Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = 3-hydroxy-4-pyridone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2128 KiB  
Article
New Yellow Azo Pyridone Derivatives with Enhanced Thermal Stability for Color Filters in Image Sensors
by Sunwoo Park, Sangwook Park, Saeyoung Oh, Hyukmin Kwon, Hayoon Lee, Kiho Lee, Chun Yoon and Jongwook Park
Photonics 2024, 11(10), 989; https://doi.org/10.3390/photonics11100989 - 21 Oct 2024
Viewed by 1322
Abstract
Two new yellow azo pyridone derivatives, (E)-6-hydroxy-1-(3-methoxypropyl)-4-methyl-2-oxo-5-(p-tolyldiazenyl)-1,2-dihydropyridine-3-carbonitrile (APY-M) and 5,5′-((1E,1′E)-(methylenebis(4,1-phenylene))bis(diazene-2,1-diyl))bis(6-hydroxy-4-methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile) (APY-D), were designed and synthesized as yellow colorants for image sensors. The properties of these new compounds were evaluated in both solution and color filter film forms, focusing on their optical and thermal [...] Read more.
Two new yellow azo pyridone derivatives, (E)-6-hydroxy-1-(3-methoxypropyl)-4-methyl-2-oxo-5-(p-tolyldiazenyl)-1,2-dihydropyridine-3-carbonitrile (APY-M) and 5,5′-((1E,1′E)-(methylenebis(4,1-phenylene))bis(diazene-2,1-diyl))bis(6-hydroxy-4-methyl-2-oxo-1,2-dihydropyridine-3-carbonitrile) (APY-D), were designed and synthesized as yellow colorants for image sensors. The properties of these new compounds were evaluated in both solution and color filter film forms, focusing on their optical and thermal characteristics. The molar extinction coefficient values of APY-M and APY-D in solution were found to be 2.7 × 105 and 3.0 × 105 L/mol·cm, respectively. The transmittance of the newly synthesized compounds met commercial requirements, showing values below 0.21% at 435 nm and above 97.1% at 530 nm. APY-D exhibited a molar extinction coefficient value in solution that was 1.15 times higher than that of the commercially used yellow colorant Disperse Yellow 241. Both newly synthesized compounds satisfied the decomposition temperature requirement of over 230 °C, which is essential for the color filter manufacturing process in image sensors. In particular, APY-D, with its dimeric structure and increased molecular weight, demonstrated enhanced thermal stability, with a 50 °C increase in decomposition temperature compared to Disperse Yellow 241. Color filter films for image sensors were fabricated using the new compounds, and their thermal resistance was evaluated. APY-D maintained its transmittance due to the enhanced thermal stability provided by its dimer structure and increased molecular weight. Consequently, APY-D is anticipated to be a promising candidate for use as a yellow colorant in image sensors, owing to its excellent optical and thermal properties. Full article
(This article belongs to the Special Issue Organic Optoelectronic Materials and Their Applications)
Show Figures

Figure 1

9 pages, 6587 KiB  
Communication
Discovery of Substituted 5-(2-Hydroxybenzoyl)-2-Pyridone Analogues as Inhibitors of the Human Caf1/CNOT7 Ribonuclease
by Ishwinder Kaur, Gopal P. Jadhav, Peter M. Fischer and Gerlof Sebastiaan Winkler
Molecules 2024, 29(18), 4351; https://doi.org/10.3390/molecules29184351 - 13 Sep 2024
Viewed by 1381
Abstract
The Caf1/CNOT7 nuclease is a catalytic component of the Ccr4-Not deadenylase complex, which is a key regulator of post-transcriptional gene regulation. In addition to providing catalytic activity, Caf1/CNOT7 and its paralogue Caf1/CNOT8 also contribute a structural function by mediating interactions between the large, [...] Read more.
The Caf1/CNOT7 nuclease is a catalytic component of the Ccr4-Not deadenylase complex, which is a key regulator of post-transcriptional gene regulation. In addition to providing catalytic activity, Caf1/CNOT7 and its paralogue Caf1/CNOT8 also contribute a structural function by mediating interactions between the large, non-catalytic subunit CNOT1, which forms the backbone of the Ccr4-Not complex and the second nuclease subunit Ccr4 (CNOT6/CNOT6L). To facilitate investigations into the role of Caf1/CNOT7 in gene regulation, we aimed to discover and develop non-nucleoside inhibitors of the enzyme. Here, we disclose that the tri-substituted 2-pyridone compound 5-(5-bromo-2-hydroxy-benzoyl)-1-(4-chloro-2-methoxy-5-methyl-phenyl)-2-oxo-pyridine-3-carbonitrile is an inhibitor of the Caf1/CNOT7 nuclease. Using a fluorescence-based nuclease assay, the activity of 16 structural analogues was determined, which predominantly explored substituents on the 1-phenyl group. While no compound with higher potency was identified among this set of structural analogues, the lowest potency was observed with the analogue lacking substituents on the 1-phenyl group. This indicates that substituents on the 1-phenyl group contribute significantly to binding. To identify possible binding modes of the inhibitors, molecular docking was carried out. This analysis suggested that the binding modes of the five most potent inhibitors may display similar conformations upon binding active site residues. Possible interactions include π-π interactions with His225, hydrogen bonding with the backbone of Phe43 and Van der Waals interactions with His225, Leu209, Leu112 and Leu115. Full article
Show Figures

Graphical abstract

5 pages, 600 KiB  
Communication
Synthesis of 5-Aroyl-2-aryl-3-hydroxypyridin-4(1H)-ones
by Elena V. Steparuk, Dmitrii L. Obydennov and Vyacheslav Y. Sosnovskikh
Molbank 2023, 2023(2), M1668; https://doi.org/10.3390/M1668 - 10 Jun 2023
Cited by 3 | Viewed by 1930
Abstract
A two-stage synthesis of 5-aroyl-2-aryl-3-hydroxypyridin-4(1H)-ones (56–66% overall yields) was carried out by refluxing 5-aroyl-3-(benzyloxy)-2-(het)aryl-4H-pyran-4-ones with ammonium acetate in AcOH and subsequent debenzylation. The prepared N-unsubstituted 4-pyridones exist in the pyridone tautomeric form. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Graphical abstract

21 pages, 1939 KiB  
Article
Pentaketides and 5-p-Hydroxyphenyl-2-pyridone Derivative from the Culture Extract of a Marine Sponge-Associated Fungus Hamigera avellanea KUFA0732
by Rotchana Klaram, Tida Dethoup, Fátima P. Machado, Luís Gales, Decha Kumla, Salar Hafez Ghoran, Emília Sousa, Sharad Mistry, Artur M. S. Silva and Anake Kijjoa
Mar. Drugs 2023, 21(6), 344; https://doi.org/10.3390/md21060344 - 2 Jun 2023
Cited by 6 | Viewed by 2598
Abstract
Five undescribed pentaketide derivatives, (R)-6,8-dihydroxy-4,5-dimethyl-3-methylidene-3,4-dihydro-1H-2-benzopyran-1-one (1), [(3S,4R)-3,8-dihydroxy-6-methoxy-4,5-dimethyl-1-oxo-3,4-dihydro-1H-isochromen-3-yl]methyl acetate (2), (R)-5, 7-dimethoxy-3-((S)-(1-hydroxyethyl)-3,4-dimethylisobenzofuran-1(3H)-one (4b), (S)-7-hydroxy-3-((S)-1-hydroxyethyl)-5-methoxy-3,4-dimethylisobenzofuran 1(3H)-one ( [...] Read more.
Five undescribed pentaketide derivatives, (R)-6,8-dihydroxy-4,5-dimethyl-3-methylidene-3,4-dihydro-1H-2-benzopyran-1-one (1), [(3S,4R)-3,8-dihydroxy-6-methoxy-4,5-dimethyl-1-oxo-3,4-dihydro-1H-isochromen-3-yl]methyl acetate (2), (R)-5, 7-dimethoxy-3-((S)-(1-hydroxyethyl)-3,4-dimethylisobenzofuran-1(3H)-one (4b), (S)-7-hydroxy-3-((S)-1-hydroxyethyl)-5-methoxy-3,4-dimethylisobenzofuran 1(3H)-one (5), and a p-hydroxyphenyl-2-pyridone derivative, avellaneanone (6), were isolated together with the previously reported (R)-3-acetyl-7-hydroxy-5-methoxy-3,4-dimethylisobenzofuran-1(3H)-one (3), (R)-7-hydroxy-3-((S)-1-hydroxyethyl)-5-methoxy-3,4-dimethylisobenzofuran-1(3H)-one (4a) and isosclerone (7), from the ethyl acetate extract of a culture of a marine sponge-derived fungus, Hamigera avellanea KUFA0732. The structures of the undescribed compounds were elucidated using 1D and 2D NMR, as well as high-resolution mass spectral analyses. The absolute configurations of the stereogenic carbons in 1, 4b, 5, and 6 were established by X-ray crystallographic analysis. The absolute configurations of C-3 and C-4 in 2 were determined by ROESY correlations and on the basis of their common biosynthetic origin with 1. The crude fungal extract and the isolated compounds 1, 3, 4b, 5, 6, and 7 were assayed for their growth inhibitory activity against various plant pathogenic fungi viz. Alternaria brassicicola, Bipolaris oryzae, Colletotrichum capsici, C. gloeosporiodes, Curvularia oryzae, Fusarium semitectum, Lasiodiplodia theobromae, Phytophthora palmivora, Pyricularia oryzae, Rhizoctonia oryzae and Sclerotium rolfsii. Full article
Show Figures

Graphical abstract

11 pages, 1673 KiB  
Article
Two New 4-Hydroxy-2-pyridone Alkaloids with Antimicrobial and Cytotoxic Activities from Arthrinium sp. GZWMJZ-606 Endophytic with Houttuynia cordata Thunb
by Ying Yin, Dongyang Wang, Dan Wu, Wenwen He, Mingxing Zuo, Weiming Zhu, Yanchao Xu and Liping Wang
Molecules 2023, 28(5), 2192; https://doi.org/10.3390/molecules28052192 - 27 Feb 2023
Cited by 12 | Viewed by 3034
Abstract
Two new 4-hydroxy-2-pyridone alkaloids furanpydone A and B (1 and 2), along with two known compounds N-hydroxyapiosporamide (3) and apiosporamide (4) were isolated from the endophytic fungus Arthrinium sp. GZWMJZ-606 in Houttuynia cordata Thunb. Furanpydone A and [...] Read more.
Two new 4-hydroxy-2-pyridone alkaloids furanpydone A and B (1 and 2), along with two known compounds N-hydroxyapiosporamide (3) and apiosporamide (4) were isolated from the endophytic fungus Arthrinium sp. GZWMJZ-606 in Houttuynia cordata Thunb. Furanpydone A and B had unusual 5-(7-oxabicyclo[2.2.1]heptane)-4-hydroxy-2-pyridone skeleton. Their structures including absolute configurations were determined on the basis of spectroscopic analysis, as well as the X-ray diffraction experiment. Compound 1 showed inhibitory activity against ten cancer cell lines (MKN-45, HCT116, K562, A549, DU145, SF126, A-375, 786O, 5637, and PATU8988T) with IC50 values from 4.35 to 9.72 µM. Compounds 1, 3 and 4 showed moderate inhibitory effects against four Gram-positive strains (Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus Subtilis, Clostridium perfringens) and one Gram-negative strain (Ralstonia solanacarum) with MIC values from 1.56 to 25 µM. However, compounds 14 showed no obvious inhibitory activity against two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two pathogenic fungi (Candida albicans and Candida glabrata) at 50 µM. These results show that compounds 14 are expected to be developed as lead compounds for antibacterial or anti-tumor drugs. Full article
Show Figures

Graphical abstract

13 pages, 1336 KiB  
Article
The Construction of Polycyclic Pyridones via Ring-Opening Transformations of 3-hydroxy-3,4-dihydropyrido[2,1-c][1,4]oxazine-1,8-diones
by Viktoria V. Viktorova, Elena V. Steparuk, Dmitrii L. Obydennov and Vyacheslav Y. Sosnovskikh
Molecules 2023, 28(3), 1285; https://doi.org/10.3390/molecules28031285 - 28 Jan 2023
Cited by 7 | Viewed by 2796
Abstract
This work describes the synthesis of 3-hydroxy-3,4-dihydropyrido[2,1-c][1,4]oxazine-1,8-diones, their tautomerism, and reactivity towards binucleophiles. These molecules are novel and convenient building-blocks for the direct construction of biologically important polycyclic pyridones via an oxazinone ring-opening transformation promoted with ammonium acetate or acetic acid. [...] Read more.
This work describes the synthesis of 3-hydroxy-3,4-dihydropyrido[2,1-c][1,4]oxazine-1,8-diones, their tautomerism, and reactivity towards binucleophiles. These molecules are novel and convenient building-blocks for the direct construction of biologically important polycyclic pyridones via an oxazinone ring-opening transformation promoted with ammonium acetate or acetic acid. In the case of o-phenylenediamine, partial aromatization of the obtained heterocycles proceeded to form polycyclic benzimidazole-fused pyridones (33–91%). Full article
(This article belongs to the Special Issue Synthesis of Heteroaromatic Compounds)
Show Figures

Figure 1

17 pages, 2620 KiB  
Article
Reactions of Trifluorotriacetic Acid Lactone and Hexafluorodehydroacetic Acid with Amines: Synthesis of Trifluoromethylated 4-Pyridones and Aminoenones
by Vladislav V. Fedin, Sergey A. Usachev, Dmitrii L. Obydennov and Vyacheslav Y. Sosnovskikh
Molecules 2022, 27(20), 7098; https://doi.org/10.3390/molecules27207098 - 20 Oct 2022
Cited by 5 | Viewed by 2654
Abstract
Dehydroacetic acid and triacetic acid lactone are known to be versatile substrates for the synthesis of a variety of azaheterocycles. However, their fluorinated analogs were poorly described in the literature. In the present work, we have investigated reactions of trifluorotriacetic acid lactone and [...] Read more.
Dehydroacetic acid and triacetic acid lactone are known to be versatile substrates for the synthesis of a variety of azaheterocycles. However, their fluorinated analogs were poorly described in the literature. In the present work, we have investigated reactions of trifluorotriacetic acid lactone and hexafluorodehydroacetic acid with primary amines, phenylenediamine, and phenylhydrazine. While hexafluorodehydroacetic acid reacted the same way as non-fluorinated analog giving 2,6-bis(trifluoromethyl)-4-pyridones, trifluorotriacetic acid lactone had different regioselectivity of nucleophilic attack compared to the parent structure, and corresponding 3-amino-6,6,6-trifluoro-5-oxohex-3-eneamides were formed as the products. In the case of binucleophiles, further cyclization took place, forming corresponding benzodiazepine and pyrazoles. The obtained 2,6-bis(trifluoromethyl)-4-pyridones were able to react with active methylene compounds giving fluorinated merocyanine dyes. Full article
Show Figures

Figure 1

9 pages, 1930 KiB  
Article
Novel Yellow Azo Pyridone Derivatives with Different Halide Atoms for Image-Sensor Color Filters
by Sunwoo Park, Yuna Kang, Hyukmin Kwon, Hayeon Kim, Seokwoo Kang, Hayoon Lee, Chun Yoon and Jongwook Park
Molecules 2022, 27(19), 6601; https://doi.org/10.3390/molecules27196601 - 5 Oct 2022
Cited by 6 | Viewed by 2183
Abstract
Novel yellow azo pyridone dye derivatives were synthesized for use in image-sensor color filters. The synthesized compounds have a basic chemical structure composed of azo, hydroxy, amide, and nitrile groups as well as different halide groups. New materials were evaluated on the basis [...] Read more.
Novel yellow azo pyridone dye derivatives were synthesized for use in image-sensor color filters. The synthesized compounds have a basic chemical structure composed of azo, hydroxy, amide, and nitrile groups as well as different halide groups. New materials were evaluated on the basis of their optical, thermal, and surface properties under conditions mimicking those of a commercial device fabrication process. A comparison of their related performance revealed that, among the four prepared compounds, 5-((4,6-dichlorocyclohexa-2,4-dien-1-yl)diazenyl)-6-hydroxy-1,4-dimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (Cl-PAMOPC) exhibited the best performance as an image-sensor color filter material, including a solubility greater than 0.1 wt% in propylene glycol monomethyl ether acetate solvent, a high decomposition temperature of 263 °C, and stable color difference values of 4.93 and 3.88 after a thermal treatment and a solvent-resistance test, respectively. The results suggest that Cl-PAMOPC can be used as a green dye additive in an image-sensor colorant. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Colorants- 2nd Volume)
Show Figures

Figure 1

14 pages, 1934 KiB  
Article
Modeling of Solute-Solvent Interactions Using an External Electric Field—From Tautomeric Equilibrium in Nonpolar Solvents to the Dissociation of Alkali Metal Halides
by Ilya G. Shenderovich and Gleb S. Denisov
Molecules 2021, 26(5), 1283; https://doi.org/10.3390/molecules26051283 - 26 Feb 2021
Cited by 11 | Viewed by 4257
Abstract
An implicit account of the solvent effect can be carried out using traditional static quantum chemistry calculations by applying an external electric field to the studied molecular system. This approach allows one to distinguish between the effects of the macroscopic reaction field of [...] Read more.
An implicit account of the solvent effect can be carried out using traditional static quantum chemistry calculations by applying an external electric field to the studied molecular system. This approach allows one to distinguish between the effects of the macroscopic reaction field of the solvent and specific solute–solvent interactions. In this study, we report on the dependence of the simulation results on the use of the polarizable continuum approximation and on the importance of the solvent effect in nonpolar solvents. The latter was demonstrated using experimental data on tautomeric equilibria between the pyridone and hydroxypyridine forms of 2,6-di-tert-butyl-4-hydroxy-pyridine in cyclohexane and chloroform. Full article
(This article belongs to the Special Issue Intermolecular Forces: From Atoms and Molecules to Nanostructures)
Show Figures

Graphical abstract

18 pages, 3829 KiB  
Article
High Antiproliferative Activity of Hydroxythiopyridones over Hydroxypyridones and Their Organoruthenium Complexes
by Md. Salman Shakil, Shahida Parveen, Zohaib Rana, Fearghal Walsh, Sanam Movassaghi, Tilo Söhnel, Mayur Azam, Muhammad Ashraf Shaheen, Stephen M. F. Jamieson, Muhammad Hanif, Rhonda J. Rosengren and Christian G. Hartinger
Biomedicines 2021, 9(2), 123; https://doi.org/10.3390/biomedicines9020123 - 27 Jan 2021
Cited by 10 | Viewed by 4579
Abstract
Hydroxypyr(id)ones are a pharmaceutically important class of compounds that have shown potential in diverse areas of drug discovery. We investigated the 3-hydroxy-4-pyridones 1a1c and 3-hydroxy-4-thiopyridones 1d1f as well as their Ru(η6-p-cymene)Cl complexes 2a2f [...] Read more.
Hydroxypyr(id)ones are a pharmaceutically important class of compounds that have shown potential in diverse areas of drug discovery. We investigated the 3-hydroxy-4-pyridones 1a1c and 3-hydroxy-4-thiopyridones 1d1f as well as their Ru(η6-p-cymene)Cl complexes 2a2f, and report here the molecular structures of 1b and 1d as determined by X-ray diffraction analysis. Detailed cell biological investigations revealed potent cytotoxic activity, in particular of the 3-hydroxy-4-thiopyridones 1d1f, while the Ru complexes of both compound types were less potent, despite still showing antiproliferative activity in the low μM range. The compounds did not modulate the cell cycle distribution of cancer cells but were cytostatic in A549 and cytotoxic in NCI-H522 non-small lung cancer cells, among other effects on cancer cells. Full article
(This article belongs to the Special Issue Metal-Based Complexes in Cancer Treatment)
Show Figures

Graphical abstract

10 pages, 2166 KiB  
Article
Phenacylation of 6-Methyl-Beta-Nitropyridin-2-Ones and Further Heterocyclization of Products
by Eugene V. Babaev and Victor B. Rybakov
Molecules 2020, 25(7), 1682; https://doi.org/10.3390/molecules25071682 - 7 Apr 2020
Cited by 2 | Viewed by 3235
Abstract
Reaction between the derivatives of 6-methyl-beta-nitropyridin-2-one and phenacyl bromides was studied, and the yields observed were extremely low. The pyridones were converted via chloropyridines to methoxyderivatives, which were N-phenacylated. N-Phenacyl derivatives of 4,6-dimethyl-5-nitropyridin-2-one under the action of base gave 5-hydroxy-8-nitroindolizine and under [...] Read more.
Reaction between the derivatives of 6-methyl-beta-nitropyridin-2-one and phenacyl bromides was studied, and the yields observed were extremely low. The pyridones were converted via chloropyridines to methoxyderivatives, which were N-phenacylated. N-Phenacyl derivatives of 4,6-dimethyl-5-nitropyridin-2-one under the action of base gave 5-hydroxy-8-nitroindolizine and under acidic conditions gave 5-methyl-6-nitrooxazole[3,2-a]pyridinium salt, which underwent recycization with MeONa to 5-methoxy-8-nitroindolizine. Full article
(This article belongs to the Special Issue Nitro Compounds and Their Derivatives in Organic Synthesis)
Show Figures

Graphical abstract

14 pages, 2837 KiB  
Article
Bioactive Pyridone Alkaloids from a Deep-Sea-Derived Fungus Arthrinium sp. UJNMF0008
by Jie Bao, Huijuan Zhai, Kongkai Zhu, Jin-Hai Yu, Yuying Zhang, Yinyin Wang, Cheng-Shi Jiang, Xiaoyong Zhang, Yun Zhang and Hua Zhang
Mar. Drugs 2018, 16(5), 174; https://doi.org/10.3390/md16050174 - 22 May 2018
Cited by 63 | Viewed by 6246
Abstract
Eight new 4-hydroxy-2-pyridone alkaloids arthpyrones D–K (18), along with two known analogues apiosporamide (9) and arthpyrone B (10), were isolated from a deep-sea-derived fungus Arthrinium sp. UJNMF0008. The structures of the isolated compounds were elucidated [...] Read more.
Eight new 4-hydroxy-2-pyridone alkaloids arthpyrones D–K (18), along with two known analogues apiosporamide (9) and arthpyrone B (10), were isolated from a deep-sea-derived fungus Arthrinium sp. UJNMF0008. The structures of the isolated compounds were elucidated on the basis of spectroscopic methods with that of 1 being established by chemical transformation and X-ray diffraction analysis. Compounds 1 and 2 bore an ester functionality linking the pyridone and decalin moieties first reported in this class of metabolites, while 3 and 4 incorporated a rare natural hexa- or tetrahydrobenzofuro[3,2-c]pyridin-3(2H)-one motif. Compounds 36 and 9 exhibited moderate to significant antibacterial activity against Mycobacterium smegmatis and Staphylococcus aureus with IC50 values ranging from 1.66–42.8 μM, while 9 displayed cytotoxicity against two human osteosarcoma cell lines (U2OS and MG63) with IC50 values of 19.3 and 11.7 μM, respectively. Full article
Show Figures

Graphical abstract

15 pages, 275 KiB  
Article
Design, Synthesis and Anti-fibrosis Activity Study of N1-Substituted Phenylhydroquinolinone Derivatives
by Ling Wu, Bin Liu, Qianbin Li, Jun Chen, Lijian Tao and Gaoyun Hu
Molecules 2012, 17(2), 1373-1387; https://doi.org/10.3390/molecules17021373 - 2 Feb 2012
Cited by 13 | Viewed by 6179
Abstract
Pirfenidone (5-methyl-1-phenyl-2(1H)-pyridone, PFD) is a small-molecule compound acting on multiple targets involved in pathological fibrogenesis and is effective to increase the survival of patients with fibrosis, such as idiopathic pulmonary fibrosis. However, PFD is not active enough, requiring a high daily dose. In [...] Read more.
Pirfenidone (5-methyl-1-phenyl-2(1H)-pyridone, PFD) is a small-molecule compound acting on multiple targets involved in pathological fibrogenesis and is effective to increase the survival of patients with fibrosis, such as idiopathic pulmonary fibrosis. However, PFD is not active enough, requiring a high daily dose. In this study, to keep the multiple target profiles, N1-substituted phenylhydroquinolinone derivatives, which retain the 1-phenyl-2(1H)-pyridone scaffold were designed and synthesized. The preliminary anti-fibrosis activities for all target compounds were evaluated on a NIH3T3 fibroblast cell line using MTT assay methods. Most compounds showed significant inhibition on NIH3T3 cell proliferation with a IC50 range of 0.09–26 mM, among which 5-hydroxy-1-(4'-bromophenyl)-5,6,7,8-tetrahydroquinolin-2(1H)-one (6j) displayed 13 times higher potency (IC50 = 0.3 mM) than that of AKF-PD (IC50 = 4.2 mM). These results suggest that N1-substituted phenylhydroquinolinone is a promising scaffold which can be applied for further investigation and for developing novel anti-fibrosis agents. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

14 pages, 244 KiB  
Article
Synthesis and Phytotoxic Activity of New Pyridones Derived from 4-Hydroxy-6-Methylpyridin-2(1H)-one
by Antonio Jacinto Demuner, Vania Maria Moreira Valente, Luiz Cláudio Almeida Barbosa, Akshat Rathi, Timothy J. Donohoe and Amber L. Thompson
Molecules 2009, 14(12), 4973-4986; https://doi.org/10.3390/molecules14124973 - 1 Dec 2009
Cited by 35 | Viewed by 13223
Abstract
Commercial dehydroacetic acid was converted into 4-hydroxy-6-methylpyridin-2(1H)-one (3), which was then condensed with several aliphatic aldehydes to produce seven new title compounds in variable yields (35–92%). Reaction of 3 with α,β-unsaturated aldehydes resulted in the formation of condensed pyran derivatives 4g' [...] Read more.
Commercial dehydroacetic acid was converted into 4-hydroxy-6-methylpyridin-2(1H)-one (3), which was then condensed with several aliphatic aldehydes to produce seven new title compounds in variable yields (35–92%). Reaction of 3 with α,β-unsaturated aldehydes resulted in the formation of condensed pyran derivatives 4g' and 4h'. A mechanism is proposed to explain the formation of such compounds. The effects of all methylpyridin-2(1H)-one derivatives on the development of the dicotyledonous species Ipomoea grandifolia and Cucumis sativus and the monocotyledonous species Sorghum bicolor were evaluated. At the dose of 6.7 × 10-8 mol a.i./g substrate the compounds showed some phytotoxic selectivity, being more active against the dicotyledonous species. These compounds can be used as lead structures for the development of more active phytotoxic products. Full article
Show Figures

Figure 1

5 pages, 158 KiB  
Article
Convenient Replacement of the Hydroxy by an Amino Group in 4 Hydroxycoumarin and 4-Hydroxy-6-methyl-2-pyrone under Microwave Irradiation
by Edmont V. Stoyanov and Ivo C. Ivanov
Molecules 2004, 9(8), 627-631; https://doi.org/10.3390/90800627 - 31 Jul 2004
Cited by 24 | Viewed by 10153
Abstract
The reaction of 4-hydroxycoumarin (1) with some primary amines 2a-h and morpholine (2i) under microwave irradiation occurred without opening of the lactone ring to give N-substituted 4-aminocoumarins 3a-i in excellent yields. Under the same experimental conditions, 4-hydroxy-6-methyl-2-pyrone (4) reacted with benzylamine (2e) or [...] Read more.
The reaction of 4-hydroxycoumarin (1) with some primary amines 2a-h and morpholine (2i) under microwave irradiation occurred without opening of the lactone ring to give N-substituted 4-aminocoumarins 3a-i in excellent yields. Under the same experimental conditions, 4-hydroxy-6-methyl-2-pyrone (4) reacted with benzylamine (2e) or 2-phenyl- ethylamine (2f) to give the corresponding N,N'-disubstituted 4-amino-6-methyl-2-pyridones 5e,f. The main advantages of this procedure are dramatically shortened reaction times, higher amine utilization and considerably improved yields. Full article
Show Figures

Figure 1

Back to TopTop