Predictions for the Rare Kaon Decays KS,L → π0ℓ+ℓ− from QCD in the Limit of a Large Number of Colours
Abstract
:1. Introduction
- Can one predict (or even the decay distribution) in the standard model?
- Can the sign of be predicted?
- Can one confirm that the long-distance component of the amplitude induced by the direct CP-violating contribution indeed remains negligible once the non-perturbative QCD effects are taken into account?
2. Theoretical Framework
- (i)
- the properly renormalised vacuum-polarisation correlation function
- (ii)
- the form factor already defined in Equation (18);
- (iii)
- the two vertex functions
3. Phenomenological Consequences
- The predictions for the branching ratios read
- The function being positive, cf. Equation (31), the coefficients in Equation (4) are also positive. Numerically, we obtainThe interference between direct and indirect CP violation in the branching ratio for is therefore unambiguously predicted to be constructive in the large- limit of QCD.
- The amplitude of the CP-violating transition has the same structure as provided in Equation (8), provided one makes the replacements , , , in Equations (17) and (23). In addition, as already mentioned, the matrix elements of the QCD penguin operators show no particular enhancement as compared to the matrix element of [42], while the imaginary parts of their Wilson coefficients at the scale are about one order of magnitude smaller (in absolute value) than at the same scale [37]. The approximation consisting of keeping only the contribution from the Gilman–Wise operators is therefore also supported by the large- limit of QCD.
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alves Junior, A.A.; Bettler, M.O.; Rodríguez, A.B.; Vidal, A.C.; Chobanova, V.; Vidal, X.C.; Contu, A.; D’Ambrosio, G.; Dalseno, J.; Dettori, F.; et al. Prospects for Measurements with Strange Hadrons at LHCb. J. High Energy Phys. 2019, 5, 48. [Google Scholar] [CrossRef]
- Goudzovski, E.; Passemar, E.; Aebischer, J.; Banerjee, S.; Bryman, D.; Buras, A.; Cirigliano, V.; Christ, N.; Dery, A.; Dettori, F.; et al. Weak Decays of Strange and Light Quarks. arXiv 2022, arXiv:2209.07156. [Google Scholar]
- Blum, T.; Boyle, P.; Bruno, M.; Christ, N.; Erben, F.; Feng, X.; Guelpers, V.; Hill, R.; Hodgson, R.; Hoying, D.; et al. Discovering new physics in rare kaon decays. arXiv 2022, arXiv:2203.10998. [Google Scholar]
- Cortina Gil, E. et al. [HIKE] HIKE, High Intensity Kaon Experiments at the CERN SPS: Letter of Intent. arXiv 2022, arXiv:2211.16586. [Google Scholar]
- Aebischer, J.; Buras, A.J.; Kumar, J. On the Importance of Rare Kaon Decays: A Snowmass 2021 White Paper. arXiv 2022, arXiv:2203.09524. [Google Scholar]
- Anzivino, G.; Cuendis, S.A.; Bernard, V.; Bijnens, J.; Bloch-Devaux, B.; Bordone, M.; Brizioli, F.; Brod, J.; Camalich, J.M.; Ceccucci, A.; et al. Workshop summary: Kaons@CERN 2023. Eur. Phys. J. C 2024, 84, 377. [Google Scholar] [CrossRef]
- D’Ambrosio, G.; Mahmoudi, F.; Neshatpour, S. Beyond the Standard Model prospects for kaon physics at future experiments. J. High Energy Phys. 2024, 2, 166. [Google Scholar] [CrossRef]
- Nanjo, H. [KOTO]. KOTO II at J-PARC: Toward measurement of the branching ratio of KL → π0. J. Phys. Conf. Ser. 2023, 2446, 012037. [Google Scholar] [CrossRef]
- Glashow, S.L.; Iliopoulos, J.; Maiani, L. Weak Interactions with Lepton-Hadron Symmetry. Phys. Rev. D 1970, 2, 1285. [Google Scholar] [CrossRef]
- Glashow, S.L.; Weinberg, S. Natural Conservation Laws for Neutral Currents. Phys. Rev. D 1977, 15, 1958. [Google Scholar] [CrossRef]
- Buras, A.J.; Venturini, E. Searching for New Physics in Rare K and B Decays without |Vcb| and |Vub| Uncertainties. Acta Phys. Polon. B 2021, 53, A1. [Google Scholar] [CrossRef]
- Brod, J.; Gorbahn, M.; Stamou, E. Updated Standard Model Prediction for K → π and ϵK. arXiv 2021, arXiv:2105.02868. [Google Scholar]
- Ahn, J.K. [KOTO]. Search for the KL → π0 and KL → π0X0 decays at the J-PARC KOTO experiment. Phys. Rev. Lett. 2019, 122, 021802. [Google Scholar] [CrossRef] [PubMed]
- Cortina Gil, E. et al. [NA62] Measurement of the very rare K+→π+ decay. J. High Energy Phys. 2021, 6, 93. [Google Scholar]
- Donoghue, J.F.; Holstein, B.R.; Valencia, G. KL → π0e+e− as a Probe of CP Violation. Phys. Rev. D 1987, 35, 2769. [Google Scholar] [CrossRef] [PubMed]
- Buchalla, G.; D’Ambrosio, G.; Isidori, G. Extracting short distance physics from KL,S → π0e+e− decays. Nucl. Phys. B 2003, 672, 387–408. [Google Scholar] [CrossRef]
- Isidori, G.; Smith, C.; Unterdorfer, R. The Rare decay KL → π0μ+μ− within the SM. Eur. Phys. J. C 2004, 36, 57–66. [Google Scholar] [CrossRef]
- Mescia, F.; Smith, C.; Trine, S. KL → π0e+e− and KL → π0μ+μ−: A Binary star on the stage of flavor physics. J. High Energy Phys. 2006, 8, 88. [Google Scholar] [CrossRef]
- Dib, C.; Dunietz, I.; Gilman, F.J. CP Violation in the KL → π0ℓ+ℓ− Decay Amplitude for Large Mt. Phys. Lett. B 1989, 218, 487–492. [Google Scholar] [CrossRef]
- Buchalla, G.; Buras, A.J. K —> pi neutrino anti-neutrino and high precision determinations of the CKM matrix. Phys. Rev. D 1996, 54, 6782–6789. [Google Scholar] [CrossRef] [PubMed]
- Workman, R.L. et al. [Particle Data Group] Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar] [CrossRef]
- D’Ambrosio, G.; Ecker, G.; Isidori, G.; Portolés, J. The Decays K → πl+l− beyond leading order in the chiral expansion. J. High Energy Phys. 1998, 8, 4. [Google Scholar] [CrossRef]
- Ecker, G.; Pich, A.; de Rafael, E. Radiative Kaon Decays and CP Violation in Chiral Perturbation Theory. Nucl. Phys. B 1988, 303, 665–702. [Google Scholar] [CrossRef]
- Greenlee, H.B. Background to →π0ee from →γγee. Phys. Rev. D 1990, 42, 3724. [Google Scholar] [CrossRef]
- ’t Hooft, G. A Planar Diagram Theory for Strong Interactions. Nucl. Phys. B 1974, 72, 461–473. [Google Scholar] [CrossRef]
- Witten, E. Baryons in the 1/n Expansion. Nucl. Phys. B 1979, 160, 57–115. [Google Scholar] [CrossRef]
- Gasser, J.; Leutwyler, H. Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark. Nucl. Phys. B 1985, 250, 465–516. [Google Scholar] [CrossRef]
- Cronin, J.A. Phenomenological model of strong and weak interactions in chiral U(3) x U(3). Phys. Rev. 1967, 161, 1483. [Google Scholar] [CrossRef]
- Kambor, J.; Missimer, J.H.; Wyler, D. The Chiral Loop Expansion of the Nonleptonic Weak Interactions of Mesons. Nucl. Phys. B 1990, 346, 17–64. [Google Scholar] [CrossRef]
- Kambor, J.; Missimer, J.H.; Wyler, D. K → 2π and K → 3π decays in next-to-leading order chiral perturbation theory. Phys. Lett. B 1991, 261, 496–503. [Google Scholar] [CrossRef]
- Esposito-Farèse, G. Right invariant metrics on SU(3) and one loop divergences in chiral perturbation theory. Z. Phys. C 1991, 50, 255–274. [Google Scholar] [CrossRef]
- Ecker, G.; Kambor, J.; Wyler, D. Resonances in the weak chiral Lagrangian. Nucl. Phys. B 1993, 394, 101–138. [Google Scholar] [CrossRef]
- Ecker, G.; Pich, A.; de Rafael, E. K → πLepton+Lepton− Decays in the Effective Chiral Lagrangian of the Standard Model. Nucl. Phys. B 1987, 291, 692–719. [Google Scholar] [CrossRef]
- Ananthanarayan, B.; Imsong, I.S. The 27-plet contributions to the CP-conserving K → πl+l− decays. J. Phys. G 2012, 39, 095002. [Google Scholar] [CrossRef]
- D’Ambrosio, G.; Greynat, D.; Knecht, M. On the amplitudes for the CP-conserving K±(KS)→π±(π0)ℓ+ℓ− rare decay modes. J. High Energy Phys. 2019, 2, 49. [Google Scholar] [CrossRef]
- D’Ambrosio, G.; Knecht, M. Centre de Physique Théorique, Aix-Marseille Univ./Univ. de Toulon/CNRS (UMR 7332), CNRS-Luminy Case 907, 13288 Marseille Cedex 9, France. 2024; article in preparation. [Google Scholar]
- Buras, A.J.; Lautenbacher, M.E.; Misiak, M.; Münz, M. Direct CP violation in KL → π0e+e− beyond leading logarithms. Nucl. Phys. B 1994, 423, 349–383. [Google Scholar] [CrossRef]
- Isidori, G.; Martinelli, G.; Turchetti, P. Rare kaon decays on the lattice. Phys. Lett. B 2006, 633, 75–83. [Google Scholar] [CrossRef]
- Gilman, F.J.; Wise, M.B. Effective Hamiltonian for Delta s = 1 Weak Nonleptonic Decays in the Six Quark Model. Phys. Rev. D 1979, 20, 2392. [Google Scholar] [CrossRef]
- Gilman, F.J.; Wise, M.B. K → πe+e− in the Six Quark Model. Phys. Rev. D 1980, 21, 3150. [Google Scholar] [CrossRef]
- D’Ambrosio, G.; Greynat, D.; Knecht, M. Matching long and short distances at order (αs) in the form factors for K → πℓ+ℓ−. Phys. Lett. B 2019, 797, 134891. [Google Scholar] [CrossRef]
- Knecht, M. Centre de Physique Théorique, Aix-Marseille Univ./Univ. de Toulon/CNRS (UMR 7332), CNRS-Luminy Case 907, 13288 Marseille Cedex 9, France. Unpublished Notes. 2024. [Google Scholar]
- ’t Hooft, G.; Veltman, M.J.G. Regularization and Renormalization of Gauge Fields. Nucl. Phys. B 1972, 44, 189–213. [Google Scholar] [CrossRef]
- Breitenlohner, P.; Maison, D. Dimensional Renormalization and the Action Principle. Commun. Math. Phys. 1977, 52, 11–38. [Google Scholar] [CrossRef]
- Chanowitz, M.S.; Furman, M.; Hinchliffe, I. The Axial Current in Dimensional Regularization. Nucl. Phys. B 1979, 159, 225–243. [Google Scholar] [CrossRef]
- Peris, S.; Perrottet, M.; de Rafael, E. Matching long and short distances in large N(c) QCD. J. High Energy Phys. 1998, 05, 11. [Google Scholar] [CrossRef]
- Narison, S.; Paver, N.; Treleani, D. Properties of the meson system and chiral symmetry breaking parameters from quantum chromodynamics. Nuovo Cim. A 1983, 74, 347–363. [Google Scholar] [CrossRef]
- Maltman, K.; Kambor, J. On the longitudinal contributions to hadronic tau decay. Phys. Rev. D 2001, 64, 93014. [Google Scholar] [CrossRef]
- Maltman, K.; Kambor, J. Decay constants, light quark masses and quark mass bounds from light quark pseudoscalar sum rules. Phys. Rev. D 2002, 65, 074013. [Google Scholar] [CrossRef]
- Batley, J.R. et al. [NA48/1] Observation of the rare decay KS → π0e+e−. Phys. Lett. B 2003, 576, 43–54. [Google Scholar] [CrossRef]
- Batley, J.R. et al. [NA48/1] Observation of the rare decay KS → π0μ+μ−. Phys. Lett. B 2004, 599, 197–211. [Google Scholar] [CrossRef]
- Cortina Gil, E. et al. [NA62] A measurement of the K+ → π+μ+μ− decay. J. High Energy Phys. 2022, 11, 11. [Google Scholar]
- Christ, N.H. et al. [RBC and UKQCD] Prospects for a lattice computation of rare kaon decay amplitudes: K → πℓ+ℓ− decays. Phys. Rev. D 2015, 92, 094512. [Google Scholar] [CrossRef]
- Christ, N.H.; Feng, X.; Juttner, A.; Lawson, A.; Portelli, A.; Sachrajda, C.T. First exploratory calculation of the long-distance contributions to the rare kaon decays K → πℓ+ℓ−. Phys. Rev. D 2016, 94, 114516. [Google Scholar] [CrossRef]
- Boyle, P.A. et al. [RBC and UKQCD] Simulating rare kaon decays K+ → π+ℓ+ℓ− using domain wall lattice QCD with physical light quark masses. Phys. Rev. D 2023, 107, L011503. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Ambrosio, G.; Knecht, M. Predictions for the Rare Kaon Decays KS,L → π0ℓ+ℓ− from QCD in the Limit of a Large Number of Colours. Universe 2024, 10, 457. https://doi.org/10.3390/universe10120457
D’Ambrosio G, Knecht M. Predictions for the Rare Kaon Decays KS,L → π0ℓ+ℓ− from QCD in the Limit of a Large Number of Colours. Universe. 2024; 10(12):457. https://doi.org/10.3390/universe10120457
Chicago/Turabian StyleD’Ambrosio, Giancarlo, and Marc Knecht. 2024. "Predictions for the Rare Kaon Decays KS,L → π0ℓ+ℓ− from QCD in the Limit of a Large Number of Colours" Universe 10, no. 12: 457. https://doi.org/10.3390/universe10120457
APA StyleD’Ambrosio, G., & Knecht, M. (2024). Predictions for the Rare Kaon Decays KS,L → π0ℓ+ℓ− from QCD in the Limit of a Large Number of Colours. Universe, 10(12), 457. https://doi.org/10.3390/universe10120457