic target. The prediction of CHEMBL2216838 as a lead compound with favorable binding affinity, drug-likeness, and safety profile, surpassing those of existing drugs like chloroquine, sets the stage for preclinical validation and further structure-based drug design efforts. These findings are supported by prior experimental evidence showing significant parasite inhibition and gene suppression capability of predicted hits. Full article
(This article belongs to the Section In Silico Approaches in Drug Discovery)
Show Figures

Figure 1

12 pages, 1470 KB  
Article
Structural Characterization of B-DNA d(CGTGAATTCACG)2 in Complex with the Specific Minor Groove Binding Fluorescent Marker Hoechst 33342
by Hristina Sbirkova-Dimitrova, Rusi Rusew, Hristo Gerginov, Annie Heroux and Boris L. Shivachev
Crystals 2025, 15(1), 20; https://doi.org/10.3390/cryst15010020 - 27 Dec 2024
Viewed by 1229
Abstract
Recently, there have been numerous reports on the use of different fluorescent DNA stains for specific minor groove binding. The exploration of biological markers increases the safety of their use as diagnostic criteria. Single crystal analysis of DNA–ligand binding interactions is of essential [...] Read more.
Recently, there have been numerous reports on the use of different fluorescent DNA stains for specific minor groove binding. The exploration of biological markers increases the safety of their use as diagnostic criteria. Single crystal analysis of DNA–ligand binding interactions is of essential importance to obtain the requirements for their usage in the pharmaceutical and medical industries. Dyes that bind to DNA, such as Hoechst 33342 or 4′,6-diamidino-2-phenylindole (DAPI), can be used not only for analytical use, but for medical purposes. DAPI and Hoechst 33342 are fluorescent dyes that bind to the minor groove of DNA, fluorescing brightly in the blue region with an emission maximum at approximately 461 nm when excited by ultraviolet light (~350 nm). This work focuses on the binding interactions of Hoechst 33342 with the specific DNA sequence d(CGTGAATTCACG)2. The structure of the complex was determined using single-crystal X-ray diffraction at a resolution of 1.9 Å in the space group P212121. The coordinates and structure factors are deposited in the RCSB Protein Data Bank (PDB) under entry 9FT8. The structure is nearly isomorphous with that of previously reported crystal structures of the oligonucleotide d(CGTGAATTCACG)2 alone (PDB ID: 5JU4) and with that in complexes with DAPI (5T4W). The adjustments in crystal interactions between the native DNA molecule and the DNA–DAPI complex are described. Hoechst 33342 selectively binded to the tight minor groove close to the midpoint of the B-DNA segment, adjacent to the A–T base pairs. It interacted with DNA through hydrogen bonding and van der Waals forces. The structural comparison revealed that Hoechst 33342 inserts itself in the minor groove in a strongly specific manner, displacing the ordered spine waters. Full article
(This article belongs to the Special Issue Nucleic Acid Crystallography Volume II)
Show Figures

Figure 1

12 pages, 1316 KB  
Article
Synthesis of Antimicrobial Norlabdane Compounds with Rearranged Cycle B and Molecular Docking Studies
by Alexandru Ciocarlan, Lidia Lungu, Sergiu Shova, Nicoleta Vornicu, Natalia Bolocan, Veaceslav Kulcitki and Aculina Aricu
Molecules 2024, 29(23), 5714; https://doi.org/10.3390/molecules29235714 - 3 Dec 2024
Viewed by 1041
Abstract
The synthesis of tetra- and pentanorlabdane compounds with rearranged cycle B based on commercially available (+)-sclareolide is reported. Desired compounds were prepared from intermediate ketones via Baeyer–Villiger oxidation. The structures of synthesized compounds were confirmed by spectral IR, 1D (1H, 13 [...] Read more.
The synthesis of tetra- and pentanorlabdane compounds with rearranged cycle B based on commercially available (+)-sclareolide is reported. Desired compounds were prepared from intermediate ketones via Baeyer–Villiger oxidation. The structures of synthesized compounds were confirmed by spectral IR, 1D (1H, 13C, and DEPT), and 2D (H-COSY, H,C-HSQC, H,C-HMBC, H,N-HMBC, NOESY) NMR analyses, mass-spectrometry and single crystal X-rays diffraction. Two out of the four synthesized compounds showed high antifungal and antibacterial activities comparable to and exceeding standard antifungal (caspofungin) and antibacterial (kanamycin) agents. DFT calculations show that in gas and DCM, compound 4 is more stable than 3 with a difference in the Gibbs free energy of 23.3 kJ/mol and 20.7 kJ/mol, respectively. In water and methanol, compound 3 is slightly more stable, by 2.4 kJ/mol and 2.78 kJ/mol, respectively. Molecular docking to four targets DNA gyrase from E. coli (1KZN), Fabz from P. aeruginosa (1U1Z), dihydrofolate reductase from C. albicans (3QLS) and MurB from E. coli (2Q85) showed good agreement with the results of in vitro evaluation and confirmed the biological activity of compounds 3 and 4, with binding affinities comparable and for some targets exceeding that of Caspofungin and Kanamycin. Full article
Show Figures

Figure 1

25 pages, 6006 KB  
Article
Thiophene-Linked 1,2,4-Triazoles: Synthesis, Structural Insights and Antimicrobial and Chemotherapeutic Profiles
by Nada A. El-Emam, Mahmoud B. El-Ashmawy, Ahmed A. B. Mohamed, El-Sayed E. Habib, Subbiah Thamotharan, Mohammed S. M. Abdelbaky, Santiago Garcia-Granda and Mohamed A. A. Moustafa
Pharmaceuticals 2024, 17(9), 1123; https://doi.org/10.3390/ph17091123 - 25 Aug 2024
Cited by 3 | Viewed by 3964
Abstract
The reaction of thiophene-2-carbohydrazide 1 or 5-bromothiophene-2-carbohydrazide 2 with various haloaryl isothiocyanates and subsequent cyclization by heating in aqueous sodium hydroxide yielded the corresponding 4-haloaryl-5-(thiophen-2-yl or 5-bromothiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 5a-e. The triazole derivatives 5a and 5b were reacted with different [...] Read more.
The reaction of thiophene-2-carbohydrazide 1 or 5-bromothiophene-2-carbohydrazide 2 with various haloaryl isothiocyanates and subsequent cyclization by heating in aqueous sodium hydroxide yielded the corresponding 4-haloaryl-5-(thiophen-2-yl or 5-bromothiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 5a-e. The triazole derivatives 5a and 5b were reacted with different secondary amines and formaldehyde solution to yield the corresponding 2-aminomethyl-4-haloaryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones 6ae, 7ae, 8, 9, 10a and 10b in good yields. The in vitro antimicrobial activity of compounds 5ae, 6ae, 7ad, 8, 9, 10a and 10b was evaluated against a panel of standard pathogenic bacterial and fungal strains. Compounds 5a, 5b, 5e, 5f, 6ae, 7ad, 8, 9, 10a and 10b showed marked activity, particularly against the tested Gram-positive bacteria and the Gram-negative bacteria Escherichia coli, and all the tested compounds were almost inactive against all the tested fungal strains. In addition, compounds 5e, 6ae, 7ad and 10a exhibited potent anti-proliferative activity, particularly against HepG-2 and MCF-7 cancer cell lines (IC50 < 25 μM). A detailed structural insight study based on the single crystals of compounds 5a, 5b, 6a, 6d and 10a is also reported. Molecular docking studies of the highly active antibacterial compounds 5e, 6b, 6d, 7a and 7d showed a high affinity for DNA gyrase. Meanwhile, the potent anti-proliferative activity of compounds 6d, 6e and 7d may be attributed to their high affinity for cyclin-dependent kinase 2 (CDK2). Full article
Show Figures

Figure 1

24 pages, 4133 KB  
Article
Synthesis and Characterization of Ruthenium-Paraphenylene-Cyclopentadienyl Full-Sandwich Complexes: Cytotoxic Activity against A549 Lung Cancer Cell Line and DNA Binding Properties
by Evangelia Sifnaiou, Theodoros Tsolis, Konstantinos Ypsilantis, Eugenia Roupakia, Evangelos Kolettas, John C. Plakatouras and Achilleas Garoufis
Molecules 2024, 29(1), 17; https://doi.org/10.3390/molecules29010017 - 19 Dec 2023
Cited by 2 | Viewed by 1935
Abstract
Novel full-sandwich (η5-Cp)-Ru-paraphenylene complexes with the general formula [(η5-Cp)nRu(η6-L)](PF6)n where n = 1–3 and L = biphenyl, p-terphenyl and p-quaterphenyl, were synthesized and characterized by means of [...] Read more.
Novel full-sandwich (η5-Cp)-Ru-paraphenylene complexes with the general formula [(η5-Cp)nRu(η6-L)](PF6)n where n = 1–3 and L = biphenyl, p-terphenyl and p-quaterphenyl, were synthesized and characterized by means of spectroscopic and analytical techniques. The structures of the complexes [(η5-Cp)Ru(η6-biphenyl)](PF6) (1), [(η5-Cp)Ru(η6-terphenyl)](PF6) (3) and [(η5-Cp)2Ru(η6-terphenyl)](PF6)2 (4) was determined by X-ray single crystal methods. The interaction of the complexes [(η5-Cp)Ru(η6-quaterphenyl)]Cl, (6)Cl, and [(η5-Cp)2Ru(η6-quaterphenyl)]Cl2, (7)Cl2, with the DNA duplex d(5′-CGCGAATTCGCG-3′)2 was studied using NMR techniques. The results showed that both complexes interacted non-specifically with both the minor and major grooves of the helix. Specifically, (6)Cl exhibited partial binding through intercalation between the T7 and T8 bases of the sequence without disrupting the C–G and A–T hydrogen bonds. Fluorometric determination of the complexes’ binding constants revealed a significant influence of the number of connected phenyl rings in the paraphenylene ligand (L) on the binding affinity of their complexes with the d(5′-CGCGAATTCGCG-3′)2. The complexes (6)Cl and (7)Cl2 were found to be highly cytotoxic against the A549 lung cancer cell line, with complex (6) being more effective than (7) (IC50 for (6)Cl: 17.45 ± 2.1 μΜ, IC50 for (7)Cl2: 65.83 ± 1.8 μΜ) and with a selectivity index (SI) (SI for (6)Cl: 1.1 and SI for (7)Cl2: 4.8). Full article
(This article belongs to the Special Issue Featured Papers in Organometallic Chemistry)
Show Figures

Graphical abstract

17 pages, 4282 KB  
Article
D,L-Citrullinato-bipyridine Copper Complex: Experimental and Theoretical Characterization
by Diego Ramírez-Contreras, Amalia García-García, Angel Mendoza, Laura E. Serrano-de la Rosa, Brenda L. Sánchez-Gaytán, Francisco J. Melendez, María Eugenia Castro and Enrique González-Vergara
Crystals 2023, 13(9), 1391; https://doi.org/10.3390/cryst13091391 - 19 Sep 2023
Cited by 7 | Viewed by 2240
Abstract
Citrulline is a non-protein amino acid that acts as a metabolic intermediate in the urea cycle and arginine synthesis. It is present in some foods, although its name derives from watermelon (Citrullus vulgaris), from which it was first identified. Under normal [...] Read more.
Citrulline is a non-protein amino acid that acts as a metabolic intermediate in the urea cycle and arginine synthesis. It is present in some foods, although its name derives from watermelon (Citrullus vulgaris), from which it was first identified. Under normal conditions, Citrulline exists as a zwitterion in aqueous solutions since its carboxylic and amine groups can act as Lewis donors to chelate metal cations. In addition, Citrulline possesses in the aliphatic chain a terminal ureide group, which could also coordinate. Although Citrulline is comparable to other classical amino acids, its coordination chemistry has yet to be explored. Only two metal complexes have been reported, and the copper complex is a polymeric and insoluble material. As part of our search for active Casiopeina® analogs, we created a more soluble complex by combining 2,2′-Bipyridine into a new mixed material, resulting in the mononuclear complex [Cu(Bipy)(Citr)(H2O)(NO3)]·H2O. Single-crystal X-ray diffraction, spectroscopic methods (FT-IR, UV-Vis, Raman), and mass spectrometry characterized the material. Interestingly, both isomers of Citrulline, R(D), and S(L) are present in the same crystal. In addition, the molecular structure and electronic properties of the complex were calculated using density functional theory (DFT). Non-covalent interactions were characterized using the atoms-in-molecules (AIM) approach and Hirshfeld surface (HS) analysis. This ternary complex containing Citrulline and 2,2′-Bipyridine will be used for docking calculations and preliminary biological studies using calf thymus DNA (CT-DNA) and plasmid pUC19 as a first approximation to cytotoxic activity against cancer cell lines. Full article
Show Figures

Figure 1

18 pages, 4465 KB  
Article
Crystal Design, Antitumor Activity and Molecular Docking of Novel Palladium(II) and Gold(III) Complexes with a Thiosemicarbazone Ligand
by Carolane M. Almeida, Érica C. M. Nascimento, João B. L. Martins, Tales H. A. da Mota, Diêgo M. de Oliveira and Claudia C. Gatto
Int. J. Mol. Sci. 2023, 24(14), 11442; https://doi.org/10.3390/ijms241411442 - 14 Jul 2023
Cited by 6 | Viewed by 2191
Abstract
The current research describes the synthesis and characterization of 2-acetylpyridine N(4)-cyclohexyl-thiosemicarbazone ligand (HL) and their two metal complexes, [Au(L)Cl][AuCl2] (1) and [Pd(L)Cl]·DMF (2). The molecular structures of the compounds were determined by physicochemical and spectroscopic methods. Single crystal X-ray diffraction [...] Read more.
The current research describes the synthesis and characterization of 2-acetylpyridine N(4)-cyclohexyl-thiosemicarbazone ligand (HL) and their two metal complexes, [Au(L)Cl][AuCl2] (1) and [Pd(L)Cl]·DMF (2). The molecular structures of the compounds were determined by physicochemical and spectroscopic methods. Single crystal X-ray diffraction was employed in the structural elucidation of the new complexes. The complexes showed a square planar geometry to the metal center Au(III) and Pd(II), coordinated with a thiosemicarbazone molecule by the NNS-donor system and a chloride ion. Complex (1) also shows the [AuCl2] counter-ion in the asymmetric unit, and complex (2) has one DMF solvent molecule. These molecules play a key role in the formation of supramolecular structures due to different interactions. Noncovalent interactions were investigated through the 3D Hirshfeld surface by the dnorm function and the 2D fingerprint plots. The biological activity of the compounds was evaluated in vitro against the human glioma U251 cells. The cytotoxicity results revealed great antitumor activity in complex (1) compared with complex (2) and the free ligand. Molecular docking simulations were used to predict interactions and properties with selected proteins and DNA of the synthesized compounds. Full article
(This article belongs to the Special Issue The Design, Synthesis and Study of Metal Complexes)
Show Figures

Figure 1

19 pages, 8329 KB  
Article
Natural-Product-Inspired Microwave-Assisted Synthesis of Novel Spirooxindoles as Antileishmanial Agents: Synthesis, Stereochemical Assignment, Bioevaluation, SAR, and Molecular Docking Studies
by Nawal Kishore Sahu, Ritu Sharma, Kshirsagar Prasad Suhas, Jyoti Joshi, Kunal Prakash, Richa Sharma, Ramendra Pratap, Xiwen Hu, Sukhbir Kaur, Mukesh Jain, Carmine Coluccini, Paolo Coghi and Sandeep Chaudhary
Molecules 2023, 28(12), 4817; https://doi.org/10.3390/molecules28124817 - 16 Jun 2023
Cited by 13 | Viewed by 3051
Abstract
Leishmaniasis is a neglected tropical disease, and there is an emerging need for the development of effective drugs to treat it. To identify novel compounds with antileishmanial properties, a novel series of functionalized spiro[indoline-3,2′-pyrrolidin]-2-one/spiro[indoline-3,3′-pyrrolizin]-2-one 23af, 24af, and [...] Read more.
Leishmaniasis is a neglected tropical disease, and there is an emerging need for the development of effective drugs to treat it. To identify novel compounds with antileishmanial properties, a novel series of functionalized spiro[indoline-3,2′-pyrrolidin]-2-one/spiro[indoline-3,3′-pyrrolizin]-2-one 23af, 24af, and 25ag were prepared from natural-product-inspired pharmaceutically privileged bioactive sub-structures, i.e., isatins 20ah, various substituted chalcones 21af, and 22ac amino acids, via 1,3-dipolar cycloaddition reactions in MeOH at 80 °C using a microwave-assisted approach. Compared to traditional methods, microwave-assisted synthesis produces higher yields and better quality, and it takes less time. We report here the in vitro antileishmanial activity against Leishmania donovani and SAR studies. The analogues 24a, 24e, 24f, and 25d were found to be the most active compounds of the series and showed IC50 values of 2.43 µM, 0.96 µM, 1.62 µM, and 3.55 µM, respectively, compared to the standard reference drug Amphotericin B (IC50 = 0.060 µM). All compounds were assessed for Leishmania DNA topoisomerase type IB inhibition activity using the standard drug Camptothecin, and 24a, 24e, 24f, and 25d showed potential results. In order to further validate the experimental results and gain a deeper understanding of the binding manner of such compounds, molecular docking studies were also performed. The stereochemistry of the novel functionalized spirooxindole derivatives was confirmed by single-crystal X-ray crystallography studies. Full article
Show Figures

Graphical abstract

15 pages, 5361 KB  
Article
Synthesis, X-ray Crystal Structure, Anticancer, Hirshfeld Surface Analysis, DFT, TD-DFT, ADMET, and Molecular Docking of 3-Phenyl-1,2,4-triazolo[3,4-h]-13,4-thiaza-11-crown-4
by Fatima Lazrak, Sanae Lahmidi, El Hassane Anouar, Mohammed M. Alanazi, Ashwag S. Alanazi, El Mokhtar Essassi and Joel T. Mague
Molecules 2023, 28(7), 3166; https://doi.org/10.3390/molecules28073166 - 2 Apr 2023
Cited by 8 | Viewed by 3262
Abstract
In this work, we describe the synthesis of new macrocycles derived from 3-phenyl-1,2,4-triazole-5-thione 1 in a heterogeneous medium using liquid–solid phase transfer catalysis (PTC) conditions. The structures of the two compounds (3 and 4) isolated were elucidated based on spectral data [...] Read more.
In this work, we describe the synthesis of new macrocycles derived from 3-phenyl-1,2,4-triazole-5-thione 1 in a heterogeneous medium using liquid–solid phase transfer catalysis (PTC) conditions. The structures of the two compounds (3 and 4) isolated were elucidated based on spectral data (1H-NMR, 13C-NMR) and confirmed in the case of 3-phenyl-1,2,4-triazolo [3,4-h]-13,4--thiaza-11-crown-4 (3) by a single-crystal X-ray diffraction analysis. Furthermore, the experimental spectral and the X-ray geometrical parameters were compared with their corresponding predicted ones obtained at the B3LYP/6-311++G(d,p) level of theory. The intercontacts between crystal units were investigated through Hirshfeld surface analysis. The drug-like macrocycles were predicted using ADMET and drug-likeness properties, which showed that 3 may act as an inhibitor of DNA-dependent protein kinase (DNA-PK). This assumption was confirmed by the well-binding fitting of 3 into the binding site of DNA-PK and the formation of a stable 3-DNA-PK complex with a binding energy of −7 kcal-mol−1. Finally, the anticancer activity of 3 was assessed by an MTT assay against A549 cells, which showed that 3 has moderate anticancer activity compared to that of the doxorubicin reference drug. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

22 pages, 6382 KB  
Article
A 12-Connected [Y4((μ3-OH)4]8+ Cluster-Based Luminescent Metal-Organic Framework for Selective Turn-on Detection of F in H2O
by Juan Li, Airong Wang, Shiming Qiu, Xiaoli Wang and Jiaming Li
Molecules 2023, 28(4), 1893; https://doi.org/10.3390/molecules28041893 - 16 Feb 2023
Cited by 7 | Viewed by 3079
Abstract
Fluoride ion (F) is one of the most hazardous elements in potable water. Over intake of F can give rise to dental fluorosis, kidney failure, or DNA damage. As a result, developing affordable, equipment-free and credible approaches for F [...] Read more.
Fluoride ion (F) is one of the most hazardous elements in potable water. Over intake of F can give rise to dental fluorosis, kidney failure, or DNA damage. As a result, developing affordable, equipment-free and credible approaches for F detection is an important task. In this work, a new three dimensional rare earth cluster-based metal-organic framework assembled from lanthanide Y(III) ion, and a linear multifunctional ligand 3-nitro-4,4′-biphenyldicarboxylic acid, formulated as {[Y(μ3-OH)]4[Y(μ3-OH)(μ2-H2O)0.25(H2O)0.5]4[μ4-nba]8}n (1), where H2nba = 3-nitro-4,4′-biphenyldicarboxylic acid, has been hydrothermally synthesized and characterized through infrared spectroscopy (IR), elemental and thermal analysis (EA), power X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD) analyses. X-ray diffraction structural analysis revealed that 1 crystallizes in tetragonal system with P4¯21m space group, and features a 3D framework with 1D square 18.07(3)2 Å2 channels running along the [0,0,1] or c-axis direction. The structure of 1 is built up of unusual eight-membered rings formed by two types of {Y4O4} clusters connected to each other via 12 μ4-nba2− and 4 μ3-OH ligands. Three crystallographic independent Y3+ ions display two coordinated configurations with a seven-coordinated distorted monocapped trigonal-prism (YO7) and an eight-coordinated approximately bicapped trigonal-prism (YO8). 1 is further stabilized through O-H⋯O, O-H⋯N, C-H⋯O, and π⋯π interactions. Topologically, MOF 1 can be simplified as a 12-connected 2-nodal Au4Ho topology with a Schläfli symbol {420·628·818}{43}4 or a 6-connected uninodal pcu topology with a Schläfli symbol {412·63}. The fluorescent sensing application of 1 was investigated to cations and anions in H2O. 1 exhibits good luminescence probing turn-on recognition ability toward F and with a limit detection concentration of F down to 14.2 μM in aqueous solution (Kec = 11403 M−1, R2 = 0.99289, σ = 0.0539). The findings here provide a feasible detection platform of LnMOFs for highly sensitive discrimination of F in aqueous media. Full article
(This article belongs to the Special Issue Covalent and Noncovalent Interactions in Crystal Chemistry)
Show Figures

Graphical abstract

21 pages, 12476 KB  
Article
A New Concept of Enhancing the Anticancer Activity of Manganese Terpyridine Complex by Oxygen-Containing Substituent Modification
by Jiahe Li, Min Chen, Jinzhang Jiang, Jieyou Huang, Hailan Chen, Lixia Pan, Dmytro S. Nesterov, Zhen Ma and Armando J. L. Pombeiro
Int. J. Mol. Sci. 2023, 24(4), 3903; https://doi.org/10.3390/ijms24043903 - 15 Feb 2023
Cited by 9 | Viewed by 2844
Abstract
Eleven manganese 4′-substituted-2,2′:6′,2″-terpyridine complexes (1a1c and 2a2h) with three non-oxygen-containing substituents (L1aL1c: phenyl, naphthalen-2-yl and naphthalen-1-yl, L1aL1c) and eight oxygen-containing substituents (L2aL [...] Read more.
Eleven manganese 4′-substituted-2,2′:6′,2″-terpyridine complexes (1a1c and 2a2h) with three non-oxygen-containing substituents (L1aL1c: phenyl, naphthalen-2-yl and naphthalen-1-yl, L1aL1c) and eight oxygen-containing substituents (L2aL2h: 4-hydroxyl-phenyl, 3-hydroxyl-phenyl, 2-hydroxyl-phenyl, 4-methoxyl-phenyl, 4-carboxyl-phenyl, 4-(methylsulfonyl)phenyl, 4-nitrophenyl and furan-2-yl) were prepared and characterized by IR, elemental analysis or single crystal X-ray diffraction. In vitro data demonstrate that all of these show higher antiproliferative activities than cisplatin against five human carcinoma cell lines: A549, Bel-7402, Eca-109, HeLa and MCF-7. Compound 2d presents the strongest antiproliferative effect against A549 and HeLa cells, with IC50 values being 0.281 μM and 0.356 μM, respectively. The lowest IC50 values against Bel-7402 (0.523 μM) Eca-109 (0.514 μM) and MCF-7 (0.356 μM) were obtained for compounds 2h, 2g and 2c, respectively. Compound 2g with a nitro group showed the best results on the whole, with relevantly low IC50 values against all the tested tumor cells. The DNA interactions with these compounds were studied by circular dichroism spectroscopic and molecular modeling methods. Spectrophotometric results revealed that the compounds have strong affinities in binding with DNA as intercalators, and the binding induces DNA conformational transition. Molecular docking studies indicate that the binding is contributed by the π–π stacking and hydrogen bonds. The anticancer activities of the compounds are correlated with their DNA binding ability, and the modification of oxygen-containing substituents significantly enhanced the anticancer activity, which could provide a new rationale for the future design of terpyridine-based metal complexes with antitumor potential. Full article
(This article belongs to the Special Issue Research Progress of Bioimaging Materials)
Show Figures

Figure 1

24 pages, 6449 KB  
Article
Low-Dimensional Compounds Containing Bioactive Ligands. Part XX: Crystal Structures, Cytotoxic, Antimicrobial Activities and DNA/BSA Binding of Oligonuclear Zinc Complexes with Halogen Derivatives of 8-Hydroxyquinoline
by Michaela Harmošová, Martin Kello, Michal Goga, Ľudmila Tkáčiková, Mária Vilková, Danica Sabolová, Simona Sovová, Erika Samoľová, Miroslava Litecká, Veronika Kuchárová, Juraj Kuchár and Ivan Potočňák
Inorganics 2023, 11(2), 60; https://doi.org/10.3390/inorganics11020060 - 26 Jan 2023
Cited by 5 | Viewed by 2511
Abstract
Two tetranuclear [Zn4Cl2(ClQ)6]·2DMF (1) and [Zn4Cl2(ClQ)6(H2O)2]·4DMF (2), as well as three dinuclear [Zn2(ClQ)3(HClQ)3]I3 (3), [...] Read more.
Two tetranuclear [Zn4Cl2(ClQ)6]·2DMF (1) and [Zn4Cl2(ClQ)6(H2O)2]·4DMF (2), as well as three dinuclear [Zn2(ClQ)3(HClQ)3]I3 (3), [Zn2(dClQ)2(H2O)6(SO4)] (4) and [Zn2(dBrQ)2(H2O)6(SO4)] (5), complexes (HClQ = 5-chloro-8-hydroxyquinoline, HdClQ = 5,7-dichloro-8-hydroxyquinoline and HdBrQ = 5,7-dibromo-8-hydroxyquinoline) were prepared as possible anticancer or antimicrobial agents and characterized by IR spectroscopy, elemental analysis and single crystal X-ray structure analysis. The stability of the complexes in solution was verified by NMR spectroscopy. Antiproliferative activity and selectivity of the prepared complexes were studied using in vitro MTT assay against the HeLa, A549, MCF-7, MDA-MB-231, HCT116 and Caco-2 cancer cell lines and on the Cos-7 non-cancerous cell line. The most sensitive to the tested complexes was Caco-2 cell line. Among the tested complexes, complex 3 showed the highest cytotoxicity against all cell lines. Unfortunately, all complexes showed only poor selectivity to normal cells, except for complex 5, which showed a certain level of selectivity. Antibacterial potential was observed for complex 5 only. Moreover, the DNA/BSA binding potential of complexes 13 was investigated by UV-vis and fluorescence spectroscopic methods. Full article
(This article belongs to the Special Issue Recent Progress in Coordination Chemistry)
Show Figures

Graphical abstract

21 pages, 6068 KB  
Article
New N4-Donor Ligands as Supramolecular Guests for DNA and RNA: Synthesis, Structural Characterization, In Silico, Spectrophotometric and Antimicrobial Studies
by Ernest Ewert, Izabela Pospieszna-Markiewicz, Martyna Szymańska, Adrianna Kurkiewicz, Agnieszka Belter, Maciej Kubicki, Violetta Patroniak, Marta A. Fik-Jaskółka and Giovanni N. Roviello
Molecules 2023, 28(1), 400; https://doi.org/10.3390/molecules28010400 - 3 Jan 2023
Cited by 3 | Viewed by 3180
Abstract
The present work reports the synthesis of new N4-donor compounds carrying p-xylyl spacers in their structure. Different Schiff base aliphatic N-donors were obtained synthetically and subsequently evaluated for their ability to interact with two models of nucleic acids: calf-thymus DNA (CT-DNA) and the [...] Read more.
The present work reports the synthesis of new N4-donor compounds carrying p-xylyl spacers in their structure. Different Schiff base aliphatic N-donors were obtained synthetically and subsequently evaluated for their ability to interact with two models of nucleic acids: calf-thymus DNA (CT-DNA) and the RNA from yeast Saccharomyces cerevisiae (herein simply indicated as RNA). In more detail, by condensing p-xylylenediamine and a series of aldehydes, we obtained the following Schiff base ligands: 2-thiazolecarboxaldehyde (L1), pyridine-2-carboxaldehyde (L2), 5-methylisoxazole-3-carboxaldehyde (L3), 1-methyl-2-imidazolecarboxaldehyde (L4), and quinoline-2-carboxaldehyde (L5). The structural characterisation of the ligands L1-L5 (X-ray, 1H NMR, 13C NMR, elemental analysis) and of the coordination polymers {[CuL1]PF6}n (herein referred to as Polymer1) and {[AgL1]BF4}n, (herein referred to as Polymer2, X-ray, 1H NMR, ESI-MS) is herein described in detail. The single crystal X-ray structures of complexes Polymer1 and Polymer2 were also investigated, leading to the description of one-dimensional coordination polymers. The spectroscopic and in silico evaluation of the most promising compounds as DNA and RNA binders, as well as the study of the influence of the 1D supramolecular polymers Polymer1 and Polymer2 on the proliferation of Escherichia coli bacteria, were performed in view of their nucleic acid-modulating and antimicrobial applications. Spectroscopic measurements (UV–Vis) combined with molecular docking calculations suggest that the thiazolecarboxaldehyde derivative L1 is able to bind CT-DNA with a mechanism different from intercalation involving the thiazole ring in the molecular recognition and shows a binding affinity with DNA higher than RNA. Finally, Polymer2 was shown to slow down the proliferation of bacteria much more effectively than the free Ag(I) salt. Full article
(This article belongs to the Special Issue Shaping Medicinal Chemistry for the New Decade)
Show Figures

Graphical abstract

12 pages, 4641 KB  
Article
Biochemical and Structural Analyses Shed Light on the Mechanisms of RadD DNA Binding and Its ATPase from Escherichia coli
by Li-Fei Tian, Xiaolin Kuang, Ke Ding, Hongwei Gao, Qun Tang, Xiao-Xue Yan and Wenqing Xu
Int. J. Mol. Sci. 2023, 24(1), 741; https://doi.org/10.3390/ijms24010741 - 1 Jan 2023
Cited by 1 | Viewed by 3147
Abstract
DNA double-strand breaks (DSBs) are the most perilous and harmful type of DNA damage and can cause tumorigenesis or cell death if left repaired with an error or unrepaired. RadD, a member of the SF2 family, is a recently discovered DNA repair protein [...] Read more.
DNA double-strand breaks (DSBs) are the most perilous and harmful type of DNA damage and can cause tumorigenesis or cell death if left repaired with an error or unrepaired. RadD, a member of the SF2 family, is a recently discovered DNA repair protein involved in the repair of DSBs after radiation or chemical damage. However, the function of RadD in DNA repair remains unclear. Here, we determined the crystal structures of RadD/ATPγS and RadD/ATP complexes and revealed the novel mechanism of RadD binding to DNA and ATP hydrolysis with biochemical data. In the RadD catalytic center, the Gly34 and Gly36 on the P-loop are key residues for ATP binding besides the conserved amino acids Lys37 and Arg343 in the SF2 family. If any of them mutate, then RadD loses ATPase activity. Asp117 polarizes the attacking water molecule, which then starts a nucleophilic reaction toward γ-phosphate, forming the transition state. Lys68 acts as a pocket switch to regulate substrate entry and product release. We revealed that the C-terminal peptide of single-stranded DNA-binding protein (SSB) binds the RadD C-terminal domain (CTD) and promotes the RadD ATPase activity. Our mutagenesis studies confirmed that the residues Arg428 on the zinc finger domain (ZFD) and Lys488 on the CTD of RadD are the key sites for binding branched DNA. Using the Coot software combined with molecular docking, we propose a RadD-binding DNA model for the DNA damage repair process. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

16 pages, 4158 KB  
Article
Structural Characterization of Alzheimer DNA Promoter Sequences from the Amyloid Precursor Gene in the Presence of Thioflavin T and Analogs
by Hristina Sbirkova-Dimitrova, Rusi Rusew, Nikola Kuvandjiev, Annie Heroux, Tzanko Doukov and Boris L. Shivachev
Crystals 2022, 12(12), 1717; https://doi.org/10.3390/cryst12121717 - 26 Nov 2022
Cited by 2 | Viewed by 2415
Abstract
Understanding DNA–ligand binding interactions requires ligand screening, crystallization, and structure determination. In order to obtain insights into the amyloid peptide precursor (APP) gene–Thioflavin T (ThT) interaction, single crystals of two DNA sequences 5′-GCCCACCACGGC-3′ (PDB 8ASK) and d(CCGGGGTACCCCGG)2 (PDB 8ASH) were grown in [...] Read more.
Understanding DNA–ligand binding interactions requires ligand screening, crystallization, and structure determination. In order to obtain insights into the amyloid peptide precursor (APP) gene–Thioflavin T (ThT) interaction, single crystals of two DNA sequences 5′-GCCCACCACGGC-3′ (PDB 8ASK) and d(CCGGGGTACCCCGG)2 (PDB 8ASH) were grown in the presence of ThT or its analogue 2-((4-(dimethylamino)benzylidene)amino)-3,6-dimethylbenzo[d]thiazol-3-ium iodide (XRB). Both structures were solved by molecular replacement. In the case of 8ASK, the space group was H3 with unit cell dimensions of a = b = 64.49 Å, c = 46.19 Å. Phases were obtained using a model generated by X3DNA. The novel 12-base-pair B-DNA structure did not have extra density for the ThT ligand. The 14-base-pair A-DNA structure with bound ThT analog XRB was isomorphous with previously the obtained apo-DNA structure 5WV7 (space group was P41212 with unit cell dimensions a = b = 41.76 Å, c = 88.96 Å). Binding of XRB to DNA slightly changes the DNA’s buckle parameters at the CpG regions. Comparison of the two conformations of the XRB molecule: alone and bound to DNA indicates that the binding results from the freedom of rotation of the two aromatic rings. Full article
(This article belongs to the Special Issue Nucleic Acid Crystallography Volume II)
Show Figures

Figure 1

Back to TopTop