Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = 3,4-dihydroxyphenylalanine (DOPA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1195 KiB  
Article
Phytochemical Profiling, Antioxidant Capacity, and α-Amylase/α-Glucosidase Inhibitory Effects of 29 Faba Bean (Vicia faba L.) Varieties from China
by Ying Li, Zhihua Wang, Chengkai Mei, Wenqi Sun, Xingxing Yuan, Jing Wang and Wuyang Huang
Biology 2025, 14(8), 982; https://doi.org/10.3390/biology14080982 - 2 Aug 2025
Viewed by 226
Abstract
Faba bean (Vicia faba L.), a nutrient-rich legume beneficial to human health, is valued for its high L-3,4-dihydroxyphenylalanine (L-DOPA) and phenolic content. This study investigated phytochemical diversity and bioactivity across 29 Chinese faba bean varieties. Phenolics were profiled using ultrahigh-performance liquid chromatography [...] Read more.
Faba bean (Vicia faba L.), a nutrient-rich legume beneficial to human health, is valued for its high L-3,4-dihydroxyphenylalanine (L-DOPA) and phenolic content. This study investigated phytochemical diversity and bioactivity across 29 Chinese faba bean varieties. Phenolics were profiled using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and quantified via high-performance liquid chromatography (HPLC). Antioxidant capacity was evaluated, including DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)) radical scavenging activity, and ferric reducing antioxidant power (FRAP), along with α-amylase/α-glucosidase inhibitory effects. Twenty-five phenolics were identified, including L-DOPA (11.96–17.93 mg/g, >70% of total content), seven phenolic acids, and seventeen flavonoids. L-DOPA showed potent enzyme inhibition (IC50 values of 22.45 μM for α-amylase and 16.66 μM for α-glucosidase) but demonstrated limited antioxidant effects. Lincan 13 (Gansu) exhibited the strongest antioxidant activity (DPPH, 16.32 μmol trolox/g; ABTS, 5.85 μmol trolox/g; FRAP, 21.38 mmol Fe2+/g), which correlated with it having the highest flavonoid content (40.51 mg rutin/g), while Yican 4 (Yunnan) showed the strongest α-amylase inhibition (43.33%). Correlation analysis confirmed flavonoids as the primary antioxidants, and principal component analysis (PCA) revealed geographical trends (e.g., Jiangsu varieties were particularly phenolic-rich). These findings highlight faba beans’ potential as functional foods and guide genotype selection in targeted breeding programs aimed at enhancing health benefits. Full article
Show Figures

Figure 1

15 pages, 2330 KiB  
Review
Fungal Melanin in Plant Pathogens: Complex Biosynthesis Pathways and Diverse Biological Functions
by Hui Jia, Ning Liu, Lu Zhang, Pan Li, Yanan Meng, Wei Yuan, Haixiao Li, Dezeng Tantai, Qing Qu, Zhiyan Cao and Jingao Dong
Plants 2025, 14(14), 2121; https://doi.org/10.3390/plants14142121 - 9 Jul 2025
Viewed by 501
Abstract
Fungal melanin plays a vital role in the survival, reproduction, infection, and environmental adaptation of plant pathogenic fungi. To develop innovative strategies for managing plant fungal diseases, comprehensive investigations into melanin are imperative. Such research is fundamental to elucidating the mechanistic basis of [...] Read more.
Fungal melanin plays a vital role in the survival, reproduction, infection, and environmental adaptation of plant pathogenic fungi. To develop innovative strategies for managing plant fungal diseases, comprehensive investigations into melanin are imperative. Such research is fundamental to elucidating the mechanistic basis of fungal pathogenesis and holds promise for the design of targeted interventions against melanin-mediated virulence determinants. This review systematically elaborates on the classification of fungal melanin in plant pathogens, provides a detailed analysis of the biosynthetic processes of 3,4-dihydroxyphenylalanine (DOPA) and 1,8-dihydroxynaphthalene melanin (DHN melanins), and reveals the catalytic functions and regulatory mechanisms of key enzymes within these pathways. Melanin modulates fungal virulence by influencing appressorial integrity and turgor pressure formation, thereby participating in the host infection process and the formation of overwintering sclerotia. Melanin provides stress resistance by protecting against extreme environmental factors, including UV radiation and high temperatures. It also has the capacity to absorb heavy metals, which increases pathogen survival under adverse conditions. Furthermore, the review also explores the mechanisms of action of melanin inhibitors that target plant pathogenic fungi, providing a theoretical foundation for developing efficient and environmentally friendly antifungal medications. The complex biosynthesis pathways and diverse biological functions of fungal melanin highlight its significant theoretical and practical importance for elucidating pathogenic mechanisms and formulating scientific control strategies. Full article
Show Figures

Figure 1

23 pages, 2524 KiB  
Article
Prolactin Mediates Distinct Time Course Regulation of Tyrosine Hydroxylase Phosphorylation and Gene Expression in Tuberoinfundibular Dopaminergic Neurons of Female Rats
by Philip J. Jensik and Lydia A. Arbogast
Cells 2025, 14(9), 642; https://doi.org/10.3390/cells14090642 - 27 Apr 2025
Viewed by 792
Abstract
Prolactin (PRL) regulates its own secretion by short-loop feedback to tuberoinfundibular dopaminergic (TIDA) neurons. PRL-induced cellular mechanisms in the regulation of tyrosine hydroxylase (TH) are not completely understood. The objectives were to (1) examine PRL-induced, time-dependent hypothalamic changes in JAK2-STAT5B signaling, TH activity, [...] Read more.
Prolactin (PRL) regulates its own secretion by short-loop feedback to tuberoinfundibular dopaminergic (TIDA) neurons. PRL-induced cellular mechanisms in the regulation of tyrosine hydroxylase (TH) are not completely understood. The objectives were to (1) examine PRL-induced, time-dependent hypothalamic changes in JAK2-STAT5B signaling, TH activity, TH phosphorylation state and Th mRNA levels, and (2) evaluate direct influences of PRLR-STAT5B signaling on Th promoter activity. Ovariectomized rats were administered ovine PRL. JAK2 and STAT5 phosphorylation in the mediobasal hypothalamus peaked at 15 and 30–60 min, respectively. TH Ser40 phosphorylation in the median eminence was increased between 2 and 72 h, correlating with increased dihydroxyphenylalanine (DOPA) accumulation. Th mRNA levels in TIDA neurons were unchanged up to 72 h but elevated by 7 days. PRL did not alter Th promoter activity in CAD cells, and STAT5B did not bind three putative Gamma Interferon Activation Sites (GAS) elements. We conclude that PRL initiates an integrated cascade of cellular mechanisms in TIDA neurons, including JAK2-STAT5B activation, TH Ser40 phosphorylation coupled to increased TH activity, followed by a delayed rise in Th gene expression. PRL-induced changes in Th gene expression are not the result of STAT5-mediated transactivation but likely result from enduring changes in TIDA neuronal activity. Full article
Show Figures

Figure 1

27 pages, 120429 KiB  
Review
Mussel-Inspired Hydrogel Applied to Wound Healing: A Review and Future Prospects
by Yanai Chen, Yijia Cao, Pengyu Cui and Shenzhou Lu
Biomimetics 2025, 10(4), 206; https://doi.org/10.3390/biomimetics10040206 - 26 Mar 2025
Cited by 1 | Viewed by 1367
Abstract
The application background of mussel-inspired materials is based on the unique underwater adhesive ability of marine mussels, which has inspired researchers to develop bionic materials with strong adhesion, self-healing ability, biocompatibility, and environmental friendliness. Specifically, 3, 4-dihydroxyphenylalanine (DOPA) in mussel byssus is able [...] Read more.
The application background of mussel-inspired materials is based on the unique underwater adhesive ability of marine mussels, which has inspired researchers to develop bionic materials with strong adhesion, self-healing ability, biocompatibility, and environmental friendliness. Specifically, 3, 4-dihydroxyphenylalanine (DOPA) in mussel byssus is able to form non-covalent forces on a variety of surfaces, which are critical for the mussel’s underwater adhesion and enable the mussel-inspired material to dissipate energy and repair itself under external forces. Mussel-inspired hydrogels are ideal medical adhesive materials due to their unique physical and chemical properties, such as excellent tissue adhesion, hemostasis and bacteriostasis, biosafety, and plasticity. This paper reviewed chitosan, cellulose, hyaluronic acid, gelatin, alginate, and other biomedical materials and discussed the advanced functions of mussel-inspired hydrogels as wound dressings, including antibacterial, anti-inflammatory, and antioxidant properties, adhesion and hemostasis, material transport, self-healing, stimulating response, and so on. At the same time, the technical challenges and limitations of the biomimetic mussel hydrogel in biomedical applications were further discussed, and its potential solutions and future research developments in the field of biomedicine were highlighted. Full article
Show Figures

Figure 1

18 pages, 11899 KiB  
Article
Investigation of Eumelanin Biosynthesis in Gluconacetobacter tumulisoli FBFS 97: A Novel Insight into a Bacterial Melanin Producer
by Jiayun Song, Yanqin Ma, Zhenzhen Xie and Fusheng Chen
Microorganisms 2025, 13(3), 480; https://doi.org/10.3390/microorganisms13030480 - 21 Feb 2025
Viewed by 1059
Abstract
Acetic acid bacteria (AAB) are a group of bacteria, most of which can produce pigments. However, the mechanism of pigment production by AAB is unclear. A strain of AAB, Gluconacetobacter tumulisoli FBFS 97, which can produce a large amount of brown pigment (BP), [...] Read more.
Acetic acid bacteria (AAB) are a group of bacteria, most of which can produce pigments. However, the mechanism of pigment production by AAB is unclear. A strain of AAB, Gluconacetobacter tumulisoli FBFS 97, which can produce a large amount of brown pigment (BP), was isolated in our previous research. In the current study, it was found that the BP yield of the FBFS 97 strain was enhanced in the presence of tyrosine, and an intermediate of melanin, L-3,4-dihydroxyphenylalanine (L-DOPA), was identified using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The structural properties of BP were analyzed by pyrolysis gas chromatography–mass spectrometry (Py-GC-MS). All these analyses suggest that BP may be eumelanin, a type of melanin. Then, the eumelanin biosynthetic pathway was investigated in the FBFS 97 strain, and three related genes with eumelanin including pheA, yfiH, and phhB in its genome were found and knocked out, respectively. The results showed that eumelanin production increased 1.3-fold in the pheA deletion mutant compared to the wild-type FBFS 97 strain, but when either yfiH or phhB was knocked out, the eumelanin production in the mutants was the same as that in the wild-type FBFS 97 strain. Finally, a possible biosynthetic pathway for eumelanin in the FBFS 97 strain is proposed. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

12 pages, 4449 KiB  
Review
The Interaction of Histamine H3 and Dopamine D1 Receptors on Hyperkinetic Alterations in Animal Models of Parkinson’s Disease
by Alberto Avila-Luna, Antonio Verduzco-Mendoza, Adriana Olmos-Hernández, José Luis Cortes-Altamirano, Alfonso Alfaro-Rodríguez, José-Antonio Arias-Montaño and Antonio Bueno-Nava
Pharmaceuticals 2024, 17(12), 1726; https://doi.org/10.3390/ph17121726 - 20 Dec 2024
Viewed by 1209
Abstract
Parkinson’s disease is associated with the loss of more than 40% of dopaminergic neurons in the substantia nigra pars compacta. One of the therapeutic options for restoring striatal dopamine levels is the administration of L-3,4-dihydroxyphenylalanine (L-Dopa). However, Parkinson’s disease patients on long-term L-Dopa [...] Read more.
Parkinson’s disease is associated with the loss of more than 40% of dopaminergic neurons in the substantia nigra pars compacta. One of the therapeutic options for restoring striatal dopamine levels is the administration of L-3,4-dihydroxyphenylalanine (L-Dopa). However, Parkinson’s disease patients on long-term L-Dopa therapy often experience motor complications, such as dyskinesias. L-Dopa-induced dyskinesias (LIDs) manifest as abnormal involuntary movements and are produced by elevated striatal dopamine levels, which lead to increased activity of the basal ganglia direct striato-nigral pathway. Dopamine D1 receptors are more than 95% confined to neurons of the direct pathway, where they colocalize with histamine H3 receptors. There is evidence of functional interactions between D1 and H3 receptors, and here we review the consequences of these interactions on LIDs. Full article
Show Figures

Figure 1

14 pages, 2272 KiB  
Article
Functional and Physiological Characterization of Tyrosine Decarboxylases from Olea europaea L. Involved in the Synthesis of the Main Phenolics in Olive Fruit and Virgin Olive Oil
by Pilar Luaces, Rosario Sánchez, Jesús Expósito, Antonio J. Pérez-Pulido, Ana G. Pérez and Carlos Sanz
Int. J. Mol. Sci. 2024, 25(20), 10892; https://doi.org/10.3390/ijms252010892 - 10 Oct 2024
Viewed by 1325
Abstract
The phenolic composition of virgin olive oil (VOO) primarily depends on the phenolic content of the olive fruit. The purpose of this work was to characterize the first metabolic step in the synthesis of tyrosol (Ty) and hydroxytyrosol (HTy), whose derivatives are by [...] Read more.
The phenolic composition of virgin olive oil (VOO) primarily depends on the phenolic content of the olive fruit. The purpose of this work was to characterize the first metabolic step in the synthesis of tyrosol (Ty) and hydroxytyrosol (HTy), whose derivatives are by far the predominant phenolics in both olive fruit and VOO. To this end, two genes encoding tyrosine/DOPA decarboxylase enzymes, OeTDC1 and OeTDC2, have been identified and functionally and physiologically characterized. Both olive TDC proteins exclusively accept aromatic amino acids with phenolic side chains, such as tyrosine and 3,4-dihydroxyphenylalanine (DOPA), as substrates to produce tyramine and dopamine, respectively. These proteins exhibited a higher affinity for DOPA than for tyrosine, and the catalytic efficiency of both proteins was greater when DOPA was used as a substrate. Both olive TDC genes showed a fairly similar expression profile during olive fruit ontogeny, with OeTDC1 consistently expressed at higher levels than OeTDC2. Expression was particularly intense during the first few weeks after fruit set, coinciding with the active accumulation of Ty and HTy derivatives. The data suggest that both olive TDCs are responsible for the initial step in the synthesis of the most important phenolics, both quantitatively and functionally, in VOO. Full article
(This article belongs to the Special Issue Molecular and Metabolic Regulation of Plant Secondary Metabolism)
Show Figures

Figure 1

20 pages, 4907 KiB  
Article
Metabolomics Analysis of Rabbit Plasma after Ocular Exposure to Vapors of Sulfur Mustard
by Jihéne Bouhlel, Fanny Caffin, Fanny Gros-Désormeaux, Thierry Douki, Jean-François Benoist, Florence A. Castelli, Emeline Chu-Van, Christophe Piérard, Christophe Junot and François Fenaille
Metabolites 2024, 14(7), 349; https://doi.org/10.3390/metabo14070349 - 21 Jun 2024
Cited by 1 | Viewed by 1567
Abstract
Sulfur mustard (SM) is a highly potent alkylating vesicant agent and remains a relevant threat to both civilians and military personnel. The eyes are the most sensitive organ after airborne SM exposure, causing ocular injuries with no antidote or specific therapeutics available. In [...] Read more.
Sulfur mustard (SM) is a highly potent alkylating vesicant agent and remains a relevant threat to both civilians and military personnel. The eyes are the most sensitive organ after airborne SM exposure, causing ocular injuries with no antidote or specific therapeutics available. In order to identify relevant biomarkers and to obtain a deeper understanding of the underlying biochemical events, we performed an untargeted metabolomics analysis using liquid chromatography coupled to high-resolution mass spectrometry of plasma samples from New Zealand white rabbits ocularly exposed to vapors of SM. Metabolic profiles (332 unique metabolites) from SM-exposed (n = 16) and unexposed rabbits (n = 8) were compared at different time intervals from 1 to 28 days. The observed time-dependent changes in metabolic profiles highlighted the profound dysregulation of the sulfur amino acids, the phenylalanine, the tyrosine and tryptophan pathway, and the polyamine and purine biosynthesis, which could reflect antioxidant and anti-inflammatory activities. Taurine and 3,4-dihydroxy-phenylalanine (Dopa) seem to be specifically related to SM exposure and correspond well with the different phases of ocular damage, while the dysregulation of adenosine, polyamines, and acylcarnitines might be related to ocular neovascularization. Additionally, neither cysteine, N-acetylcysteine, or guanine SM adducts were detected in the plasma of exposed rabbits at any time point. Overall, our study provides an unprecedented view of the plasma metabolic changes post-SM ocular exposure, which may open up the development of potential new treatment strategies. Full article
Show Figures

Graphical abstract

17 pages, 1158 KiB  
Review
Clovamide and Its Derivatives—Bioactive Components of Theobroma cacao and Other Plants in the Context of Human Health
by Joanna Kolodziejczyk-Czepas
Foods 2024, 13(7), 1118; https://doi.org/10.3390/foods13071118 - 6 Apr 2024
Cited by 4 | Viewed by 3409
Abstract
Clovamide (N-caffeoyl-L-3,4-dihydroxyphenylalanine, N-caffeoyldopamine, N-caffeoyl-L-DOPA) is a derivative of caffeic acid, belonging to phenolamides (hydroxycinnamic acid amides). Despite a growing interest in the biological activity of natural polyphenolic substances, studies on the properties of clovamide and related compounds, their significance [...] Read more.
Clovamide (N-caffeoyl-L-3,4-dihydroxyphenylalanine, N-caffeoyldopamine, N-caffeoyl-L-DOPA) is a derivative of caffeic acid, belonging to phenolamides (hydroxycinnamic acid amides). Despite a growing interest in the biological activity of natural polyphenolic substances, studies on the properties of clovamide and related compounds, their significance as bioactive components of the diet, as well as their effects on human health are a relatively new research trend. On the other hand, in vitro and in vivo evidence indicates the considerable potential of these substances in the context of maintaining human health or using them as pharmacophores. The name “clovamide” directly derives from red clover (Trifolium pratense L.), being the first identified source of this compound. In the human diet, clovamides are mainly present in chocolate and other cocoa-containing products. Furthermore, their occurrence in some medicinal plants has also been confirmed. The literature reports deal with the antioxidant, anti-inflammatory, neuroprotective, antiplatelet/antithrombotic and anticancer properties of clovamide-type compounds. This narrative review summarizes the available data on the biological activity of clovamides and their potential health-supporting properties, including prospects for the use of these compounds for therapeutic purposes. Full article
(This article belongs to the Special Issue Nutrient-Rich Foods for a Healthy Diet, Volume II)
Show Figures

Figure 1

14 pages, 3409 KiB  
Article
Molecular Modeling of the Multiple-Substrate Activity of the Human Recombinant Intra-Melanosomal Domain of Tyrosinase and Its OCA1B-Related Mutant Variant P406L
by Monika B. Dolinska and Yuri V. Sergeev
Int. J. Mol. Sci. 2024, 25(6), 3373; https://doi.org/10.3390/ijms25063373 - 16 Mar 2024
Cited by 3 | Viewed by 1589
Abstract
Tyrosinase serves as the key enzyme in melanin biosynthesis, catalyzing the initial steps of the pathway, the hydroxylation of the amino acid L-tyrosine into L-3,4-dihydroxyphenylalanine (L-DOPA), followed by the subsequent oxidation of L-DOPA into dopaquinone (DQ), and it facilitates the conversion of 5,6-dihydroxyindole-2-carboxylic [...] Read more.
Tyrosinase serves as the key enzyme in melanin biosynthesis, catalyzing the initial steps of the pathway, the hydroxylation of the amino acid L-tyrosine into L-3,4-dihydroxyphenylalanine (L-DOPA), followed by the subsequent oxidation of L-DOPA into dopaquinone (DQ), and it facilitates the conversion of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) into 5,6-indolequinone-2-carboxylic acid (IQCA) and 5,6-dihydroxy indole (DHI) into indolequinone (IQ). Despite its versatile substrate capabilities, the precise mechanism underlying tyrosinase’s multi-substrate activity remains unclear. Previously, we expressed, purified, and characterized the recombinant intra-melanosomal domain of human tyrosinase (rTyr). Here, we demonstrate that rTyr mimics native human tyrosinase’s catalytic activities in vitro and in silico. Molecular docking and molecular dynamics (MD) simulations, based on rTyr’s homology model, reveal variable durability and binding preferences among tyrosinase substrates and products. Analysis of root mean square deviation (RMSD) highlights the significance of conserved residues (E203, K334, F347, and V377), which exhibit flexibility during the ligands’ binding. Additionally, in silico analysis demonstrated that the OCA1B-related P406L mutation in tyrosinase substantially influences substrate binding, as evidenced by the decreased number of stable ligand conformations. This correlation underscores the mutation’s impact on substrate docking, which aligns with the observed reduction in rTyr activity. Our study highlights how rTyr dynamically adjusts its structure to accommodate diverse substrates and suggests a way to modulate rTyr ligand plasticity. Full article
Show Figures

Figure 1

15 pages, 4348 KiB  
Article
Multifaceted Effects of L-Cysteine, L-Ascorbic Acid, and Their Derivatives on the Viability and Melanin Synthesis of B16/F10 Cells under Different Conditions
by Joon Yong Choi, Jae Won Ha and Yong Chool Boo
Antioxidants 2024, 13(3), 330; https://doi.org/10.3390/antiox13030330 - 7 Mar 2024
Cited by 3 | Viewed by 5383
Abstract
The total melanin synthesis in the skin depends on various melanogenic factors, including the number of viable melanocytes, the level of melanogenic enzymes per cell, and the reaction rate of the enzymes. The purpose of this study is to examine the effects of [...] Read more.
The total melanin synthesis in the skin depends on various melanogenic factors, including the number of viable melanocytes, the level of melanogenic enzymes per cell, and the reaction rate of the enzymes. The purpose of this study is to examine the effects of L-cysteine (L-Cys), L-ascorbic acid (L-AA), and their derivatives on the tyrosinase (TYR) activity and autoxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) in vitro and the viability and melanin synthesis of B16/F10 cells under different conditions. L-Cysteinamide (C-NH2), glutathione (GSH), L-Cys, L-AA, and N-acetyl L-cysteine (NAC) inhibited the catalytic activity of TYR in vitro. L-AA, C-NH2, L-ascorbic acid 2-O-glucoside (AAG), and 3-O-ethyl L-ascorbic acid (EAA) inhibited the autoxidation of L-DOPA in vitro. L-DOPA exhibited cytotoxicity at 0.1 mM and higher concentrations, whereas L-tyrosine (L-Tyr) did not affect cell viability up to 3 mM. L-AA, magnesium L-ascorbyl 2-phosphate (MAP), and L-Cys attenuated the cell death induced by L-DOPA. C-NH2 decreased the intracellular melanin level at the basal state, whereas L-AA, MAP, and AAG conversely increased it. C-NH2 reduced the number of darkly pigmented cells via in situ L-DOPA staining, whereas L-AA, MAP, GSH, and AAG increased it. C-NH2 decreased the intracellular melanin level at the alpha-melanocyte-stimulating hormone (α-MSH)-stimulated state, while NAC and GSH increased it. L-AA and C-NH2 decreased the intracellular melanin level at the L-Tyr-stimulated state, but NAC and GSH increased it. L-Ascorbyl tetraisopalmitate (ATI) showed no or minor effects in most experiments. This study suggests that L-AA can either promote or inhibit the different melanogenic factors, and C-NH2 can inhibit the multiple melanogenic factors consistently. This study highlights the multifaceted properties of L-Cys, L-AA, and their derivatives that can direct their therapeutic applications in hyperpigmentation, hypopigmentation, or both disorders. Full article
(This article belongs to the Special Issue Ascorbic Acid: An Antioxidant and Much More)
Show Figures

Graphical abstract

16 pages, 2221 KiB  
Article
Synthesis, Characterization and Catechol-Based Bioinspired Adhesive Properties in Wet Medium of Poly(2-Hydroxyethyl Methacrylate-co-Acrylamide) Hydrogels
by Sebastian Romero-Gilbert, Matías Castro-García, Héctor Díaz-Chamorro, Oscar G. Marambio, Julio Sánchez, Rudy Martin-Trasancos, Matías Inostroza, Claudio García-Herrera and Guadalupe del C. Pizarro
Polymers 2024, 16(2), 187; https://doi.org/10.3390/polym16020187 - 8 Jan 2024
Cited by 7 | Viewed by 2350
Abstract
Hydrogels consist of crosslinked hydrophilic polymers from which their mechanical properties can be modulated for a wide variety of applications. In the last decade, many catechol-based bioinspired adhesives have been developed following the strategy of incorporating catechol moieties into polymeric backbones. In this [...] Read more.
Hydrogels consist of crosslinked hydrophilic polymers from which their mechanical properties can be modulated for a wide variety of applications. In the last decade, many catechol-based bioinspired adhesives have been developed following the strategy of incorporating catechol moieties into polymeric backbones. In this work, in order to further investigate the adhesive properties of hydrogels and their potential advantages, several hydrogels based on poly(2-hydroxyethyl methacrylate-co-acrylamide) with NN-methylene-bisacrylamide (MBA), without/with L-3,4-dihydroxyphenylalanine (DOPA) as a catecholic crosslinker, were prepared via free radical copolymerization. 2-Hydroxyethyl methacrylate (HEMA) and acrylamide (AAm) were used as comonomers and MBA and DOPA both as crosslinking agents at 0.1, 0.3, and 0.5 mol.-%, respectively. The polymeric hydrogels were characterized by Fourier transform infrared spectroscopy (FT-IR), thermal analysis and swelling behavior analysis. Subsequently, the mechanical properties of hydrogels were determined. The elastic properties of the hydrogels were quantified using Young’s modulus (stress–strain curves). According to the results herein, the hydrogel with a feed monomer ratio of 1:1 at 0.3 mol.-% of MBA and DOPA displayed the highest rigidity and higher failure shear stress (greater adhesive properties). In addition, the fracture lap shear strength of the biomimetic polymeric hydrogel was eight times higher than the initial one (only containing MBA); however at 0.5 mol.-% MBA/DOPA, it was only two times higher. It is understood that when two polymer surfaces are brought into close contact, physical self-bonding (Van der Waals forces) at the interface may occur in an –OH interaction with wet contacting surfaces. The hydrogels with DOPA provided an enhancement in the flexibility compared to unmodified hydrogels, alongside reduced swelling behavior on the biomimetic hydrogels. This approach expands the possible applications of hydrogels as adhesive materials, in wet conditions, within scaffolds that are commonly used as biomaterials in cartilage tissue engineering. Full article
Show Figures

Figure 1

16 pages, 3090 KiB  
Article
Eumelanin Detection in Melanized Focal Changes but Not in Red Focal Changes on Atlantic Salmon (Salmo salar) Fillets
by Kazumasa Wakamatsu, Johannes M. Dijkstra, Turid Mørkøre and Shosuke Ito
Int. J. Mol. Sci. 2023, 24(23), 16797; https://doi.org/10.3390/ijms242316797 - 27 Nov 2023
Cited by 6 | Viewed by 3892
Abstract
Superficial discolored spots on Atlantic salmon (Salmo salar) fillets are a serious quality problem for commercial seafood farming. Previous reports have proposed that the black spots (called melanized focal changes (MFCs)) may be melanin, but no convincing evidence has been reported. [...] Read more.
Superficial discolored spots on Atlantic salmon (Salmo salar) fillets are a serious quality problem for commercial seafood farming. Previous reports have proposed that the black spots (called melanized focal changes (MFCs)) may be melanin, but no convincing evidence has been reported. In this study, we performed chemical characterization of MFCs and of red pigment (called red focal changes (RFCs)) from salmon fillets using alkaline hydrogen peroxide oxidation and hydroiodic acid hydrolysis. This revealed that the MFCs contain 3,4-dihydroxyphenylalanine (DOPA)-derived eumelanin, whereas the RFCs contain only trace amounts of eumelanin. Therefore, it is probable that the black color of the MFCs can be explained by the presence of eumelanin from accumulated melanomacrophages. For the red pigment, we could not find a significant signature of either eumelanin or pheomelanin; the red color is probably predominantly hemorrhagic in nature. However, we found that the level of pigmentation in RFCs increased together with some melanogenic metabolites. Comparison with a “mimicking experiment”, in which a mixture of a salmon homogenate + DOPA was oxidized with tyrosinase, suggested that the RFCs include conjugations of DOPAquinone and/or DOPAchrome with salmon muscle tissue proteins. In short, the results suggest that melanogenic metabolites in MFCs and RFCs derive from different chemical pathways, which would agree with the two different colorations deriving from distinct cellular origins, namely melanomacrophages and red blood cells, respectively. Full article
(This article belongs to the Special Issue Melanins and Melanogenesis 4.0: From Nature to Applications)
Show Figures

Figure 1

11 pages, 1693 KiB  
Article
In Vitro and In Vivo Antimelanogenesis Effects of Leaf Essential Oil from Agathis dammara
by Yu-Tung Ho, I-Hsuan Liu, Shang-Tzen Chang, Sheng-Yang Wang and Hui-Ting Chang
Pharmaceutics 2023, 15(9), 2269; https://doi.org/10.3390/pharmaceutics15092269 - 2 Sep 2023
Cited by 5 | Viewed by 2618
Abstract
Agathis species are widely distributed around Southeast Asia, Australasia, South Pacific islands, and etc. Traditionally, Agathis species have been used as the folk medicines, the common ethnopharmacological uses of Agathis genus are the treatments of headache and myalgia. This study aims to investigate [...] Read more.
Agathis species are widely distributed around Southeast Asia, Australasia, South Pacific islands, and etc. Traditionally, Agathis species have been used as the folk medicines, the common ethnopharmacological uses of Agathis genus are the treatments of headache and myalgia. This study aims to investigate the chemical composition of Agathis dammara (Lamb.) Rich. leaf essential oil and to explore its antimelanogenesis effect. The chemical constituents of leaf essential oil are analyzed using gas chromatography-mass spectrometry (GC-MS), the major constituents of leaf essential oil are sesquiterpenoids. The major constituents are δ-cadinene (16.12%), followed by γ-gurjunene (15.57%), 16-kaurene (12.43%), β-caryophyllene (8.58%), germacrene D (8.53%), and γ-cadinene (5.33%). As for the in vitro antityrosinase activity, leaf essential oil inhibit the tyrosinase activity of mushroom when the substrate is 3,4-dihydroxyphenylalanine (L-DOPA). Leaf essential oil prevents tyrosinase from acting as diphenolase and catalyzing L-DOPA to dopaquinone, and converting into dark melanin pigments. A. dammara leaf essential oil also exhibits the in vivo antimelanogenesis effect, leaf essential oil reduces 43.48% of melanin formation in zebrafish embryos at the concentration of 50 μg/mL. Results reveal A. dammara leaf essential oil has the potential for developing the skin whitening drug and depigmentation ingredient for hyperpigmentary disorders. Full article
(This article belongs to the Topic Bioactive Phytochemicals from Plant Essential Oils)
Show Figures

Figure 1

18 pages, 1394 KiB  
Article
Metabolic Pathway Reconstruction Indicates the Presence of Important Medicinal Compounds in Coffea Such as L-DOPA
by Thales Henrique Cherubino Ribeiro, Raphael Ricon de Oliveira, Taís Teixeira das Neves, Wilder Douglas Santiago, Bethania Leite Mansur, Adelir Aparecida Saczk, Mario Lucio Vilela de Resende and Antonio Chalfun-Junior
Int. J. Mol. Sci. 2023, 24(15), 12466; https://doi.org/10.3390/ijms241512466 - 5 Aug 2023
Cited by 3 | Viewed by 2817
Abstract
The use of transcriptomic data to make inferences about plant metabolomes is a useful tool to help the discovery of important compounds in the available biodiversity. To unveil previously undiscovered metabolites of Coffea, of phytotherapeutic and economic value, we employed 24 RNAseq [...] Read more.
The use of transcriptomic data to make inferences about plant metabolomes is a useful tool to help the discovery of important compounds in the available biodiversity. To unveil previously undiscovered metabolites of Coffea, of phytotherapeutic and economic value, we employed 24 RNAseq libraries. These libraries were sequenced from leaves exposed to a diverse range of environmental conditions. Subsequently, the data were meticulously processed to create models of putative metabolic networks, which shed light on the production of potential natural compounds of significant interest. Then, we selected one of the predicted compounds, the L-3,4-dihydroxyphenylalanine (L-DOPA), to be analyzed by LC–MS/MS using three biological replicates of flowers, leaves, and fruits from Coffea arabica and Coffea canephora. We were able to identify metabolic pathways responsible for producing several compounds of economic importance. One of the identified pathways involved in isoquinoline alkaloid biosynthesis was found to be active and producing L-DOPA, which is a common product of POLYPHENOL OXIDASES (PPOs, EC 1.14.18.1 and EC 1.10.3.1). We show that coffee plants are a natural source of L-DOPA, a widely used medicine for treatment of the human neurodegenerative condition called Parkinson’s disease. In addition, dozens of other compounds with medicinal significance were predicted as potential natural coffee products. By further refining analytical chemistry techniques, it will be possible to enhance the characterization of coffee metabolites, enabling a deeper understanding of their properties and potential applications in medicine. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

Back to TopTop