Natural-Product-Inspired Microwave-Assisted Synthesis of Novel Spirooxindoles as Antileishmanial Agents: Synthesis, Stereochemical Assignment, Bioevaluation, SAR, and Molecular Docking Studies
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.2. Single-Crystal X-ray
2.3. Biological Activity
2.3.1. In Vitro Antileishmanial Activity
Trypan Blue Dye Exclusion Method
Plasmid Relaxation Assay
2.3.2. Inhibition of Leishmanial DNA Topoisomerase IB
2.3.3. Structure–Activity Relationship (SAR) Studies
2.4. Molecular Docking Studies
2.4.1. Ligand Preparation
2.4.2. Protein Preparation
2.4.3. In Silico Studies
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Global Health Observatory. Leishmaniasis; World Health Organization: Geneva, Switzerland, 2023; Available online: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/leishmaniasis (accessed on 12 January 2023).
- Leishmaniasis Country Profiles; World Health Organization: Geneva, Switzerland. 2023. Available online: https://leishinfowho-cc55.es/country-profiles/ (accessed on 12 January 2023).
- Mann, S.; Frasca, K.; Scherrer, S.; Henao-Martínez, A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A Review of Leishmaniasis: Current Knowledge and Future Directions. Curr. Trop. Med. Rep. 2021, 8, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Chappuis, F.; Sundar, S.; Hailu, A.; Ghalib, H.; Rijal, S.; Peeling, R.W.; Alvar, J.; Boelaert, M. Visceral Leishmaniasis: What Are the Needs for Diagnosis, Treatment and Control? Nat. Rev. Microbiol. 2007, 5, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Phumee, A.; Jariyapan, N.; Chusri, S.; Hortiwakul, T.; Mouri, O.; Gay, F.; Limpanasithikul, W.; Siriyasatien, P. Determination of Anti-Leishmanial Drugs Efficacy against Leishmania Martiniquensis Using a Colorimetric Assay. Parasite Epidemiol. Control. 2020, 9, e00143. [Google Scholar] [CrossRef] [PubMed]
- Brindha, J.; Balamurali, M.M.; Chanda, K. An Overview on the Therapeutics of Neglected Infectious Diseases—Leishmaniasis and Chagas Diseases. Front. Chem. 2021, 9, 622286. [Google Scholar] [CrossRef]
- Gonçalves, G.A.; Spillere, A.R.; das Neves, G.M.; Kagami, L.P.; von Poser, G.L.; Canto, R.F.S.; Eifler-Lima, V. Natural and Synthetic Coumarins as Antileishmanial Agents: A Review. Eur. J. Med. Chem. 2020, 203, 112514. [Google Scholar] [CrossRef]
- Leishmaniasis Fact Sheet; World Health Organization: Geneva, Switzerland. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 12 January 2023).
- Jossang, A.; Jossang, P.; Bodo, B.; Hadi, H.A.; Sévenet, T. Horsfiline, an Oxindole Alkaloid from Horsfieldia Superba. J. Org. Chem. 1991, 56, 6527–6530. [Google Scholar] [CrossRef]
- Kulkarni, M.G.; Dhondge, A.P.; Chavhan, S.W.; Borhade, A.S.; Shaikh, Y.B.; Birhade, D.R.; Desai, M.P.; Dhatrak, N.R. Total Synthesis of (±)-Coerulescine and (±)-Horsfiline. Beilstein J. Org. Chem. 2010, 6, 876–879. [Google Scholar] [CrossRef]
- Colegate, S.M.; Anderton, N.; Edgar, J.; Bourke, C.A.; Oram, R.N. Suspected Blue Canary Grass (Phalaris coerulescens) Poisoning of Horses. Aust. Vet. J. 1999, 77, 537–538. [Google Scholar] [CrossRef]
- Lee, S.; Yang, J.; Yang, S.; Lee, G.; Oh, D.; Ha, M.W.; Park, H. Enantioselective Synthesis of (+)-Coerulescine by a Phase-Transfer Catalytic Allylation of Diphenylmethyl Tert-Butyl α-(2-Nitrophenyl)Malonate. Front. Chem. 2020, 8, 577371. [Google Scholar] [CrossRef]
- Trost, B.M.; Cramer, N.; Bernsmann, H. Concise Total Synthesis of (±)-Marcfortine B. J. Am. Chem. Soc. 2007, 129, 3086–3087. [Google Scholar] [CrossRef]
- Cui, C.B.; Kakeya, H.; Osada, H. Novel Mammalian Cell Cycle Inhibitors, Spirotryprostatins A and B, Produced by Aspergillus Fumigatus, Which Inhibit Mammalian Cell Cycle at G2/M Phase. Tetrahedron 1996, 52, 12651–12666. [Google Scholar] [CrossRef]
- Cui, C.B.; Kakeya, H.; Osada, H. Spirotryprostatin B, a Novel Mammalian Cell Cycle Inhibitor Produced by Aspergillus Fumigatus. J. Antibiot. 1996, 49, 832–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrini, C.; Weber, M.; Borschberg, H.-J. Total Synthesis of (+)-Elacomine and (−)-Isoelacomine, Two Hitherto Unnamed Oxindole Alkaloids from Elaeagnus Commutata. Helv. Chim. Acta 1996, 79, 151–168. [Google Scholar] [CrossRef]
- Ban, Y.; Taga, N.; Oishi, T. The Synthesis of 3-Spirooxindole Derivatives. Total Syntheses of Dl-Formosanine, Dl-Isoformosanine, Dl-Mitraphylline and Dl-Isomitraphylline. Tetrahedron Lett. 1974, 15, 187–190. [Google Scholar] [CrossRef]
- Chan, K.C.; Morsingh, F.; Yeoh, G.B. Alkaloids of Uncaria Pteropoda. Isolation and Structures of Pteropodine and Isopteropodine. J. Chem. Soc. Perkin 1 1966, 24, 2245–2249. [Google Scholar] [CrossRef]
- Ghedira, K.; Zeches-Hanrot, M.; Richard, B.; Massiot, G.; Le Men-Olivier, L.; Sevenet, T.; Goh, S.H. Alkaloids of Alstonia Angustifolia. Phytochemistry 1988, 27, 3955–3962. [Google Scholar] [CrossRef]
- Shi, J.-S.; Yu, J.-X.; Chen, X.-P.; Xu, R.-X. Pharmacological Actions of Uncaria Alkaloids, Rhynchophylline and Isorhynchophylline. Acta Pharmacol. Sin. 2003, 24, 97–101. [Google Scholar]
- Lerchner, A.; Carreira, E.M. First Total Synthesis of (±)-Strychnofoline via a Highly Selective Ring-Expansion Reaction. J. Am. Chem. Soc. 2002, 124, 14826–14827. [Google Scholar] [CrossRef]
- Budovská, M.; Kutschy, P.; Kožár, T.; Gondová, T.; Petrovaj, J. Synthesis of Spiroindoline Phytoalexin (S)-(−)-Spirobrassinin and Its Unnatural (R)-(+)-Enantiomer. Tetrahedron 2013, 69, 1092–1104. [Google Scholar] [CrossRef]
- García Prado, E.; García Gimenez, M.D.; De la Puerta Vázquez, R.; Espartero Sánchez, J.L.; Sáenz Rodríguez, M.T. Antiproliferative Effects of Mitraphylline, a Pentacyclic Oxindole Alkaloid of Uncaria Tomentosa on Human Glioma and Neuroblastoma Cell Lines. Phytomedicine 2007, 14, 280–284. [Google Scholar] [CrossRef]
- Kato, H.; Yoshida, T.; Tokue, T.; Nojiri, Y.; Hirota, H.; Ohta, T.; Williams, R.M.; Tsukamoto, S. Notoamides A–D: Prenylated Indole Alkaloids Isolated from a Marine-Derived Fungus, Aspergillus sp. Angew. Chem. Int. Ed. 2007, 46, 2254–2256. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, G.; Arun, Y.; Balachandran, C.; Saikumar, C.; Perumal, P.T. Synthesis of Novel Spirooxindole Derivatives by One Pot Multicomponent Reaction and Their Antimicrobial Activity. Eur. J. Med. Chem. 2012, 51, 79–91. [Google Scholar] [CrossRef]
- Nandakumar, A.; Thirumurugan, P.; Perumal, P.T.; Vembu, P.; Ponnuswamy, M.N.; Ramesh, P. One-Pot Multicomponent Synthesis and Anti-Microbial Evaluation of 2′-(Indol-3-Yl)-2-Oxospiro(Indoline-3,4′-Pyran) Derivatives. Bioorg. Med. Chem. Lett. 2010, 20, 4252–4258. [Google Scholar] [CrossRef] [PubMed]
- Stump, C.A.; Bell, I.M.; Bednar, R.A.; Bruno, J.G.; Fay, J.F.; Gallicchio, S.N.; Johnston, V.K.; Moore, E.L.; Mosser, S.D.; Quigley, A.G.; et al. The Discovery of Highly Potent CGRP Receptor Antagonists. Bioorg. Med. Chem. Lett. 2009, 19, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Girgis, A.S. Regioselective Synthesis of Dispiro [1H-Indene-2,3′-Pyrrolidine-2′,3″-[3H]Indole]-1,2″(1″H)-Diones of Potential Anti-Tumor Properties. Eur. J. Med. Chem. 2009, 44, 91–100. [Google Scholar] [CrossRef]
- Rajanarendar, E.; Ramakrishna, S.; Govardhan Reddy, K.; Nagaraju, D.; Reddy, Y.N. A Facile Synthesis, Anti-Inflammatory and Analgesic Activity of Isoxazolyl-2,3-Dihydrospiro[Benzo[f]Isoindole-1,3′-Indoline]-2′,4,9-Triones. Bioorg. Med. Chem. Lett. 2013, 23, 3954–3958. [Google Scholar] [CrossRef]
- Zinser, E.W.; Wolf, M.L.; Alexander-Bowman, S.J.; Thomas, E.M.; Davis, J.P.; Groppi, V.E.; Lee, B.H.; Thompson, D.P.; Geary, T.G. Anthelmintic Paraherquamides Are Cholinergic Antagonists in Gastrointestinal Nematodes and Mammals. J. Vet. Pharmacol. Ther. 2002, 25, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, S.M.; Perumal, S.; Menéndez, J.C.; Yogeeswari, P.; Sriram, D. Antimycobacterial Activity of Spirooxindolo-Pyrrolidine, Pyrrolizine and Pyrrolothiazole Hybrids Obtained by a Three-Component Regio- and Stereoselective 1,3-Dipolar Cycloaddition. MedChemComm 2011, 2, 626–630. [Google Scholar] [CrossRef]
- Ali, M.A.; Ismail, R.; Choon, T.S.; Yoon, Y.K.; Wei, A.C.; Pandian, S.; Kumar, R.S.; Osman, H.; Manogaran, E. Substituted Spiro [2.3′] Oxindolespiro [3.2″]-5,6-Dimethoxy-Indane-1″-One-Pyrrolidine Analogue as Inhibitors of Acetylcholinesterase. Bioorg. Med. Chem. Lett. 2010, 20, 7064–7066. [Google Scholar] [CrossRef]
- Kia, Y.; Osman, H.; Kumar, R.S.; Murugaiyah, V.; Basiri, A.; Perumal, S.; Wahab, H.A.; Bing, C.S. Synthesis and Discovery of Novel Piperidone-Grafted Mono- and Bis-Spirooxindole-Hexahydropyrrolizines as Potent Cholinesterase Inhibitors. Bioorg. Med. Chem. Lett. 2013, 21, 1696–1707. [Google Scholar] [CrossRef]
- Arun, Y.; Saranraj, K.; Balachandran, C.; Perumal, P.T. Novel Spirooxindole-Pyrrolidine Compounds: Synthesis, Anticancer and Molecular Docking Studies. Eur. J. Med. Chem. 2014, 74, 50–64. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Yu, D.Q.; Liu, H.M. Spirooxindoles: Promising Scaffolds for Anticancer Agents. Eur. J. Med. Chem. 2015, 97, 673–698. [Google Scholar] [CrossRef] [PubMed]
- Bora, D.; Kaushal, A.; Shankaraiah, N. Anticancer Potential of Spirocompounds in Medicinal Chemistry: A Pentennial Expedition. Eur. J. Med. Chem. 2021, 215, 113263. [Google Scholar] [CrossRef]
- Kornet, M.J.; Thio, A.P. Oxindole-3-Spiropyrrolidines and -Piperidines. Synthesis and Local Anesthetic Activity. J. Med. Chem. 1976, 19, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Kuhen, K.L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.; Bursulaya, B.; Wu, T.Y.-H.; He, Y. Design, Synthesis and Biological Evaluations of Novel Oxindoles as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. Part I. Bioorg. Med. Chem. Lett. 2006, 16, 2105–2108. [Google Scholar] [CrossRef] [PubMed]
- Leañez, J.; Nuñez, J.; García-Marchan, Y.; Sojo, F.; Arvelo, F.; Rodriguez, D.; Buscema, I.; Alvarez-Aular, A.; Serrano-Martín, X. Anti-Leishmanial Effect of Spiro Dihydroquinoline-Oxindoles on Volume Regulation Decrease and Sterol Biosynthesis of Leishmania Braziliensis. Exp. Parasitol. 2019, 198, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Nisbet, L.J.; Moore, M. Will Natural Products Remain an Important Source of Drug Research for the Future? Curr. Opin. Biotechnol. 1997, 8, 708–712. [Google Scholar] [CrossRef]
- Galloway, W.R.J.D.; Isidro-Llobet, A.; Spring, D.R. Diversity-Oriented Synthesis as a Tool for the Discovery of Novel Biologically Active Small Molecules. Nat. Commun. 2010, 1, 80. [Google Scholar] [CrossRef] [Green Version]
- Yousuf, M.; Mukherjee, D.; Dey, S.; Chatterjee, S.; Pal, A.; Sarkar, B.; Pal, C.; Adhikari, S. Synthesis and Biological Evaluation of Polyhydroxylated Oxindole Derivatives as Potential Antileishmanial Agent. Bioorg. Med. Chem. Lett. 2018, 28, 1056–1062. [Google Scholar] [CrossRef]
- Saha, S.; Acharya, C.; Pal, U.; Chowdhury, S.R.; Sarkar, K.; Maiti, N.C.; Jaisankar, P.; Majumder, H.K. A Novel Spirooxindole Derivative Inhibits the Growth of Leishmania donovani Parasites Both in Vitro and in Vivo by Targeting Type IB Topoisomerase. Antimicrob. Agents Chemother. 2016, 60, 6281–6293. [Google Scholar] [CrossRef] [Green Version]
- Paul Chowdhuri, S.; Dhiman, S.; Das, S.K.; Meena, N.; Das, S.; Kumar, A.; Brata Das, B. Novel Pyrido[2′,1′:2,3]Imidazo[4,5-c]Quinoline Derivative Selectively Poisons Leishmania donovani Bisubunit Topoisomerase 1 to Inhibit the Antimony-Resistant Leishmania Infection in Vivo. J. Med. Chem. 2023, 66, 3411–3430. [Google Scholar] [CrossRef] [PubMed]
- Pathan, S.; Singh, G.P. Synthesis of Novel Tetrazole Tetrahydrobenzo[b]Thiophene via Ugi-MCR: As New Antileishmanial Prototype. J. Saudi Chem. Soc. 2021, 25, 101295. [Google Scholar] [CrossRef]
- Scala, A.; Cordaro, M.; Grassi, G.; Piperno, A.; Barberi, G.; Cascio, A.; Risitano, F. Direct Synthesis of C3-Mono-Functionalized Oxindoles from N-Unprotected 2-Oxindole and Their Antileishmanial Activity. Bioorg. Med. Chem. Lett. 2014, 22, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Altowyan, M.S.; Atef, S.; Al-Agamy, M.H.; Soliman, S.M.; Ali, M.; Shaik, M.R.; Choudhary, M.I.; Ghabbour, H.A.; Barakat, A. Synthesis and Characterization of a Spiroindolone Pyrothiazole Analog via X-ray, Biological, and Computational Studies. J. Mol. Struct. 2019, 1186, 384–392. [Google Scholar] [CrossRef]
- Almeida, F.S.; Sousa, G.L.S.; Rocha, J.C.; Ribeiro, F.F.; de Oliveira, M.R.; de Lima Grisi, T.C.S.; Araújo, D.A.M.; Michelangela, M.S.; Castro, R.N.; Amaral, I.P.G.; et al. In Vitro Anti-Leishmania Activity and Molecular Docking of Spiro-Acridine Compounds as Potential Multitarget Agents against Leishmania Infantum. Bioorg. Med. Chem. Lett. 2021, 49, 128289. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.A.A.; Kadry, A.M.; Bekhit, S.A.; Abourehab, M.A.S.; Amagase, K.; Ibrahim, T.M.; El-Saghier, A.M.M.; Bekhit, A.A. Spiro Heterocycles Bearing Piperidine Moiety as Potential Scaffold for Antileishmanial Activity: Synthesis, Biological Evaluation, and in Silico Studies. J. Enzym. Inhib. Med. Chem. 2023, 38, 330–342. [Google Scholar] [CrossRef]
- de la Hoz, A. Microwave Heating as a Tool for Sustainable Chemistry. Edited by Nicholas E. Leadbeater. ChemSusChem 2011, 4, 666. [Google Scholar] [CrossRef]
- Luu, T.X.T.; Lam, T.T.; Le, T.N.; Duus, F. Fast and Green Microwave-Assisted Conversion of Essential Oil Allylbenzenes into the Corresponding Aldehydes via Alkene Isomerization and Subsequent Potassium Permanganate Promoted Oxidative Alkene Group Cleavage. Molecules 2009, 14, 3411–3424. [Google Scholar] [CrossRef] [Green Version]
- Polshettiwar, V.; Nadagouda, M.N.; Varma, R.S. Microwave-Assisted Chemistry: A Rapid and Sustainable Route to Synthesis of Organics and Nanomaterials. Aust. J. Chem. 2009, 62, 16–26. [Google Scholar] [CrossRef]
- Suna, E.; Mutule, I. Microwave-assisted Heterocyclic Chemistry. In Microwave Methods in Organic Synthesis; Larhed, M., Olofsson, K., Eds.; Topics in Current Chemistry; Springer: Berlin, Germany, 2006; Volume 266, pp. 49–101. [Google Scholar] [CrossRef]
- Kappe, C.O.; Dallinger, D.; Murphree, S.S. Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments, and Protocols; John Wiley Sons: New York, NY, USA, 2009; pp. 1–299. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Prince; Gupta, M.; Lalji, R.S.K.; Singh, B.K. Microwave assisted regioselective halogenation of benzo[b][1,4]oxazin-2-ones via sp2 C–H functionalization. RCS Adv. 2023, 13, 2365–2371. [Google Scholar] [CrossRef]
- Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics. Acc. Chem. Res. 2014, 47, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Huisgen, R.; Padwa, A. 1 3-Dipolar Cycloaddition Chemistry; Wiley: New York, NY, USA, 1984; Volume 1, pp. 55–92. [Google Scholar]
- Haddad, S.; Boudriga, S.; Akhaja, T.N.; Raval, J.P.; Porzio, F.; Soldera, A.; Askri, M.; Knorr, M.; Rousselin, Y.; Kubicki, M.M.; et al. A Strategic Approach to the Synthesis of Functionalized Spirooxindole Pyrrolidine Derivatives: In Vitro Antibacterial, Antifungal, Antimalarial and Antitubercular Studies. New J. Chem. 2015, 39, 520–528. [Google Scholar] [CrossRef]
- Coldham, I.; Hufton, R. Intramolecular Dipolar Cycloaddition Reactions of Azomethine Ylides. Chem. Rev. 2005, 105, 2765–2810. [Google Scholar] [CrossRef]
- Pandey, G.; Banerjee, P.; Gadre, S.R. Construction of Enantiopure Pyrrolidine Ring System via Asymmetric [3+2]-Cycloaddition of Azomethine Ylides. Chem. Rev. 2006, 106, 4484–4517. [Google Scholar] [CrossRef] [PubMed]
- Gothelf, K.V.; Jørgensen, K.A. Asymmetric 1,3-Dipolar Cycloaddition Reactions. Chem. Rev. 1998, 98, 863–910. [Google Scholar] [CrossRef]
- Lashgari, N.; Ziarani, G.M. Synthesis of Heterocyclic Compounds Based on Isatin through 1,3-Dipolar Cycloaddition Reactions. Arkivoc 2012, 2012, 277–320. [Google Scholar] [CrossRef]
- Rajesh, R.; Raghunathan, R. Regio- and Stereoselective Synthesis of Novel Tetraspiro-Bispyrrolidine and Bisoxindolopyrrolidine Derivatives through 1,3-Dipolar Cycloaddition Reaction. Tetrahedron Lett. 2010, 51, 5845–5848. [Google Scholar] [CrossRef]
- Panda, S.S.; Aziz, M.N.; Stawinski, J.; Girgis, A.S. Azomethine Ylides—Versatile Synthons for Pyrrolidinyl-Compounds. Molecules 2023, 28, 668. [Google Scholar] [CrossRef]
- Abdel-Mohsen, S.A.; Hussein, E.M. A Green Synthetic Approach to the Synthesis of Schiff Bases from 4-Amino-2-Thioxo-1,3-Diazaspiro[5.5]Undec-4-Ene-5-Carbonitrile as Potential Anti-Inflammatory Agents. Russ. J. Bioorg. Chem. 2014, 40, 343–349. [Google Scholar] [CrossRef]
- Mali, P.R.; Chandrasekhara Rao, L.; Bangade, V.M.; Shirsat, P.K.; George, S.A.; Jagadeesh babu, N.; Meshram, H.M. A Convenient and Rapid Microwave-Assisted Synthesis of Spirooxindoles in Aqueous Medium and Their Antimicrobial Activities. New J. Chem. 2016, 40, 2225–2232. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer 3.0; University of Western Australia: Perth, Australia, 2012. [Google Scholar]
- Sundar, S.; Chakravarty, J.; Agarwal, D.; Rai, M.; Murray, H.W. Single-Dose Liposomal Amphotericin B for Visceral Leishmaniasis in India. N. Engl. J. Med. Orig. 2010, 362, 504–512. [Google Scholar] [CrossRef] [Green Version]
- Champoux, J.J. DNA Topoisomerases: Structure, Function, and Mechanism. Annu. Rev. Biochem. 2001, 70, 369–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, G.; Chauhan, K.; Kaur, S. Immunotherapeutic Potential of Codonopsis Clematidea and Naringenin against Visceral Leishmaniasis. Biomed. Pharmacother. 2018, 108, 1048–1061. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pertejo, Y.; Escudero-Martínez, J.M.; Reguera, R.M.; Balaña-Fouce, R.; García, P.A.; Jambrina, P.G.; San, A.; Castro, M.-A. Antileishmanial Activity of Terpenylquinones on Leishmania Infantum and Their e Ff Ects on Leishmania Topoisomerase IB. Int. J. Parasitol. Drugs Drug Resist. 2019, 11, 70–79. [Google Scholar] [CrossRef]
- Sharma, G.; Chowdhury, S.; Sinha, S.; Majumder, H.K.; Kumar, S.V. Antileishmanial Activity Evaluation of Bis-Lawsone Analogs and DNA Topoisomerase-I Inhibition Studies. J. Enzym. Inhib. Med. Chem. 2014, 6366, 185–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Entry | 20a (Eq.) | 21a (Eq.) | 22a (Eq.) | Solvent | Condition | Time (Min.) | a Yield (%) |
---|---|---|---|---|---|---|---|
1. | 1 | 1 | 1 | MeOH | Reflux | 120 | 86 |
2. | 1 | 1.5 | 1.5 | MeOH | Reflux | 180 | 96 |
3. | 1 | 1.5 | 1.5 | MeOH | Reflux | 120 | 89 |
4. | 1 | 1.5 | 1.5 | MeOH | Reflux | 60 | 67 |
5. | 1 | 1.5 | 1.5 | MeOH | Reflux | 30 | 58 |
6. | 1 | 1.5 | 1.5 | AcCN | Reflux | 180 | 79 |
7. | 1 | 1.5 | 1.5 | Ethylene glycol | Reflux | 180 | 76 |
8. | 1 | 1.5 | 1.5 | H2O | Reflux | 180 | 9 |
9. | 1 | 1.5 | 1.5 | Ethanol | Reflux | 180 | 77 |
10. | 1 | 1.5 | 1.5 | MeOH | MW, 80 °C | 1 | 41 |
11. | 1 | 1.5 | 1.5 | MeOH | MW, 80 °C | 3 | 71 |
12. | 1 | 1.5 | 1.5 | MeOH | MW, 80 °C | 5 | 98 |
13. | 1 | 1.5 | 1.5 | AcCN | MW, 80 °C | 5 | 73 |
14. | 1 | 1.5 | 1.5 | AcCN | MW, 100 °C | 10 | 81 |
15. | 1 | 1.5 | 1.5 | AcCN | MW, 100 °C | 15 | 83 |
16. | 1 | 1.5 | 1.5 | Ethylene glycol | MW, 80 °C | 5 | 72 |
17. | 1 | 1.5 | 1.5 | Ethylene glycol | MW, 100 °C | 10 | 77 |
18. | 1 | 1.5 | 1.5 | Ethylene glycol | MW, 100 °C | 15 | 79 |
19. | 1 | 1.5 | 1.5 | Ethanol | MW, 80 °C | 5 | 78 |
20. | 1 | 1.5 | 1.5 | Ethanol | MW, 100 °C | 10 | 82 |
21. | 1 | 1.5 | 1.5 | Ethanol | MW, 100 °C | 15 | 85 |
Sr. No. | Isatin’s (20a–h) | Chalcones (21a–f) | Amino Acids (22a–c) | Product | Reflux (180 Min.) | Microwave Heating (5 Min.) | M.P. (°C) | |
---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | Yields a (%) | Yields b (%) | ||||
1. | 5-CH3 | -F | -Cl | 22a | 23a | 96 | 98 | 182–184 |
2. | 5-F | -F | -OCH3 | 22a | 23b | 61 | 72 | 161–163 |
3. | 5-F | -Br | -OCH3 | 22a | 23c | 59 | 74 | 126–128 |
4. | 5-OCH3 | -Br | -OCH3 | 22a | 23d | 82 | 93 | 107–109 |
5. | 5-NO2 | -Br | -OCH3 | 22a | 23e | 72 | 83 | 111–113 |
6. | 5-Br | -H | -H | 22a | 23f | 71 | 86 | 175–177 |
7. | 5-OCH3 | -NO2 | -Cl | 22b | 24a | 75 | 89 | 188–190 |
8. | 5-NO2 | -CH3 | -Br | 22b | 24b | 82 | 95 | 121–122 |
9. | 5-CH3 | -NO2 | -Cl | 22b | 24c | 79 | 88 | 135–137 |
10. | 5-H | -F | -Cl | 22b | 24d | 89 | 97 | 104–106 |
11. | 5-Br | -NO2 | -Cl | 22b | 24e | 69 | 83 | 166–168 |
12. | 7-I | -CH3 | -Br | 22b | 24f | 96 | 98 | 101–102 |
13. | 5-Br | -F | -OCH3 | 22c | 25a | 81 | 91 | 154–156 |
14. | 5-H | -Br | -OCH3 | 22c | 25b | 61 | 75 | 118–120 |
15. | 5-Br | -F | -Cl | 22c | 25c | 63 | 71 | 138–140 |
16. | 5-F | -Cyclohexyl | -Br | 22c | 25d | 57 | 73 | 112–114 |
17. | 5-CH3 | -F | -OCH3 | 22c | 25e | 74 | 87 | 103–105 |
18. | 5-NO2 | -F | -Cl | 22c | 25f | 58 | 72 | 172–174 |
19. | 5-OCH3 | -F | -Cl | 22c | 25g | 67 | 81 | 142–144 |
Spirooxindole Derivatives, i.e., 23a–f, 24a–f, and 25a–g | IC50 (µM) a Using Trypan Blue Dye Exclusion Method | IC50 (µM) a Using Plasmid Relaxation Assay |
---|---|---|
23a | >10 µM | >100 µM |
23b | >20 µM | >100 µM |
23c | >20 µM | >100 µM |
23d | 7.78 µM | 53.6 µM |
23e | >20 µM | >100 µM |
23f | >20 µM | >100 µM |
24a | 2.43 µM | 17.3 µM |
24b | 5.36 µM | 37.6 µM |
24c | >20 µM | >100 µM |
24d | >20 µM | >100 µM |
24e | 0.96 µM | 15.7 µM |
24f | 1.62 µM | 19.6 µM |
25a | >10 µM | 71.3 µM |
25b | >10 µM | 89.1 µM |
25c | >10 µM | 64.5 µM |
25d | 3.55 µM | 27.2 µM |
25e | >10 µM | >100 µM |
25f | >20 µM | >100 µM |
25g | >10 µM | 78.4 µM |
Amphotericin B | 0.060 µM | - |
Camptothecin | - | 3 µM |
Compounds | -Cdocker Energy (kcal/mol) | CDocking Interaction Energy (kcal/mol) | Libdock Score |
---|---|---|---|
24a | −17.1681 | 26.9327 | 128.598 |
24e | −7.7614 | 30.2844 | 96.0439 |
24f | −7.7800 | 30.3540 | 131.125 |
25d | −14.6475 | 32.2816 | 83.1911 |
Camptothecin | −10.838 | 30.4772 | 123.320 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahu, N.K.; Sharma, R.; Suhas, K.P.; Joshi, J.; Prakash, K.; Sharma, R.; Pratap, R.; Hu, X.; Kaur, S.; Jain, M.; et al. Natural-Product-Inspired Microwave-Assisted Synthesis of Novel Spirooxindoles as Antileishmanial Agents: Synthesis, Stereochemical Assignment, Bioevaluation, SAR, and Molecular Docking Studies. Molecules 2023, 28, 4817. https://doi.org/10.3390/molecules28124817
Sahu NK, Sharma R, Suhas KP, Joshi J, Prakash K, Sharma R, Pratap R, Hu X, Kaur S, Jain M, et al. Natural-Product-Inspired Microwave-Assisted Synthesis of Novel Spirooxindoles as Antileishmanial Agents: Synthesis, Stereochemical Assignment, Bioevaluation, SAR, and Molecular Docking Studies. Molecules. 2023; 28(12):4817. https://doi.org/10.3390/molecules28124817
Chicago/Turabian StyleSahu, Nawal Kishore, Ritu Sharma, Kshirsagar Prasad Suhas, Jyoti Joshi, Kunal Prakash, Richa Sharma, Ramendra Pratap, Xiwen Hu, Sukhbir Kaur, Mukesh Jain, and et al. 2023. "Natural-Product-Inspired Microwave-Assisted Synthesis of Novel Spirooxindoles as Antileishmanial Agents: Synthesis, Stereochemical Assignment, Bioevaluation, SAR, and Molecular Docking Studies" Molecules 28, no. 12: 4817. https://doi.org/10.3390/molecules28124817
APA StyleSahu, N. K., Sharma, R., Suhas, K. P., Joshi, J., Prakash, K., Sharma, R., Pratap, R., Hu, X., Kaur, S., Jain, M., Coluccini, C., Coghi, P., & Chaudhary, S. (2023). Natural-Product-Inspired Microwave-Assisted Synthesis of Novel Spirooxindoles as Antileishmanial Agents: Synthesis, Stereochemical Assignment, Bioevaluation, SAR, and Molecular Docking Studies. Molecules, 28(12), 4817. https://doi.org/10.3390/molecules28124817