Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (242)

Search Parameters:
Keywords = 3π mode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1957 KiB  
Article
Design and Synthesis of Sulfonium and Selenonium Derivatives Bearing 3′,5′-O-Benzylidene Acetal Side Chain Structure as Potent α-Glucosidase Inhibitors
by Xiaosong He, Jiahao Yi, Jianchen Yang, Genzoh Tanabe, Osamu Muraoka and Weijia Xie
Molecules 2025, 30(13), 2856; https://doi.org/10.3390/molecules30132856 - 4 Jul 2025
Viewed by 387
Abstract
A group of sulfonium and selenonium salts bearing diverse benzylidene acetal substituents on their side chain moiety were designed and synthesized. Compared with our previous study, structural modifications in this study focused on multi-substitution of the phenyl ring and bioisosteric replacements at the [...] Read more.
A group of sulfonium and selenonium salts bearing diverse benzylidene acetal substituents on their side chain moiety were designed and synthesized. Compared with our previous study, structural modifications in this study focused on multi-substitution of the phenyl ring and bioisosteric replacements at the sulfonium cation center. In vitro biological evaluation showed that selenonium replacement could significantly improve their α-glucosidase inhibitory activity. The most potent inhibitor 20c (10.0 mg/kg) reduced postprandial blood glucose by 48.6% (15 min), 52.8% (30 min), and 48.1% (60 min) in sucrose-loaded mice, outperforming acarbose (20.0 mg/kg). Docking studies of 20c with ntMGAM presented a new binding mode. In addition to conventional hydrogen bonding and electrostatic interaction, amino residue Ala-576 was first identified to contribute to binding affinity through π-alkyl and alkyl interactions with the chlorinated substituent and aromatic ring. The selected compounds exhibited a high degree of safety in cytotoxicity tests against normal cells. Kinetic characterization of α-glucosidase inhibition confirmed a fully competitive inhibitory mode of action for these sulfonium salts. Full article
(This article belongs to the Special Issue Trends of Drug Synthesis in Medicinal Chemistry)
Show Figures

Graphical abstract

13 pages, 2721 KiB  
Article
Unique Three-Component Supramolecular Assembly for Highly Specific Detection of Zinc Ions
by Xiaonan Geng, Lixin Zhang, Duan Xiong, Zhen Su and Qingqing Guan
Sensors 2025, 25(11), 3470; https://doi.org/10.3390/s25113470 - 30 May 2025
Viewed by 429
Abstract
The detection of zinc ions plays an essential role in protecting public health and maintaining ecological balance. However, traditional fluorescent probes for Zn2+ are limited in their specificity, especially under complex environments, due to their single-mode optical signal and inadequate recognization capacities. [...] Read more.
The detection of zinc ions plays an essential role in protecting public health and maintaining ecological balance. However, traditional fluorescent probes for Zn2+ are limited in their specificity, especially under complex environments, due to their single-mode optical signal and inadequate recognization capacities. Herein we report a dual-mode supramolecular sensing system constructed from a unique three-component assembly involving a terpyridine platinum (II) complex, oxalate, and Zn2+, enabling highly specific detection performance for Zn2+. The supramolecular sensing system exhibits excellent selectivity among various interfering substances, accompanied by ultra-low detection limit (0.199 μM) and fast response (<3 s). The high recognization capacity comes from tri-component-based supramolecular assembly, while the dual-mode response arises from the generation of intermelcular Pt-Pt and π-π interactions, which yields absorption and emission originating from low-energy metal–metal-to-ligand charge transfer (MMLCT) transitions. This work marks a pioneering demonstration for highly specific detection of Zn2+ and inspires an alternative strategy for designing cation probes. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

21 pages, 7266 KiB  
Article
High-Performance NIR Laser-Beam Shaping and Materials Processing at 350 W with a Spatial Light Modulator
by Shuchen Zuo, Shuai Wang, Cameron Pulham, Yin Tang, Walter Perrie, Olivier J. Allegre, Yue Tang, Martin Sharp, Jim Leach, David J. Whitehead, Matthew Bilton, Wajira Mirihanage, Paul Mativenga, Stuart P. Edwardson and Geoff Dearden
Photonics 2025, 12(6), 544; https://doi.org/10.3390/photonics12060544 - 28 May 2025
Viewed by 1168
Abstract
Shaping or splitting of a Gaussian beam is often desired to optimise laser–material interactions, improving throughput and quality. This can be achieved holographically using liquid crystal-on-silicon spatial light modulators (LC-SLMs). Until recently, maximum exposure has been limited to circa 120 W average power [...] Read more.
Shaping or splitting of a Gaussian beam is often desired to optimise laser–material interactions, improving throughput and quality. This can be achieved holographically using liquid crystal-on-silicon spatial light modulators (LC-SLMs). Until recently, maximum exposure has been limited to circa 120 W average power with a Gaussian profile, restricting potential applications due to the non-linear (NL) phase response of the liquid crystal above this threshold. In this study, we present experimental tests of a new SLM device, demonstrating high first-order diffraction efficiency of η = 0.98 ± 0.01 at 300 W average power and a phase range Δφ > 2π at P = 383 W, an exceptional performance. The numerically calculated device temperature response with power closely matches that measured, supporting the higher power-handling capability. Surface modification of mild steel and molybdenum up to P = 350 W exposure is demonstrated when employing a single-mode (SM) fibre laser source. Exposure on mild steel with a vortex beam (m = +6) displays numerous ringed regions with varying micro-structures and clear elemental separation created by the radial heat flow. On molybdenum, with multi-spot Gaussian exposure, both MoO3 films and recrystallisation rings were observed, exposure-dependent. The step change in device capability will accelerate new applications for this LC-SLM in both subtractive and additive manufacturing. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Vortex Beams)
Show Figures

Figure 1

15 pages, 1629 KiB  
Article
Analysis of Photoelectric Detection Phase Polarity of Fiber-Optic Hydrophones Based on 3 × 3 Coupler Demodulation Technique
by Yatao Li, Jianfei Wang, Mo Chen, Rui Liang, Yuren Chen, Zhou Meng, Xiaoyang Hu and Yang Lu
Photonics 2025, 12(6), 535; https://doi.org/10.3390/photonics12060535 - 25 May 2025
Viewed by 345
Abstract
Phase consistency among hydrophones in fiber-optic hydrophone (FOH) arrays is crucial for effective beamforming. In this study, we investigate the photoelectric detection phase characteristics of FOHs based on the 3 × 3 coupler demodulation technique. We develop a theoretical model combining the 3 [...] Read more.
Phase consistency among hydrophones in fiber-optic hydrophone (FOH) arrays is crucial for effective beamforming. In this study, we investigate the photoelectric detection phase characteristics of FOHs based on the 3 × 3 coupler demodulation technique. We develop a theoretical model combining the 3 × 3 coupler demodulation algorithm with coupled-mode theory to analyze acoustic signal responses. Our model reveals that phase shifts from coupler-to-photodetector and coupler-to-sensing-arm connections arise from different mechanisms, and both are capable of causing π rad phase inversions in demodulated signals. We demonstrate that distinct connection configurations can be classified into groups yielding identical polarity outcomes, and that the input port selection for incident light does not affect output signal phase polarity. Experimental results validate these theoretical predictions. This work establishes critical hardware-level prerequisites for phase polarity consistency in FOH arrays, complementing existing calibration techniques and enhancing array performance in underwater target detection and localization. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

19 pages, 3833 KiB  
Article
Sustainable Alginate–Hydrochar Composite Beads for 2-Nitrophenol Adsorption in Batch and Fixed-Bed Systems
by Dalia Allouss, Nicolas Abatzoglou and Inès Esma Achouri
Materials 2025, 18(10), 2412; https://doi.org/10.3390/ma18102412 - 21 May 2025
Viewed by 600
Abstract
Addressing the removal of hazardous phenolic pollutants from water, this study introduces an eco-friendly adsorbent composed of waste-derived hydrochar immobilized in alginate beads (Alg/HC). The physicochemical properties of the Alg/HC beads were characterized using SEM, XRD, and FTIR, confirming hydrochar encapsulation and partial [...] Read more.
Addressing the removal of hazardous phenolic pollutants from water, this study introduces an eco-friendly adsorbent composed of waste-derived hydrochar immobilized in alginate beads (Alg/HC). The physicochemical properties of the Alg/HC beads were characterized using SEM, XRD, and FTIR, confirming hydrochar encapsulation and partial structural preservation. Batch studies revealed a maximum 2-nitrophenol (2-NP) adsorption capacity of 15.80 ± 0.62 mg/g at 30 mg/L of 2-NP, with kinetics best described by the Elovich and pseudo-second-order models. Freundlich isotherm fitting indicated multilayer adsorption on heterogeneous surfaces, likely governed by hydrogen bonding and π–π interactions. In a fixed-bed column system, Alg/HC beads demonstrated a continuous adsorption capacity of 6.84 ± 0.45 mg/g at 10 mg/L of 2-NP, with breakthrough behavior modeled by the Yoon–Nelson and Thomas equations. The beads maintained stable performance across four regeneration cycles using a mild water/ethanol desorption method. This work represents the first study to explore Alg/HC composites for 2-NP removal in both batch and continuous modes, demonstrating their potential as low-cost, regenerable adsorbents for tertiary treatment of phenolic industrial wastewater. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

12 pages, 4246 KiB  
Article
A Multi-Stage WPDC Optimized Separately for Even and Odd Modes
by Fangkai Wang, Xinyi Zhang, Xudong Wang and Chenxuan Yang
Electronics 2025, 14(10), 2023; https://doi.org/10.3390/electronics14102023 - 15 May 2025
Viewed by 402
Abstract
This paper introduces a compact multi-stage Wilkinson power divider/combiner (WPDC) topology which enables broadband operation with isolation capacitors and requiring only one single isolation resistor. The application of an L network for even-mode impedance matching and a π network for odd-mode impedance matching [...] Read more.
This paper introduces a compact multi-stage Wilkinson power divider/combiner (WPDC) topology which enables broadband operation with isolation capacitors and requiring only one single isolation resistor. The application of an L network for even-mode impedance matching and a π network for odd-mode impedance matching results in a more compact circuit layout and lower insertion loss compared to conventional WPDC designs. A K- and Ka-band WPDC is designed using a 45RFE process with measurements verifying the proposed topology. The results of a two-stage WPDC show an insertion loss below 0.7 dB, isolation better than 20 dB, and input/output return loss exceeding 12 dB across the frequency range of 18.6 to 33.6 GHz. The corresponding amplitude imbalance is within 0.06 dB, and the phase difference is below 0.8 degrees. The core chip size is 210 μm × 186 μm, which is only 0.018 λ0 × 0.016 λ0 at the center frequency of 26.1 GHz. Thus, this integrated passive component holds significant promise as a viable solution for wideband applications. Full article
Show Figures

Figure 1

23 pages, 5306 KiB  
Article
Robust Higher-Order Nonsingular Terminal Sliding Mode Control of Unknown Nonlinear Dynamic Systems
by Quanmin Zhu, Jianhua Zhang, Zhen Liu and Shuanghe Yu
Mathematics 2025, 13(10), 1559; https://doi.org/10.3390/math13101559 - 9 May 2025
Cited by 3 | Viewed by 609
Abstract
In contrast to the majority of model-based terminal sliding mode control (TSMC) approaches that rely on the plant physical model and/or data-driven adaptive pointwise model, this study treats the unknown dynamic plant as a total uncertainty in a black box with enabled control [...] Read more.
In contrast to the majority of model-based terminal sliding mode control (TSMC) approaches that rely on the plant physical model and/or data-driven adaptive pointwise model, this study treats the unknown dynamic plant as a total uncertainty in a black box with enabled control inputs and attainable outputs (either measured or estimated), which accordingly proposes a model-free (MF) nonsingular terminal sliding mode control (MFTSMC) for higher-order dynamic systems to reduce the tedious modelling work and the design complexity associated with the model-based control approaches. The total model-free controllers, derived from the Lyapunov differential inequality, obviously provide conciseness and robustness in analysis/design/tuning and implementation while keeping the essence of the TSMC. Three simulated bench test examples, in which two of them have representatively numerical challenges and the other is a two-link rigid robotic manipulator with two input and two output (TITO) operational mode as a typical multi-degree interconnected nonlinear dynamics tool, are studied to demonstrate the effectiveness of the MFTSMC and employed to show the user-transparent procedure to facilitate the potential applications. The major MFTSMC performance includes (1) finite time (2.5±0.05 s) dynamic stabilization to equilibria in dealing with total physical model uncertainty and disturbance, (2) effective dynamic tracking and small steady state error 0±0.002, (3) robustness (zero sensitivity at state output against the unknown bounded internal uncertainty and external disturbance), (4) no singularity issue in the neighborhood of TSM σ=0, (5) stable chattering with low amplitude (±0.01) at frequency 50 mHz due to high gain used against disturbance d(t)=100+30sin(2πt)). The simulation results are similar to those from well-known nominal model-based approaches. Full article
(This article belongs to the Special Issue New Advances in Nonlinear Dynamics Theory and Applications)
Show Figures

Figure 1

17 pages, 3000 KiB  
Article
Tetraanion of Tetracyclopentatetraphenylene Derivative: Global Versus Local Conjugation Modes
by Hirokazu Miyoshi, Ryosuke Sugiura, Ryohei Kishi, Atsuya Muranaka, Masanobu Uchiyama, Nagao Kobayashi, Yutaka Ie, Masayoshi Nakano and Yoshito Tobe
Chemistry 2025, 7(2), 51; https://doi.org/10.3390/chemistry7020051 - 31 Mar 2025
Viewed by 502
Abstract
Multiple reduced π-conjugated hydrocarbons exhibit π-electron conjugation modes different from neutral species due to the distinct number of electrons. Herein, we report the generation of a 32 π-electron tetraanion of a derivative of a doubly cyclic π-conjugated system with 28 π-electrons, tetracyclopentatetraphenylene (TCPTP), [...] Read more.
Multiple reduced π-conjugated hydrocarbons exhibit π-electron conjugation modes different from neutral species due to the distinct number of electrons. Herein, we report the generation of a 32 π-electron tetraanion of a derivative of a doubly cyclic π-conjugated system with 28 π-electrons, tetracyclopentatetraphenylene (TCPTP), through an exhaustive reduction with potassium. Although aggregation causes some complications, based on spectroscopic and theoretical investigations, it is revealed that negative charges are located at the outer and inner peripheries, suggesting that the tetraanion adopts a globally delocalized double annulenoid (annulene-within-an-annulene, AWA) mode, with 22 π-electron outer and 10 π-electron inner aromatic perimeters. On the other hand, excess charges of the outer perimeter are mainly located at the apical position of the pentagonal rings, indicating a significant contribution of the cyclopentadienide form. The theoretical analysis of magnetically induced ring current tropicities reveals counter-rotating ring currents at the outer and inner rings, supporting the predominant contribution of the cyclopentadienide form. Full article
Show Figures

Figure 1

17 pages, 5168 KiB  
Article
Unveiling the Micro-Mechanism of Functional Group Regulation for Enhanced Dielectric Properties in Novel Natural Ester Insulating Oil TME-C10
by Min Chen, Tao Zhang, Jinyuan Zhang, Chunyi Liu, Dong Chen and Jin Zhang
Molecules 2025, 30(7), 1431; https://doi.org/10.3390/molecules30071431 - 24 Mar 2025
Viewed by 457
Abstract
The functional groups in the molecular structure of natural ester insulating oil have a significant impact on its physicochemical and electrical properties. This article takes the novel synthetic ester TME-C10 and traditional natural ester GT molecules as research objects, and based on [...] Read more.
The functional groups in the molecular structure of natural ester insulating oil have a significant impact on its physicochemical and electrical properties. This article takes the novel synthetic ester TME-C10 and traditional natural ester GT molecules as research objects, and based on density functional theory (DFT) calculations, systematically explores the micro-mechanism of the effects of C=C double bonds, ester groups (-COOC), and β-H groups on the performance of insulating oils. The results show that the chemical stability and anti-aging ability of the TME-C10 molecule are significantly improved by eliminating the C=C double bond and β-H group. The electronic behavior of the TME-C10 molecule is mainly controlled by the ester group (-COOC), while the GT molecule is significantly affected by the unsaturated C=C double bond, resulting in a significant difference in the mode of electronic transition between the two molecules: the TME-C10 molecule shows the nσ transition, while the GT molecule is the ππ transition. In addition, the HOMO orbital energy level, electron transition energy, and ionization energy of the GT molecules are lower than those of the TME-C10 molecules. Under the action of an external electric field, the TME-C10 molecules exhibit excellent dielectric properties. In summary, the TME-C10 molecules not only overcome the aging defects of traditional natural ester insulating oils, but also possess excellent insulation properties, making it a new type of insulating oil material with broad application prospects. Full article
Show Figures

Figure 1

40 pages, 5920 KiB  
Article
Molecular Recognition of Diaryl Ureas in Their Targeted Proteins—A Data Mining and Quantum Chemical Study
by Majed S. Aljohani and Xiche Hu
Molecules 2025, 30(5), 1007; https://doi.org/10.3390/molecules30051007 - 21 Feb 2025
Viewed by 841
Abstract
Diaryl ureas (DU) are a cornerstone scaffold in organic and medicinal chemistry, celebrated for their unique structural attributes and broad range of biomedical applications. Their therapeutic reach has broadened beyond kinase inhibition in cancer therapy to encompass diverse mechanisms, including modulation of chromatin [...] Read more.
Diaryl ureas (DU) are a cornerstone scaffold in organic and medicinal chemistry, celebrated for their unique structural attributes and broad range of biomedical applications. Their therapeutic reach has broadened beyond kinase inhibition in cancer therapy to encompass diverse mechanisms, including modulation of chromatin remodeling complexes, interference with developmental signaling pathways, and inhibition of stress-activated protein kinases in inflammatory disorders. A critical element in the rational design and optimization of DU-based therapeutics is a detailed understanding of their molecular recognition by target proteins. In this study, we employed a multi-tiered computational approach to investigate the molecular determinants of DU–protein interactions. A large-scale data mining of the Protein Data Bank resulted in an in-house dataset of 158 non-redundant, high-resolution crystal structures of DU–protein complexes. This dataset serves as the basis for a systematic analysis of nonbonded interactions, including hydrogen bonding, salt bridges, π–π stacking, CH-π, cation–π, and XH-π interactions (X = OH, NH, SH). Advanced electronic structure calculations at the B2PLYP/def2-QZVP level are applied to quantify the energetic contributions of these interactions and their roles in molecular recognition of diaryl ureas in their target proteins. The study led to the following findings: central to the molecular recognition of diaryl ureas in proteins are nonbonded π interactions—predominantly CH-π and π–π stacking—that synergize with hydrogen bonding to achieve high binding affinity and specificity. Aromatic R groups in diaryl ureas play a pivotal role by broadening the interaction footprint within hydrophobic protein pockets, enabling energetically favorable and diverse binding modes. Comparative analyses highlight that diaryl ureas with aromatic R groups possess a more extensive and robust interaction profile than those with non-aromatic counterparts, emphasizing the critical importance of nonbonded π interactions in molecular recognition. These findings enhance our understanding of molecular recognition of diaryl ureas in proteins and provide valuable insights for the rational design of diaryl ureas as potent and selective inhibitors of protein kinases and other therapeutically significant proteins. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

14 pages, 8579 KiB  
Article
Fano and Electromagnetically Induced Transparency Resonances in Dual Side-Coupled Photonic Crystal Nanobeam Cavities
by Yong Zhao, Yuxuan Chen and Lijun Hao
Materials 2024, 17(24), 6213; https://doi.org/10.3390/ma17246213 - 19 Dec 2024
Viewed by 943
Abstract
We propose two types of structures to achieve the control of Fano and electromagnetically induced transparency (EIT) line shapes, in which dual one-dimensional (1D) photonic crystal nanobeam cavities (PCNCs) are side-coupled to a bus waveguide with different gaps. For the proposed type Ⅰ [...] Read more.
We propose two types of structures to achieve the control of Fano and electromagnetically induced transparency (EIT) line shapes, in which dual one-dimensional (1D) photonic crystal nanobeam cavities (PCNCs) are side-coupled to a bus waveguide with different gaps. For the proposed type Ⅰ and type Ⅱ systems, the phase differences between the nanobeam periodic structures of the two cavities are π and 0, respectively. The whole structures are theoretically analyzed via the coupled mode theory and numerically demonstrated using the three-dimensional finite-difference time-domain (3D FDTD) method. The simulation results show that the proposed structure can achieve several kinds of spectra, including Fano, EIT and asymmetric EIT line shapes, which is dependent on the width of the bus waveguide. Compared to the previously proposed Fano resonator with 1D PCNCs, the proposed structures have the advantages of high transmission at the resonant peak, low insertion loss at non-resonant wavelengths, a wide free spectral range (FSR) and a high roll-off rate. Therefore, we believe the proposed structure can find broad applications in optical switches, modulators and sensors. Full article
Show Figures

Figure 1

11 pages, 330 KiB  
Article
Predictions for the Rare Kaon Decays KS,Lπ0+ from QCD in the Limit of a Large Number of Colours
by Giancarlo D’Ambrosio and Marc Knecht
Universe 2024, 10(12), 457; https://doi.org/10.3390/universe10120457 - 13 Dec 2024
Viewed by 618
Abstract
The long-distance and non-local parts of the form factors describing the single-photon-mediated KS,Lπ0γ*π0+ (=e,μ) transitions in the standard model are addressed in [...] Read more.
The long-distance and non-local parts of the form factors describing the single-photon-mediated KS,Lπ0γ*π0+ (=e,μ) transitions in the standard model are addressed in QCD regarding the limit where the number Nc of colours becomes infinite. It is shown that this provides a suitable theoretical framework to study these decay modes and that it enables predicting the decay rates for KSπ0+. It also unambiguously predicts that the interference between the direct and indirect CP-violating contributions to the decay rate for KLπ0+ is constructive. Full article
(This article belongs to the Special Issue CP Violation and Flavor Physics)
20 pages, 8137 KiB  
Article
A Simple and Rapid “Turn-On” Fluorescent Probe Based on Binuclear Schiff Base for Zn2+ and Its Application in Cell Imaging and Test Strips
by Jinghui Cheng, Yi Li, Zhiye Zhu, Huijuan Guan, Jinsong Zhai, Yibing Xiang and Man Wang
Molecules 2024, 29(24), 5850; https://doi.org/10.3390/molecules29245850 - 11 Dec 2024
Viewed by 1067
Abstract
A series of colorful binuclear Schiff bases derived from the different diamine bridges including 1,2- ethylenediamine (bis-Et-SA, bis-Et-4-NEt2, bis-Et-5-NO2, bis-Et-Naph), 1,2-phenylenediamine (bis-Ph-SA, bis-Ph-4-NEt2, bis-Ph-5-NO2, bis-Ph-Naph), dicyano-1,2-ethenediamine (bis-CN-SA, bis-CN-4-NEt2, bis-CN-5-NO2, bis-CN-Naph) have [...] Read more.
A series of colorful binuclear Schiff bases derived from the different diamine bridges including 1,2- ethylenediamine (bis-Et-SA, bis-Et-4-NEt2, bis-Et-5-NO2, bis-Et-Naph), 1,2-phenylenediamine (bis-Ph-SA, bis-Ph-4-NEt2, bis-Ph-5-NO2, bis-Ph-Naph), dicyano-1,2-ethenediamine (bis-CN-SA, bis-CN-4-NEt2, bis-CN-5-NO2, bis-CN-Naph) have been designed and prepared. The optical properties of these binuclear Schiff base ligands were fully determined by UV–Vis absorption spectroscopy, fluorescence emission spectroscopy, and time-dependent-density functional theory (TD-DFT) calculations. The inclusion of D-A systems and/or π-extended systems in these binuclear Schiff base ligands not only enables adjustable RGB light absorption and emission spectra (300~700 nm) but also yields high fluorescence quantum efficiencies of up to 0.84 in MeCN solution. Then, with the ESIPT (excited-state intramolecular proton transfer) property, fluorescence analysis showed that the probe bis-Et-SA and bis-Ph-SA could recognize Zn2+ via the “turn on” mode in the MeCN solution. During the detection process, bis-Et-SA and bis-Ph-SA demonstrate rapid response and high selectivity upon the addition of Zn2+. The coordination of Zn2+ with the oxygen atom and Schiff base nitrogen atom in a tetrahedral geometry is confirmed by Job’s plot, FT-IR, and 1H NMR spectroscopy. In addition, the paper test and Hela cells were successfully carried out to detect Zn2+. Moreover, the sensitivity of bis-Et-SA and bis-Ph-SA is much better than that of those Schiff base ligands containing only one chelating unit [O^N^N^O]. Full article
Show Figures

Figure 1

19 pages, 15211 KiB  
Article
Hybrid Control Switching Technology for LLC Resonant Converter
by Jie Zhang and Zhixiao Cai
Energies 2024, 17(24), 6250; https://doi.org/10.3390/en17246250 - 11 Dec 2024
Cited by 1 | Viewed by 1197
Abstract
Aiming at the problem of the circuit operating frequency changing beyond the regulation range and zero switching not being guaranteed when the input voltage range of the LLC resonant converter is large, a hybrid control technology with a variable structure and variable mode [...] Read more.
Aiming at the problem of the circuit operating frequency changing beyond the regulation range and zero switching not being guaranteed when the input voltage range of the LLC resonant converter is large, a hybrid control technology with a variable structure and variable mode is proposed in this paper to realize the wide input range of the LLC resonant converter. Depending on the input voltage range, this technology can ensure the frequency range of the circuit and meet the realization conditions of zero voltage switching (ZVS) in different modes. The test results show that the circuit can control the frequency at 0 kHz~200 kHz, the phase shift range is 0~2π/5, the maximum voltage gain multiple is 3.3 times, and the control mode is three PWM hybrid switching control. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

17 pages, 5478 KiB  
Article
Crystallographic and Thermal Studies of the Polymorphs of Tetraoxa[4]arene with Meta-Phenylene Linkers
by Yuki Ishida, Tadashi Kawasaki and Akiko Hori
Crystals 2024, 14(12), 1032; https://doi.org/10.3390/cryst14121032 - 28 Nov 2024
Cited by 1 | Viewed by 945
Abstract
The three isomers of the tetraoxa[4]arene derivative, C24H16O4, which consist of two m-phenylenes and two phenylenes (meta 1, para 2, ortho 3), represent not only intriguing fundamental structures that induce molecular recognition toward [...] Read more.
The three isomers of the tetraoxa[4]arene derivative, C24H16O4, which consist of two m-phenylenes and two phenylenes (meta 1, para 2, ortho 3), represent not only intriguing fundamental structures that induce molecular recognition toward non-porous adaptive crystals, but also attractive candidates for crystallographic polymorphism. In this study, we crystallized isomers 2 and 3, in comparison to isomer 1, in order to understand their stable orientations and the corresponding intermolecular interactions in the crystalline state. For example, m-phenylene derivative 1 exhibits polymorphism with both prismatic and block-shaped crystals. Therefore, we prepared p-phenylene derivative 2 and o-phenylene derivative 3, and their structures were fully characterized by SC-XRD, revealing two polymorphs of derivative 2, namely prismatic crystal 2-I and block-shaped crystal 2-II, along with changes to the crystal lattice parameters (2-Ia, 2-Ib, and 2-Ic) based on temperature dependence. In all of its crystal forms, derivative 2 adopts an O-shaped planar structure, where the p-phenylene units face each other. This suggests that the packing mode during the early stages of crystallization, rather than due to any remarkable changes in the molecular structure, directly affects the bulk crystal morphology. On the other hand, derivative 3 adopts a U-shaped vent structure and, to the best of our knowledge, does not form polymorphs. The Platon and Hirshfeld surface analyses indicated that the contributions to the crystal packing were C···C (av. 37.3% for 2-Ia, av. 38.2% for 2-II, and 18.7% for 3), C···H/H···C (av. 37.3% for 2-Ia, av. 38.2% for 2-II, and 18.7% for 3), and O···H/H···O (av. 17.8% for 2-Ia, av. 19.6% for 2-II, and 19.4% for 3), highlighting significant intermolecular CH···π interactions and pseudo-hydrogen bonding forms for derivative 2 and π···π interactions for derivative 3. Full article
(This article belongs to the Special Issue Crystalline Materials: Polymorphism)
Show Figures

Figure 1

Back to TopTop