The Interaction of Histamine H3 and Dopamine D1 Receptors on Hyperkinetic Alterations in Animal Models of Parkinson’s Disease
Abstract
1. Introduction
2. Striatal Synaptic Circuitry
3. Distribution of D1Rs and H3Rs in the Striatum
4. Functional Interaction Between H3Rs and D1Rs in the Striato-Nigral MSNs
5. Functional Interaction Between H3Rs and D1Rs and Its Effect on Movement
6. Functional Interaction Between H3Rs and D1Rs: A Potential Target to Reduce Dyskinesias
7. Interaction Between H3Rs and D2Rs in the Striato-Pallidal MSNs
8. H3R/D1R Interaction in Huntington’s Disease (HD)
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
6-OHDA | 6-Hydroxy-dopamine |
AC | Adenylyl cyclase |
AIMs | Abnormal involuntary movements |
BG | Basal ganglia |
D1Rs | Dopamine D1 receptors |
D2Rs | Dopamine D2 receptors |
DA | Dopamine |
DARPP-32 | DA- and cAMP-regulated phosphoprotein of 32 kDa |
ERK | Extracellular signal-regulated kinase |
GPe | External segment of the globus pallidus |
GPi | Internal segment of the globus pallidus |
H3Rs | Histamine H3 receptors |
L-Dopa | L-3,4-dihydroxyphenylalanine |
LIDs | L-Dopa-induced dyskinesias |
MAPKs | Mitogen-activated protein kinases |
MPTP | 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine |
MSNs | Medium spiny neurons |
PD | Parkinson’s disease |
PKA | Protein kinase A |
SNc | Substantia nigra pars compacta |
SNr | Substantia nigra pars reticulata |
STN | Subthalamic nucleus |
References
- Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021, 20, 385–397. [Google Scholar] [CrossRef]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shlomo, Y.; Darweesh, S.; Llibre-Guerra, J.; Marras, C.; San Luciano, M.; Tanner, C. The epidemiology of Parkinson’s disease. Lancet 2024, 403, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Spigolon, G.; Fisone, G. Signal transduction in l-DOPA-induced dyskinesia: From receptor sensitization to abnormal gene expression. J. Neural Transm. 2018, 125, 1171–1186. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. J. Am. Med. Assoc. 2020, 323, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Pagano, G.; Yousaf, T.; Politis, M. PET Molecular Imaging Research of Levodopa-Induced Dyskinesias in Parkinson’s Disease. Curr. Neurol. Neurosci. Rep. 2017, 17, 90. [Google Scholar] [CrossRef]
- Porras, G.; De Deurwaerdere, P.; Li, Q.; Marti, M.; Morgenstern, R.; Sohr, R.; Bezard, E.; Morari, M.; Meissner, W.G. L-dopa-induced dyskinesia: Beyond an excessive dopamine tone in the striatum. Sci. Rep. 2014, 4, 3730. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, P.; Picconi, B.; Tozzi, A.; Ghiglieri, V.; Di Filippo, M. Direct and indirect pathways of basal ganglia: A critical reappraisal. Nat. Neurosci. 2014, 17, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Bastide, M.F.; Meissner, W.G.; Picconi, B.; Fasano, S.; Fernagut, P.O.; Feyder, M.; Francardo, V.; Alcacer, C.; Ding, Y.M.; Brambilla, R.; et al. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog. Neurobiol. 2015, 132, 96–168. [Google Scholar] [CrossRef]
- Berthet, A.; Porras, G.; Doudnikoff, E.; Stark, H.; Cador, M.; Bezard, E.; Bloch, B. Pharmacological Analysis Demonstrates Dramatic Alteration of D-1 Dopamine Receptor Neuronal Distribution in the Rat Analog of L-DOPA-Induced Dyskinesia. J. Neurosci. 2009, 29, 4829–4835. [Google Scholar] [CrossRef]
- Avila-Luna, A.; Ríos, C.; Gálvez-Rosas, A.; Montes, S.; Arias-Montaño, J.-A.; Bueno-Nava, A. Chronic administration of the histamine H3 receptor agonist immepip decreases l-Dopa-induced dyskinesias in 6-hydroxydopamine-lesioned rats. Psychopharmacology 2019, 236, 1937–1948. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Urbieta, H.; Gago, B.; de la Riva, P.; Delgado-Alvarado, M.; Marin, C.; Rodriguez-Oroz, M.C. Dyskinesias and impulse control disorders in Parkinson’s disease: From pathogenesis to potential therapeutic approaches. Neurosci. Biobehav. Rev. 2015, 56, 294–314. [Google Scholar] [CrossRef]
- Rascol, O.; Fabbri, M.; Poewe, W. Amantadine in the treatment of Parkinson’s disease and other movement disorders. Lancet Neurol. 2021, 20, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.-Z.; Yuan, X.-Z.; Luo, X.; Zhang, S.-Y.; Wang, X.-P. An Update on Nondopaminergic Treatments for Motor and Non-motor Symptoms of Parkinson’s Disease. Curr. Neuropharmacol. 2023, 21, 1806–1826. [Google Scholar] [CrossRef] [PubMed]
- Bolam, J.P.; Ellender, T.J. Histamine and the striatum. Neuropharmacology 2016, 106, 74–84. [Google Scholar] [CrossRef]
- González-Sepúlveda, M.; Rosell, S.; Hoffmann, H.M.; Castillo-Ruiz, M.d.M.; Mignon, V.; Moreno-Delgado, D.; Michel, V.; Díaz, J.; Sabriá, J.; Ortiz, J. Cellular distribution of the histamine H3 receptor in the basal ganglia: Functional modulation of dopamine and glutamate neurotransmission. Basal Ganglia 2013, 3, 109–121. [Google Scholar] [CrossRef]
- Beaulieu, J.M.; Espinoza, S.; Gainetdinov, R.R. Dopamine receptors—IUPHAR Review 13. Br. J. Pharmacol. 2015, 172, 1–23. [Google Scholar] [CrossRef]
- Nieto-Alamilla, G.; Márquez-Gómez, R.; García-Gálvez, A.-M.; Morales-Figueroa, G.-E.; Arias-Montaño, J.-A. The Histamine H3 Receptor: Structure, Pharmacology, and Function. Mol. Pharmacol. 2016, 90, 649–673. [Google Scholar] [CrossRef]
- Garcia, M.; Floran, B.; Arias-Montaño, J.A.; Young, J.M.; Aceves, J. Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata. Neuroscience 1997, 80, 241–249. [Google Scholar] [CrossRef]
- Sánchez-Lemus, E.; Arias-Montaño, J.A. Histamine H3 receptor activation inhibits dopamine D1 receptor-induced cAMP accumulation in rat striatal slices. Neurosci. Lett. 2004, 364, 179–184. [Google Scholar] [CrossRef]
- Arias-Montaño, J.A.; Floran, B.; Garcia, M.; Aceves, J.; Young, J.M. Histamine H3 receptor-mediated inhibition of depolarization-induced, dopamine D1 receptor-dependent release of 3H-gamma-aminobutryic acid from rat striatal slices. Br. J. Pharmacol. 2001, 133, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Gerfen, C.R.; Surmeier, D.J. Modulation of Striatal Projection Systems by Dopamine. Annu. Rev. Neurosci. 2011, 34, 441–466. [Google Scholar] [CrossRef]
- Bolam, J.P.; Hanley, J.J.; Booth, P.A.; Bevan, M.D. Synaptic organisation of the basal ganglia. J. Anat. 2000, 196 Pt 4, 527–542. [Google Scholar] [CrossRef]
- Ding, J.; Peterson, J.D.; Surmeier, D.J. Corticostriatal and thalamostriatal synapses have distinctive properties. J. Neurosci. 2008, 28, 6483–6492. [Google Scholar] [CrossRef] [PubMed]
- Silberberg, G.; Bolam, J.P. Local and afferent synaptic pathways in the striatal microcircuitry. Curr. Opin. Neurobiol. 2015, 33, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Smith, Y.; Raju, D.V.; Pare, J.F.; Sidibe, M. The thalamostriatal system: A highly specific network of the basal ganglia circuitry. Trends Neurosci. 2004, 27, 520–527. [Google Scholar] [CrossRef]
- Smith, Y.; Parent, A. Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus). Neuroscience 1986, 18, 347–371. [Google Scholar] [CrossRef] [PubMed]
- Doig, N.M.; Moss, J.; Bolam, J.P. Cortical and Thalamic Innervation of Direct and Indirect Pathway Medium-Sized Spiny Neurons in Mouse Striatum. J. Neurosci. 2010, 30, 14610–14618. [Google Scholar] [CrossRef] [PubMed]
- Lodge, D.J.; Grace, A.A. Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol. Sci. 2011, 32, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Koshimizu, Y.; Fujiyama, F.; Nakamura, K.C.; Furuta, T.; Kaneko, T. Quantitative analysis of axon bouton distribution of subthalamic nucleus neurons in the rat by single neuron visualization with a viral vector. J. Comp. Neurol. 2013, 521, 2125–2146. [Google Scholar] [CrossRef]
- Wouterlood, F.G.; van Oort, S.; Bloemhard, L.; Flierman, N.A.; Spijkerman, J.; Wright, C.I.; Beliën, J.A.M.; Groenewegen, H.J. Neurochemical fingerprinting of amygdalostriatal and intra-amygdaloid projections: A tracing–immunofluorescence study in the rat. J. Chem. Neuroanat. 2018, 94, 154–172. [Google Scholar] [CrossRef]
- Kita, H. Globus pallidus external segment. In Progress in Brain Research; Tepper, J.M., Abercrombie, E.D., Bolam, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 160, pp. 111–133. [Google Scholar]
- Panula, P.; Nuutinen, S. The histaminergic network in the brain: Basic organization and role in disease. Nat. Rev. Neurosci. 2013, 14, 472–487. [Google Scholar] [CrossRef]
- Pillot, C.; Heron, A.; Cochois, V.; Tardivel-Lacombe, J.; Ligneau, X.; Schwartz, J.C.; Arrang, J.M. A detailed mapping of the histamine H-3 receptor and its gene transcripts in rat brain. Neuroscience 2002, 114, 173–193. [Google Scholar] [CrossRef]
- Sadek, B.; Saad, A.; Sadeq, A.; Jalal, F.; Stark, H. Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases. Behav. Brain Res. 2016, 312, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Avila-Luna, A.; Gálvez-Rosas, A.; Aguirre-Pérez, A.; Hidalgo-Bravo, A.; Alfaro-Rodriguez, A.; Ríos, C.; Arias-Montaño, J.-A.; Bueno-Nava, A. Chronic H3R activation reduces L-Dopa-induced dyskinesia, normalizes cortical GABA and glutamate levels, and increases striatal dopamine D1R mRNA expression in 6-hydroxydopamine-lesioned male rats. Psychopharmacology 2023, 240, 1221–1234. [Google Scholar] [CrossRef]
- Rapanelli, M.; Pittenger, C. Histamine and histamine receptors in Tourette syndrome and other neuropsychiatric conditions. Neuropharmacology 2016, 106, 85–90. [Google Scholar] [CrossRef]
- Ryu, J.H.; Yanai, K.; Iwata, R.; Ido, T.; Watanabe, T. Heterogeneous distributions of histamine H3, dopamine D1 and D2 receptors in rat-brain. Neuroreport 1994, 5, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Gerfen, C.R.; Engber, T.M.; Mahan, L.C.; Susel, Z.; Chase, T.N.; Monsma, F.J.; Sibley, D.R. D1 and D2 Dopamine Receptor-regulated Gene Expression of Striatonigral and Striatopallidal Neurons. Science 1990, 250, 1429–1432. [Google Scholar] [CrossRef] [PubMed]
- Surmeier, D.J.; Ding, J.; Day, M.; Wang, Z.; Shen, W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 2007, 30, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Rapanelli, M. The magnificent two: Histamine and the H3 receptor as key modulators of striatal circuitry. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 73, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Taverna, S.; Ilijic, E.; Surmeier, D.J. Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease. J. Neurosci. 2008, 28, 5504–5512. [Google Scholar] [CrossRef] [PubMed]
- Varaschin, R.K.; Osterstock, G.; Ducrot, C.; Leino, S.; Bourque, M.-J.; Prado, M.A.M.; Prado, V.F.; Salminen, O.; Rannanpää, S.; Trudeau, L.-E. Histamine H3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons. Neuroscience 2018, 376, 188–203. [Google Scholar] [CrossRef]
- Kreitzer, A.C.; Malenka, R.C. Striatal Plasticity and Basal Ganglia Circuit Function. Neuron 2008, 60, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Chuhma, N.; Oh, S.J.; Rayport, S. The dopamine neuron synaptic map in the striatum. Cell Rep. 2023, 42, 112204. [Google Scholar] [CrossRef] [PubMed]
- Centonze, D.; Bracci, E.; Pisani, A.; Gubellini, P.; Bernardi, G.; Calabresi, P. Activation of dopamine D1-like receptors excites LTS interneurons of the striatum. Eur. J. Neurosci. 2002, 15, 2049–2052. [Google Scholar] [CrossRef] [PubMed]
- Arias-Montaño, J.A.; Floran, B.; Floran, L.; Aceves, J.; Young, J.M. Dopamine D1 receptor facilitation of depolarization-induced release of γ-amino-butyric acid in rat striatum is mediated by the cAMP/PKA pathway and involves P/Q-type calcium channels. Synapse 2007, 61, 310–319. [Google Scholar] [CrossRef]
- Moreno, E.; Hoffmann, H.; Gonzalez-Sepulveda, M.; Navarro, G.; Casado, V.; Cortes, A.; Mallol, J.; Vignes, M.; McCormick, P.J.; Canela, E.I.; et al. Dopamine D-1-histamine H-3 Receptor Heteromers Provide a Selective Link to MAPK Signaling in GABAergic Neurons of the Direct Striatal Pathway. J. Biol. Chem. 2011, 286, 5846–5854. [Google Scholar] [CrossRef]
- Rapanelli, M.; Frick, L.R.; Horn, K.D.; Schwarcz, R.C.; Pogorelov, V.; Nairn, A.C.; Pittenger, C. The Histamine H3 Receptor Differentially Modulates Mitogen-activated Protein Kinase (MAPK) and Akt Signaling in Striatonigral and Striatopallidal Neurons. J. Biol. Chem. 2016, 291, 21042–21052. [Google Scholar] [CrossRef] [PubMed]
- Ferrada, C.; Moreno, E.; Casado, V.; Bongers, G.; Cortes, A.; Mallol, J.; Canela, E.I.; Leurs, R.; Ferre, S.; Lluis, C.; et al. Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors. Br. J. Pharmacol. 2009, 157, 64–75. [Google Scholar] [CrossRef]
- Rodriguez-Ruiz, M.; Moreno, E.; Moreno-Delgado, D.; Navarro, G.; Mallol, J.; Cortes, A.; Lluis, C.; Canela, E.I.; Casado, V.; McCormick, P.J.; et al. Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer’s Disease. Mol. Neurobiol. 2017, 54, 4537–4550. [Google Scholar] [CrossRef]
- Alfaro-Rodríguez, A.; Alonso-Spilsbury, M.; Arch-Tirado, E.; Gonzalez-Pina, R.; Arias-Montano, J.-A.; Bueno-Nava, A. Histamine H3 receptor activation prevents dopamine D1 receptor-mediated inhibition of dopamine release in the rat striatum: A microdialysis study. Neurosci. Lett. 2013, 552, 5–9. [Google Scholar] [CrossRef]
- Papathanou, M.; Jenner, P.; Iravani, M.; Jackson, M.; Stockwell, K.; Strang, I.; Zeng, B.-Y.; McCreary, A.C.; Rose, S. The H3 receptor agonist immepip does not affect L-dopa-induced abnormal involuntary movements in 6-OHDA-lesioned rats. Eur. J. Pharmacol. 2014, 741, 304–310. [Google Scholar] [CrossRef]
- Garcia-Galvez, A.M.; Escamilla-Sanchez, J.; Flores-Maldonado, C.; Contreras, R.G.; Arias, J.M.; Arias-Montano, J.A. Differential homologous desensitization of the human histamine H3 receptors of 445 and 365 amino acids expressed in CHO-K1 cells. Neurochem. Int. 2018, 112, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Espinoza, A.; Escamilla-Sanchez, J.; Aquino-Jarquin, G.; Arias-Montano, J.A. Homologous desensitization of human histamine H3 receptors expressed in CHO-K1 cells. Neuropharmacology 2014, 77, 387–397. [Google Scholar] [CrossRef]
- Sánchez-Lemus, E.; Arias-Montaño, J.-A. M1 Muscarinic Receptors Contribute to, whereas M4 Receptors Inhibit, Dopamine D1 Receptor-Induced [3H]-Cyclic AMP Accumulation in Rat Striatal Slices. Neurochem. Res. 2006, 31, 555–561. [Google Scholar] [CrossRef]
- Gálvez-Rosas, A.; Avila-Luna, A.; Valdés-Flores, M.; Montes, S.; Bueno-Nava, A. GABAergic imbalance is normalized by dopamine D1 receptor activation in the striatum contralateral to the cortical injury in motor deficit-recovered rats. Psychopharmacology 2019, 236, 2211–2222. [Google Scholar] [CrossRef] [PubMed]
- Murer, M.G.; Moratalla, R. Striatal signaling in L-DOPA-induced dyskinesia: Common mechanisms with drug abuse and long term memory involving D1 dopamine receptor stimulation. Front. Neuroanat. 2011, 5, 51. [Google Scholar] [CrossRef]
- Darmopil, S.; Martin, A.B.; De Diego, I.R.; Ares, S.; Moratalla, R. Genetic Inactivation of Dopamine D1 but Not D2 Receptors Inhibits L-DOPA-Induced Dyskinesia and Histone Activation. Biol. Psychiatry 2009, 66, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Barajas, C.; Silva, I.; Lopez-Santiago, L.M.; Aceves, J.; Erlij, D.; Floran, B. L-DOPA-induced dyskinesia in hemiparkinsonian rats is associated with up-regulation of adenylyl cyclase type V/VI and increased GABA release in the substantia nigra reticulata. Neurobiol. Dis. 2011, 41, 51–61. [Google Scholar] [CrossRef]
- Huot, P.; Johnston, T.H.; Koprich, J.B.; Fox, S.H.; Brotchie, J.M. The Pharmacology of L-DOPA-Induced Dyskinesia in Parkinson’s Disease. Pharmacol. Rev. 2013, 65, 171–222. [Google Scholar] [CrossRef] [PubMed]
- Molina-Hernandez, A.; Nunez, A.; Sierra, J.J.; Arias-Montano, J.A. Histamine H3 receptor activation inhibits glutamate release from rat striatal synaptosomes. Neuropharmacology 2001, 41, 928–934. [Google Scholar] [CrossRef]
- Santini, E.; Valjent, E.; Usiello, A.; Carta, M.; Borgkvist, A.; Girault, J.A.; Herve, D.; Greengard, P.; Fisone, G. Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J. Neurosci. 2007, 27, 6995–7005. [Google Scholar] [CrossRef]
- Santini, E.; Alcacer, C.; Cacciatore, S.; Heiman, M.; Herve, D.; Greengard, P.; Girault, J.A.; Valjent, E.; Fisone, G. L-DOPA activates ERK signaling and phosphorylates histone H3 in the striatonigral medium spiny neurons of hemiparkinsonian mice. J. Neurochem. 2009, 108, 621–633. [Google Scholar] [CrossRef]
- Hakansson, K.; Lindskog, M.; Pozzi, L.; Usiello, A.; Fisone, G. DARPP-32 and modulation of cAMP signaling: Involvement in motor control and levodopa-induced dyskinesia. Park. Relat. Disord. 2004, 10, 281–286. [Google Scholar] [CrossRef]
- Humbert-Claude, M.; Morisset, S.; Gbahou, F.; Arrang, J.M. Histamine H3 and doparnine D2 receptor-mediated [35S]GTPγ[S] binding in rat striatum: Evidence for additive effects but lack of interactions. Biochem. Pharmacol. 2007, 73, 1172–1181. [Google Scholar] [CrossRef]
- Xu, J.; Pittenger, C. The histamine H3 receptor modulates dopamine D2 receptor–dependent signaling pathways and mouse behaviors. J. Biol. Chem. 2023, 299, 104583. [Google Scholar] [CrossRef]
- Ferrada, C.; Ferre, S.; Casado, V.; Cortes, A.; Justinova, Z.; Barnes, C.; Canela, E.I.; Goldberg, S.R.; Leurs, R.; Lluis, C.; et al. Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology 2008, 55, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Roos, R.A.C. Huntington’s disease: A clinical review. Orphanet J. Rare Dis. 2010, 5, 40. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, E.; Cepeda, C.; Levine, M. Dopamine imbalance in Huntington’s disease: A mechanism for the lack of behavioral flexibility. Front. Neurosci. 2013, 7, 114. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Delgado, D.; Puigdellívol, M.; Moreno, E.; Rodríguez-Ruiz, M.; Botta, J.; Gasperini, P.; Chiarlone, A.; Howell, L.A.; Scarselli, M.; Casadó, V.; et al. Modulation of dopamine D1 receptors via histamine H3 receptors is a novel therapeutic target for Huntington’s disease. eLife 2020, 9, e51093. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avila-Luna, A.; Verduzco-Mendoza, A.; Olmos-Hernández, A.; Cortes-Altamirano, J.L.; Alfaro-Rodríguez, A.; Arias-Montaño, J.-A.; Bueno-Nava, A. The Interaction of Histamine H3 and Dopamine D1 Receptors on Hyperkinetic Alterations in Animal Models of Parkinson’s Disease. Pharmaceuticals 2024, 17, 1726. https://doi.org/10.3390/ph17121726
Avila-Luna A, Verduzco-Mendoza A, Olmos-Hernández A, Cortes-Altamirano JL, Alfaro-Rodríguez A, Arias-Montaño J-A, Bueno-Nava A. The Interaction of Histamine H3 and Dopamine D1 Receptors on Hyperkinetic Alterations in Animal Models of Parkinson’s Disease. Pharmaceuticals. 2024; 17(12):1726. https://doi.org/10.3390/ph17121726
Chicago/Turabian StyleAvila-Luna, Alberto, Antonio Verduzco-Mendoza, Adriana Olmos-Hernández, José Luis Cortes-Altamirano, Alfonso Alfaro-Rodríguez, José-Antonio Arias-Montaño, and Antonio Bueno-Nava. 2024. "The Interaction of Histamine H3 and Dopamine D1 Receptors on Hyperkinetic Alterations in Animal Models of Parkinson’s Disease" Pharmaceuticals 17, no. 12: 1726. https://doi.org/10.3390/ph17121726
APA StyleAvila-Luna, A., Verduzco-Mendoza, A., Olmos-Hernández, A., Cortes-Altamirano, J. L., Alfaro-Rodríguez, A., Arias-Montaño, J.-A., & Bueno-Nava, A. (2024). The Interaction of Histamine H3 and Dopamine D1 Receptors on Hyperkinetic Alterations in Animal Models of Parkinson’s Disease. Pharmaceuticals, 17(12), 1726. https://doi.org/10.3390/ph17121726