Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = 3-aminocoumarins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2265 KiB  
Article
Pathogenomic Characterization of Multidrug-Resistant Escherichia coli Strains Carrying Wide Efflux-Associated and Virulence Genes from the Dairy Farm Environment in Xinjiang, China
by Muhammad Shoaib, Sehrish Gul, Sana Majeed, Zhuolin He, Baocheng Hao, Minjia Tang, Xunjing Zhang, Zhongyong Wu, Shengyi Wang and Wanxia Pu
Antibiotics 2025, 14(5), 511; https://doi.org/10.3390/antibiotics14050511 - 15 May 2025
Cited by 2 | Viewed by 733
Abstract
Background/Objectives: Livestock species, particularly dairy animals, can serve as important reservoirs of E. coli, carrying antibiotic resistance and virulence genes under constant selective pressure and their spread in the environment. In this study, we performed the pathogenomic analysis of seven multidrug [...] Read more.
Background/Objectives: Livestock species, particularly dairy animals, can serve as important reservoirs of E. coli, carrying antibiotic resistance and virulence genes under constant selective pressure and their spread in the environment. In this study, we performed the pathogenomic analysis of seven multidrug resistant (MDR) E. coli strains carrying efflux-associated and virulence genes from the dairy farm environment in Xinjiang Province, China. Methods: First, we processed the samples using standard microbiological techniques followed by species identification with MALDI-TOF MS. Then, we performed whole genome sequencing (WGS) on the Illumina NovaSeq PE150 platform and conducted pathogenomic analysis using multiple bioinformatics tools. Results: WGS analysis revealed that the E. coli strains harbored diverse antibiotic efflux-associated genes, including conferring resistance to fluoroquinolones, aminoglycosides, aminocoumarins, macrolides, peptides, phosphonic acid, nitroimidazole, tetracyclines, disinfectants/antiseptics, and multidrug resistance. The phylogenetic analysis classified seven E. coli strains into B1 (n = 4), C (n = 2), and F (n = 1) phylogroups. PathogenFinder predicted all E. coli strains as potential human pathogens belonging to distinct serotypes and carrying broad virulence genes (ranging from 12 to 27), including the Shiga toxin-producing gene (stx1, n = 1). However, we found that a few of the virulence genes were associated with prophages and genomic islands in the E. coli strains. Moreover, all E. coli strains carried a diverse bacterial secretion systems and biofilm-associated genes. Conclusions: The present study highlights the need for large-scale genomic surveillance of antibiotic-resistant bacteria in dairy farm environments to identify AMR reservoir spillover and pathogenic risks to humans and design targeted interventions to further stop their spread under a One Health framework. Full article
(This article belongs to the Special Issue Antibiotic Resistance: A One-Health Approach, 2nd Edition)
Show Figures

Figure 1

15 pages, 1112 KiB  
Article
Biological Evaluation of 3-Aryl and/or 4-(N-Aryl)aminocoumarins Against Human Pathogens: Antileishmanial and Antiviral Activities
by Vitor Won-Held Rabelo, Leonardo Simões de Abreu Carneiro, Luan Letieri Belem Martins, Fernando Almeida-Souza, Luciene Soares Silva, Leonardo dos Santos Corrêa Amorim, Maria Leonisa Sanchez-Nuñez, Kátia da Silva Calabrese, Paula Alvarez Abreu, Camilla Djenne Buarque and Izabel Christina Nunes de Palmer Paixão
Future Pharmacol. 2024, 4(4), 919-933; https://doi.org/10.3390/futurepharmacol4040048 - 19 Dec 2024
Viewed by 1030
Abstract
Background: Vector-borne diseases, such as leishmaniasis and arboviral infections, represent a great challenge to human health with limited therapeutic options. In addition, sexually transmitted infections, such as herpes, affect billions of people worldwide and the emergence of new strains resistant to common antivirals, [...] Read more.
Background: Vector-borne diseases, such as leishmaniasis and arboviral infections, represent a great challenge to human health with limited therapeutic options. In addition, sexually transmitted infections, such as herpes, affect billions of people worldwide and the emergence of new strains resistant to common antivirals, such as acyclovir (ACV), poses a serious threat to humans. In this context, coumarins have proved to be a valuable source of new derivatives with promising biological activities to fight these diseases. Methodology: 3-aryl and/or 4-(N-aryl)aminocoumarins were synthesized, and their drug-like profile was evaluated using silico tools. Their biological activity against Leishmania amazonensis promastigotes was evaluated using the MTT assay, while their antiviral activity against replication of Chikungunya, Mayaro, Zika, and type 1 Herpes simplex virus (HSV-1) in Vero cells was analyzed using plaque reduction assays. Results: The in silico studies pointed to satisfactory pharmacokinetic and toxicological properties as drug candidates. Hence, their antileishmanial activity was evaluated. None of the compounds exhibited significant activity and compound 2b showed the highest activity (IC50 = 47.10 µM). We further evaluated their cytotoxicity and antiviral activity. Compound 2e showed good activity against ACV-sensitive and -resistant HSV-1 strains with EC50 values of 48.68 µM and 66.26 µM, respectively (selectivity index values of 12.5 and 9.2). Mechanism of action studies indicated that this compound acts at late steps of HSV-1 replication, such as virus egress. Conclusions: Compound 2e possesses a different mechanism of action compared to ACV and presents a promising alternative for the treatment of HSV-1 infections. Full article
Show Figures

Graphical abstract

17 pages, 2500 KiB  
Article
Genomic Exploration of a Chitinolytic Streptomyces albogriseolus PMB5 Strain from European mantis (Mantis religiosa)
by Vesselin Baev, Ivan Iliev, Elena Apostolova, Mariyana Gozmanova, Yana Hristova, Yanitsa Ilieva, Galina Yahubyan and Velizar Gochev
Curr. Issues Mol. Biol. 2024, 46(9), 9359-9375; https://doi.org/10.3390/cimb46090554 - 24 Aug 2024
Viewed by 1815
Abstract
The genus Streptomyces is renowned not only for its natural antibiotic production but also for its abundant chitinolytic enzymes, which break down stubborn chitin into chitooligosaccharides. Despite this, there have been limited studies utilizing whole-genome sequencing to explore the repertoire of chitin degradation [...] Read more.
The genus Streptomyces is renowned not only for its natural antibiotic production but also for its abundant chitinolytic enzymes, which break down stubborn chitin into chitooligosaccharides. Despite this, there have been limited studies utilizing whole-genome sequencing to explore the repertoire of chitin degradation and utilization genes in Streptomyces. A particularly compelling source of novel antimicrobials and enzymes lies in the microbiota of insects, where bacterial symbionts produce antimicrobials to protect against opportunistic pathogens and enzymes to adapt to the environment. In this study, we present the chitinolytic strain Streptomyces albogriseolus PMB5, isolated from the insectivorous Mantis religiosa (European mantis). Whole-genome sequencing revealed that PMB5 harbors a linear chromosome of 7,211,961 bp and a linear plasmid of 327,989 bp. The genome comprises 6683 genes, including 6592 protein-coding sequences and 91 RNA genes. Furthermore, genome analysis revealed 19 biosynthetic gene clusters covering polyketides, terpenes, and RiPPs, with 10 clusters showing significant gene similarity (>80%) to known clusters like antimycin, hopene, and geosmin. In the genome of S. albogriseolus PMB5, we were able to identify several antibiotic resistance genes; these included cml (resistance to phenicol), gimA (resistance to macrolides), parY (resistance to aminocoumarin), oleC/oleD (resistance to macrolides), novA (resistance to aminocoumarin) and bla/blc (resistance to beta-lactams). Additionally, three clusters displayed no similarity to known sequences, suggesting novel bioactive compound discovery potential. Remarkably, strain PMB5 is the first reported S. albogriseolus capable of thriving on a medium utilizing chitin as a carbon source, with over 50 chitin-utilizing genes identified, including five AA10 family LPMOs, five GH18 chitinases, and one GH19 chitinase. This study significantly enhances the genomic understanding of S. albogriseolus, a species previously underrepresented in research, paving the way to further exploration of the biotechnological potential of the species. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

13 pages, 2276 KiB  
Article
Effects of Reclaimed Water Supplementation on the Occurrence and Distribution Characteristics of Antibiotic Resistance Genes in a Recipient River
by Xiaohui Zhao, Xiaofei Wang, Hang Lang, Panwei Zhang, Jie Ni and Wenqiang Wu
Processes 2024, 12(8), 1717; https://doi.org/10.3390/pr12081717 - 15 Aug 2024
Viewed by 1175
Abstract
Due to the serious scarcity of water resources and the aggravation of water pollution in northern China, replenishing reclaimed water can alleviate the water shortage problem in northern rivers to a certain extent, but has also become an important way for antibiotic resistance [...] Read more.
Due to the serious scarcity of water resources and the aggravation of water pollution in northern China, replenishing reclaimed water can alleviate the water shortage problem in northern rivers to a certain extent, but has also become an important way for antibiotic resistance genes (ARGs) to spread into rivers. In order to study the characteristics of ARGs in reclaimed water recharge rivers (Wenyu River), the abundance and distribution of ARGs in a typical reclaimed water replenishment river were analyzed by metagenomic sequencing technology combined with river water quality. The results showed that: due to the input of reclaimed water, the water quality characteristics of downstream sampling points of the river were significantly different from those upstream. Water quality factors such as total organic carbon, chemical oxygen demand, chlorophyll, and total nitrogen tended to increase gradually. Quinolones and macrolides were the main types of antibiotics. A total of 1217 ARGs were detected in the reclaimed water river system, including multidrug resistance, macrolide-lincosamide-streptogramin (MLS), tetracycline, glycopeptide, peptide, aminocoumarin, etc. The average abundance of ARGs in reclaimed water was higher than that in rivers. Among them, multidrug ARGs existed most widely, which may gradually become the main trend of ARGs’ evolutionary variation. RDA results revealed that the environmental factors EC and DO, as well as tetracycline antibiotics (TCs), may be important environmental factors affecting the distribution of ARGs. Full article
(This article belongs to the Special Issue State-of-the-Art Wastewater Treatment Techniques)
Show Figures

Figure 1

22 pages, 5849 KiB  
Article
Synthesis, Molecular Electron Density Theory Study, Molecular Docking, and Pharmacological Evaluation of New Coumarin–Sulfonamide–Nitroindazolyl–Triazole Hybrids as Monoamine Oxidase Inhibitors
by Mohammed Eddahmi, Gabriella La Spada, Luis R. Domingo, Gérard Vergoten, Christian Bailly, Marco Catto and Latifa Bouissane
Int. J. Mol. Sci. 2024, 25(12), 6803; https://doi.org/10.3390/ijms25126803 - 20 Jun 2024
Viewed by 2475
Abstract
Inhibitors of monoamine oxidases (MAOs) are of interest for the treatment of neurodegenerative disorders and other human pathologies. In this frame, the present work describes different synthetic strategies to obtain MAO inhibitors via the coupling of the aminocoumarin core with arylsulfonyl chlorides followed [...] Read more.
Inhibitors of monoamine oxidases (MAOs) are of interest for the treatment of neurodegenerative disorders and other human pathologies. In this frame, the present work describes different synthetic strategies to obtain MAO inhibitors via the coupling of the aminocoumarin core with arylsulfonyl chlorides followed by copper azide-alkyne cycloaddition, leading to coumarin–sulfonamide–nitroindazolyl–triazole hybrids. The nitration position on the coumarin moiety was confirmed through nuclear magnetic resonance spectroscopy and molecular electron density theory in order to elucidate the molecular mechanism and selectivity of the electrophilic aromatic substitution reaction. The coumarin derivatives were evaluated for their inhibitory potency against monoamine oxidases and cholinesterases. Molecular docking calculations provided a rational binding mode of the best compounds in the series with MAO A and B. The work identified hybrids 14ac as novel MAO inhibitors, with a selective action against isoform B, of potential interest to combat neurological diseases. Full article
Show Figures

Figure 1

62 pages, 15240 KiB  
Review
An Overview of the Synthesis of 3,4-Fused Pyrrolocoumarins of Biological Interest
by Eleni Kapidou and Konstantinos E. Litinas
Molecules 2024, 29(12), 2748; https://doi.org/10.3390/molecules29122748 - 9 Jun 2024
Cited by 1 | Viewed by 1806
Abstract
3,4-Fused pyrrolocoumarins, synthetically prepared or naturally occurring, possess interesting biological properties. In this review, the synthetic strategies for the synthesis of the title compounds are presented along with their biological activities. Two routes are followed for that synthesis. In one, the pyrrole ring [...] Read more.
3,4-Fused pyrrolocoumarins, synthetically prepared or naturally occurring, possess interesting biological properties. In this review, the synthetic strategies for the synthesis of the title compounds are presented along with their biological activities. Two routes are followed for that synthesis. In one, the pyrrole ring is formed from coumarin derivatives, such as aminocoumarins or other coumarins. In the other approach, the pyranone moiety is built from an existing pyrrole derivative or through the simultaneous formation of coumarin and pyrrole frameworks. The above syntheses are achieved via 1,3-dipolar cycloaddition reactions, Michael reaction, aza-Claisen rearrangement reactions, multi-component reactions (MCR), as well as metal-catalyzed reactions. Pyrrolocoumarins present cytotoxic, antifungal, antibacterial, α-glucosidase inhibition, antioxidant, lipoxygenase (LOX) inhibition, and fluorescent activities, as well as benzodiazepine receptor ability. Full article
(This article belongs to the Special Issue Organic Synthesis and Application of Bioactive Molecules)
Show Figures

Graphical abstract

19 pages, 4084 KiB  
Article
The Impact of Heterologous Regulatory Genes from Lipodepsipeptide Biosynthetic Gene Clusters on the Production of Teicoplanin and A40926
by Kseniia Zhukrovska, Elisa Binda, Victor Fedorenko, Flavia Marinelli and Oleksandr Yushchuk
Antibiotics 2024, 13(2), 115; https://doi.org/10.3390/antibiotics13020115 - 24 Jan 2024
Cited by 1 | Viewed by 2259
Abstract
StrR-like pathway-specific transcriptional regulators (PSRs) function as activators in the biosynthesis of various antibiotics, including glycopeptides (GPAs), aminoglycosides, aminocoumarins, and ramoplanin-like lipodepsipeptides (LDPs). In particular, the roles of StrR-like PSRs have been previously investigated in the biosynthesis of streptomycin, novobiocin, GPAs like balhimycin, [...] Read more.
StrR-like pathway-specific transcriptional regulators (PSRs) function as activators in the biosynthesis of various antibiotics, including glycopeptides (GPAs), aminoglycosides, aminocoumarins, and ramoplanin-like lipodepsipeptides (LDPs). In particular, the roles of StrR-like PSRs have been previously investigated in the biosynthesis of streptomycin, novobiocin, GPAs like balhimycin, teicoplanin, and A40926, as well as LDP enduracidin. In the current study, we focused on StrR-like PSRs from the ramoplanin biosynthetic gene cluster (BGC) in Actinoplanes ramoplaninifer ATCC 33076 (Ramo5) and the chersinamycin BGC in Micromonospora chersina DSM 44151 (Chers28). Through the analysis of the amino acid sequences of Ramo5 and Chers28, we discovered that these proteins are phylogenetically distant from other experimentally investigated StrR PSRs, although all StrR-like PSRs found in BGCs for different antibiotics share a conserved secondary structure. To investigate whether Ramo5 and Chers28, given their phylogenetic positions, might influence the biosynthesis of other antibiotic pathways governed by StrR-like PSRs, the corresponding genes (ramo5 and chers28) were heterologously expressed in Actinoplanes teichomyceticus NRRL B-16726 and Nonomuraea gerenzanensis ATCC 39727, which produce the clinically-relevant GPAs teicoplanin and A40926, respectively. Recombinant strains of NRRL B-16726 and ATCC 39727 expressing chers28 exhibited improved antibiotic production, although the expression of ramo5 did not yield the same effect. These results demonstrate that some StrR-like PSRs can “cross-talk” between distant biosynthetic pathways and might be utilized as tools for the activation of silent BGCs regulated by StrR-like PSRs. Full article
Show Figures

Figure 1

20 pages, 4898 KiB  
Article
Novel Coumarin Derivatives as Potential Urease Inhibitors for Kidney Stone Prevention and Antiulcer Therapy: From Synthesis to In Vivo Evaluation
by Kiran Shahzadi, Syed Majid Bukhari, Asma Zaidi, Tanveer A. Wani, Muhammad Saeed Jan, Seema Zargar, Umer Rashid, Umar Farooq, Aneela Khushal and Sara Khan
Pharmaceuticals 2023, 16(11), 1552; https://doi.org/10.3390/ph16111552 - 2 Nov 2023
Cited by 9 | Viewed by 2147
Abstract
The presence of ammonium ions in urine, along with basic pH in the presence of urease-producing bacteria, promotes the production of struvite stones. This causes renal malfunction, which is manifested by symptoms such as fever, nausea, vomiting, and blood in the urine. The [...] Read more.
The presence of ammonium ions in urine, along with basic pH in the presence of urease-producing bacteria, promotes the production of struvite stones. This causes renal malfunction, which is manifested by symptoms such as fever, nausea, vomiting, and blood in the urine. The involvement of urease in stone formation makes it a good target for finding urease enzyme inhibitors, which have the potential to be developed as lead drugs against kidney stones in the future. The documented ethnopharmacology of coumarin 2-one against bacterial, fungal and viral strains encouraged us to synthesize new derivatives of coumarins by reacting aromatic aldehydes with 4-aminocoumarin. The synthesized compounds (2a to 11a) were evaluated for their antimicrobial, in vitro, and in silico properties against the urease enzyme. The study also covers in vivo determination of the synthesized compounds with respect to different types of induced ulcers. The molecular docking study along with extended MD simulations (100 ns each) and MMPBSA study confirmed the potential inhibitory candidates as evident from computed ∆Gbind (3a = −11.62 and 5a = −12.08 Kcal/mol) against the urease enzyme. The in silico analyses were augmented by an enzymatic assay, which revealed that compounds 3a and 5a had strong inhibitory action, with IC50 of 0.412 µM (64.0% inhibition) and 0.322 µM (77.7% inhibition), respectively, compared to standard (Thiourea) with 82% inhibition at 0.14 µM. Moreover, the most active compound, 5a, was further tested in vivo for antiulcer activity by different types of induced ulcers, including pyloric ligation-, ethanol-, aspirin-, and histamine-induced ulcers. Compound 5a effectively reduced gastric acidity, lipid peroxidation, and ulceration in a rat model while also inhibiting gastric ATPase activity, which makes it a promising candidate for ulcer treatment. As a result of the current research, 3a and 5a may be used as new molecules for developing potent urease inhibitors. Additionally, the compound 3a showed antibacterial activity against Staphylococcus aureus and Salmonella typhimurium, with zones of inhibition of 41 ± 0.9 mm and 35 ± 0.9 mm, respectively. Compound 7a showed antibacterial activity against Staphylococcus aureus and Salmonella typhimurium, with zones of inhibition of 30 ± 0.8 mm and 42 ± 0.8 mm, respectively. These results prove that the synthesized compounds also possess good antibacterial potential against Gram-positive and Gram-negative bacterial strains. Full article
(This article belongs to the Special Issue Heterocyclic Compounds in Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 1219 KiB  
Brief Report
Efficacy of Treatment with the Antibiotic Novobiocin against Infection with Bacillus anthracis or Burkholderia pseudomallei
by Christopher P. Klimko, Susan L. Welkos, Jennifer L. Shoe, Sherry Mou, Melissa Hunter, Nathaniel O. Rill, David DeShazer and Christopher K. Cote
Antibiotics 2022, 11(12), 1685; https://doi.org/10.3390/antibiotics11121685 - 23 Nov 2022
Cited by 6 | Viewed by 2571
Abstract
The microbial pathogens Burkholderia pseudomallei and Bacillus anthracis are unrelated bacteria, yet both are the etiologic agents of naturally occurring diseases in animals and humans and are classified as Tier 1 potential biothreat agents. B. pseudomallei is the gram-negative bacterial agent of melioidosis, [...] Read more.
The microbial pathogens Burkholderia pseudomallei and Bacillus anthracis are unrelated bacteria, yet both are the etiologic agents of naturally occurring diseases in animals and humans and are classified as Tier 1 potential biothreat agents. B. pseudomallei is the gram-negative bacterial agent of melioidosis, a major cause of sepsis and mortality globally in endemic tropical and subtropical regions. B. anthracis is the gram-positive spore-forming bacterium that causes anthrax. Infections acquired by inhalation of these pathogens are challenging to detect early while the prognosis is best; and they possess innate multiple antibiotic resistance or are amenable to engineered resistance. Previous studies showed that the early generation, rarely used aminocoumarin novobiocin was very effective in vitro against a range of highly disparate biothreat agents. The objective of the current research was to begin to characterize the therapeutic efficacy of novobiocin in mouse models of anthrax and melioidosis. The antibiotic was highly efficacious against infections by both pathogens, especially B. pseudomallei. Our results supported the concept that specific older generation antimicrobials can be effective countermeasures against infection by bacterial biothreat agents. Finally, novobiocin was shown to be a potential candidate for inclusion in a combined pre-exposure vaccination and post-exposure treatment strategy designed to target bacterial pathogens refractory to a single medical countermeasure. Full article
(This article belongs to the Special Issue Animal Models of Biodefence Pathogens: Exploring Treatment)
Show Figures

Figure 1

92 pages, 71810 KiB  
Review
An Overview on the Synthesis of Fused Pyridocoumarins with Biological Interest
by Matina D. Douka and Konstantinos E. Litinas
Molecules 2022, 27(21), 7256; https://doi.org/10.3390/molecules27217256 - 26 Oct 2022
Cited by 22 | Viewed by 4491
Abstract
Pyridocoumarins are a class of synthetic and naturally occurring organic compounds with interesting biological activities. This review focuses on the synthetic strategies for the synthesis of pyridocoumarins and presents the biological properties of those compounds. The synthesis involves the formation of the pyridine [...] Read more.
Pyridocoumarins are a class of synthetic and naturally occurring organic compounds with interesting biological activities. This review focuses on the synthetic strategies for the synthesis of pyridocoumarins and presents the biological properties of those compounds. The synthesis involves the formation of the pyridine ring, at first, from a coumarin derivative, such as aminocoumarins, hydroxycoumarins, or other coumarins. The formation of a pyranone moiety follows from an existing pyridine or piperidine or phenol derivative. For the above syntheses, [4 + 2] cycloaddition reactions, multi-component reactions (MCR), as well as metal-catalyzed reactions, are useful. Pyridocoumarins present anti-cancer, anti-HIV, antimalarial, analgesic, antidiabetic, antibacterial, antifungal, anti-inflammatory, and antioxidant activities. Full article
(This article belongs to the Special Issue Coumarin and Its Derivatives II)
Show Figures

Graphical abstract

22 pages, 2060 KiB  
Article
Polarity-Dependent Twisted Intramolecular Charge Transfer in Diethylamino Coumarin Revealed by Ultrafast Spectroscopy
by Jiawei Liu, Cheng Chen and Chong Fang
Chemosensors 2022, 10(10), 411; https://doi.org/10.3390/chemosensors10100411 - 11 Oct 2022
Cited by 16 | Viewed by 4069
Abstract
Twisting intramolecular charge transfer (TICT) is a common nonradiative relaxation pathway for a molecule with a flexible substituent, effectively reducing the fluorescence quantum yield (FQY) by swift twisting motions. In this work, we investigate coumarin 481 (C481) that contains a diethylamino group in [...] Read more.
Twisting intramolecular charge transfer (TICT) is a common nonradiative relaxation pathway for a molecule with a flexible substituent, effectively reducing the fluorescence quantum yield (FQY) by swift twisting motions. In this work, we investigate coumarin 481 (C481) that contains a diethylamino group in solution by femtosecond transient absorption (fs-TA), femtosecond stimulated Raman spectroscopy (FSRS), and theoretical calculations, aided by coumarin 153 with conformational locking of the alkyl arms as a control sample. In different solvents with decreasing polarity, the transition energy barrier between the fluorescent state and TICT state increases, leading to an increase of the FQY. Correlating the fluorescence decay time constant with solvent polarity and viscosity parameters, the multivariable linear regression analysis indicates that the chromophore’s nonradiative relaxation pathway is affected by both hydrogen (H)-bond donating and accepting capabilities as well as dipolarity of the solvent. Results from the ground- and excited-state FSRS shed important light on structural dynamics of C481 undergoing prompt light-induced intramolecular charge transfer from the diethylamino group toward –C=O and –CF3 groups, while the excited-state C=O stretch marker band tracks initial solvation and vibrational cooling dynamics in aprotic and protic solvents (regardless of polarity) as well as H-bonding dynamics in the fluorescent state for C481 in high-polarity protic solvents like methanol. The uncovered mechanistic insights into the molecular origin for the fluorogenicity of C481 as an environment-polarity sensor substantiate the generality of ultrafast TICT state formation of flexible molecules in solution, and the site-dependent substituent(s) as an effective route to modulate the fluorescence properties for such compact, engineerable, and versatile chemosensors. Full article
(This article belongs to the Special Issue Optical Chemical Sensors and Spectroscopy)
Show Figures

Graphical abstract

17 pages, 3512 KiB  
Article
The Synthesis and Evaluation of Aminocoumarin Peptidomimetics as Cytotoxic Agents on Model Bacterial E. coli Strains
by Paweł Kowalczyk, Monika Wilk, Parul Parul, Mateusz Szymczak, Karol Kramkowski, Stanisława Raj, Grzegorz Skiba, Dorota Sulejczak, Patrycja Kleczkowska and Ryszard Ostaszewski
Materials 2021, 14(19), 5725; https://doi.org/10.3390/ma14195725 - 30 Sep 2021
Cited by 20 | Viewed by 2345
Abstract
This work presents the successful synthesis of a library of novel peptidomimetics via Ugi multicomponent reaction. Most of these peptidomimetics contain differently substituted aminocoumarin; 7-amino-4-methylcoumarin and 7-amino-4-(trifluoromethyl) coumarin. Inspired by the biological properties of coumarin derivatives and peptidomimetics, we proposed the synthesis of [...] Read more.
This work presents the successful synthesis of a library of novel peptidomimetics via Ugi multicomponent reaction. Most of these peptidomimetics contain differently substituted aminocoumarin; 7-amino-4-methylcoumarin and 7-amino-4-(trifluoromethyl) coumarin. Inspired by the biological properties of coumarin derivatives and peptidomimetics, we proposed the synthesis of coumarin incorporated peptidomimetics. We studied the potential of synthesized compounds as antimicrobial drugs on model E. coli bacterial strains (k12 and R2–R4). To highlight the importance of coumarin in antimicrobial resistance, we also synthesized the structurally similar peptidomimetics, using benzylamine. Preliminary cellular studies suggest that the compounds with coumarin derivatives have more potential as antimicrobial agents compared to the compounds without coumarin. We also analyzed the effect of aldehyde, free acid group and ester group on the course of their antimicrobial properties. Full article
Show Figures

Graphical abstract

19 pages, 2478 KiB  
Article
Myeloperoxidase Inhibitory and Antioxidant Activities of (E)-2-Hydroxy-α-aminocinnamic Acids Obtained through Microwave-Assisted Synthesis
by Astrid Rivera-Antonio, Martha Cecilia Rosales-Hernández, Irving Balbuena-Rebolledo, José Martín Santiago-Quintana, Jessica Elena Mendieta-Wejebe, José Correa-Basurto, Juan Benjamín García-Vázquez, Efrén Venancio García-Báez and Itzia I. Padilla-Martínez
Pharmaceuticals 2021, 14(6), 513; https://doi.org/10.3390/ph14060513 - 27 May 2021
Cited by 11 | Viewed by 4025
Abstract
Myeloperoxidase (MPO) is an enzyme present in human neutrophils, whose main role is to provide defenses against invading pathogens. However, highly reactive oxygen species (ROS), such as HOCl, are generated from MPO activity, leading to chronic diseases. Herein, we report the microwave-assisted synthesis [...] Read more.
Myeloperoxidase (MPO) is an enzyme present in human neutrophils, whose main role is to provide defenses against invading pathogens. However, highly reactive oxygen species (ROS), such as HOCl, are generated from MPO activity, leading to chronic diseases. Herein, we report the microwave-assisted synthesis of a new series of stable (E)-(2-hydroxy)-α-aminocinnamic acids, in good yields, which are structurally analogous to the natural products (Z)-2-hydroxycinnamic acids. The radical scavenging activity (RSA), MPO inhibitory activity and cytotoxicity of the reported compounds were evaluated. The hydroxy derivatives showed the most potent RSA, reducing the presence of DPPH and ABTS radicals by 77% at 0.32 mM and 100% at 0.04 mM, respectively. Their mechanism of action was modeled with BDEOH, IP and ΔEH-L theoretical calculations at the B3LYP/6 − 31 + G(d,p) level. Compounds showed in vitro inhibitory activity of MPO with IC50 values comparable to indomethacin and 5-ASA, but cytotoxicities below 15% at 100–200 µM. Docking calculations revealed that they reach the amino acid residues present in the distal cavity of the MPO active site, where both the amino and carboxylic acid groups of the α-aminopropenoic acid arm are structural requirements for anchoring. (E)-2-hydroxy-α-aminocinnamic acids have been synthesized for the first time with a reliable method and their antioxidant properties demonstrated. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

11 pages, 248 KiB  
Case Report
Salmonella enterica Subsp. houtenae Associated with an Abscess in Young Roe Deer (Capreolus capreolus)
by Adriana Trotta, Laura Del Sambro, Michela Galgano, Stefano Ciccarelli, Erika Ottone, Domenico Simone, Antonio Parisi, Domenico Buonavoglia and Marialaura Corrente
Pathogens 2021, 10(6), 654; https://doi.org/10.3390/pathogens10060654 - 25 May 2021
Cited by 4 | Viewed by 3264
Abstract
Background: S. enterica subsp. houtenae has been rarely documented, and very limited genomic information is available. This report describes a rare case of primary extraintestinal salmonellosis in a young roe deer, associated with Salmonella enterica subsp. houtenae. Methods: A traditional cultural-based analysis was [...] Read more.
Background: S. enterica subsp. houtenae has been rarely documented, and very limited genomic information is available. This report describes a rare case of primary extraintestinal salmonellosis in a young roe deer, associated with Salmonella enterica subsp. houtenae. Methods: A traditional cultural-based analysis was carried out from the contents of a neck abscess; biochemical identification and PCR assay were performed to isolate and identify the pathogen. Through whole-genome sequencing (WGS), multilocus sequence typing (MLST), core genome MLST (cgMLST), and the Salmonella pathogenicity islands (SPIs) survey, resistome and virulome genes were investigated to gain insight into the virulence and antimicrobial resistance of S. houtenae. Results: Biochemical identification and PCR confirmed the presence of Salmonella spp. in the swelling. The WGS analysis identified Salmonella enterica subspecies houtenae serovar 43:z4,z23:- and ST 958. The virulence study predicted a multidrug resistance pattern with resistance shown against aminoglycosides, tetracycline, beta-lactamase, fluoroquinolones, fosfomycin, nitroimidazole, aminocoumarin, and peptide. Fifty-three antibiotic-resistant genes were identified. No plasmids were detected. Conclusion: This study demonstrates the importance of continuous surveillance of pathogenic salmonellae. Biomolecular analyses combined with epidemiological data can provide important information about poorly described Salmonella strains and can help to improve animal welfare. Full article
Show Figures

Graphical abstract

18 pages, 2680 KiB  
Article
Synthesis of Chromeno[3,4-b]piperazines by an Enol-Ugi/Reduction/Cyclization Sequence
by Ana Bornadiego, Ana G. Neo and Carlos F. Marcos
Molecules 2021, 26(5), 1287; https://doi.org/10.3390/molecules26051287 - 27 Feb 2021
Cited by 6 | Viewed by 2923
Abstract
Keto piperazines and aminocoumarins are privileged building blocks for the construction of geometrically constrained peptides and therefore valuable structures in drug discovery. Combining these two heterocycles provides unique rigid polycyclic peptidomimetics with drug-like properties including many points of diversity that could be modulated [...] Read more.
Keto piperazines and aminocoumarins are privileged building blocks for the construction of geometrically constrained peptides and therefore valuable structures in drug discovery. Combining these two heterocycles provides unique rigid polycyclic peptidomimetics with drug-like properties including many points of diversity that could be modulated to interact with different biological receptors. This work describes an efficient multicomponent approach to condensed chromenopiperazines based on the novel enol-Ugi reaction. Importantly, this strategy involves the first reported post-condensation transformation of an enol-Ugi adduct. Full article
(This article belongs to the Special Issue New Approach in Multicomponent Reactions)
Show Figures

Graphical abstract

Back to TopTop