Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = 3,4-dihydroquinazoline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1701 KiB  
Article
Citric Acid-Catalyzed Three-Component Synthesis of (E)-3-Aryl-2-styryl-2,3-dihydroquinazoline-4(1H)-ones and Their Mild Oxidation with I2/DMSO System into (E)-3-Aryl-2-styrylquinazolin-4(3H)-ones
by Vladimir V. Kouznetsov, Angélica Peñaranda Gómez and Carlos E. Puerto Galvis
Chemistry 2025, 7(2), 42; https://doi.org/10.3390/chemistry7020042 - 16 Mar 2025
Viewed by 878
Abstract
We hereby report a simple and efficient method for the preparation of (E)-3-aryl-2-styryl-2,3-dihydroquinazolin-4-(1H)-ones, from isatoic anhydride, anilines, and cinnamaldehydes in the presence of 20 mol% citric acid in methanol at 60 °C for 2 h. The styryl-dihydroquinazolin-4-(1H)-one [...] Read more.
We hereby report a simple and efficient method for the preparation of (E)-3-aryl-2-styryl-2,3-dihydroquinazolin-4-(1H)-ones, from isatoic anhydride, anilines, and cinnamaldehydes in the presence of 20 mol% citric acid in methanol at 60 °C for 2 h. The styryl-dihydroquinazolin-4-(1H)-one products were obtained in moderate and good yields (30–80%) through the three-component condensation reaction, under an environment-friendly protocol. The latter were easily transformed into styrylquinazolin-4-(3H)-one derivatives with 57–91% yields using a mild oxidation with an I2/DMSO system for less than 60 min. Full article
(This article belongs to the Section Molecular Organics)
Show Figures

Graphical abstract

13 pages, 1640 KiB  
Article
Acid-Catalyzed, Metal- and Oxidant-Free C=C Bond Cleavage of Enaminones: One-Pot Synthesis of 3,4-Dihydroquinazolines
by Ting Chen, Ting Huang, Moudan Ye and Jinhai Shen
Molecules 2025, 30(2), 350; https://doi.org/10.3390/molecules30020350 - 16 Jan 2025
Cited by 1 | Viewed by 882
Abstract
In this study, we present the HOAc-catalyzed selective cleavage of the C=C double bond of enaminones, enabling the formation of a new C–N bond and a new C=N bond for the one-pot synthesis of 2-substituted 3,4-dihydroquinazolines directly from ynones and 2-(aminomethyl)anilines. This method [...] Read more.
In this study, we present the HOAc-catalyzed selective cleavage of the C=C double bond of enaminones, enabling the formation of a new C–N bond and a new C=N bond for the one-pot synthesis of 2-substituted 3,4-dihydroquinazolines directly from ynones and 2-(aminomethyl)anilines. This method operates in ethanol under transition-metal-free and oxidant-free conditions, offering a sustainable and efficient approach for the synthesis of 3,4-dihydroquinazolines with broad functional group tolerance. Full article
Show Figures

Graphical abstract

6 pages, 915 KiB  
Short Note
3a-(4-Chlorophenyl)-1-thioxo-2,3,3a,4-tetrahydroimidazo[1,5-a]quinazolin-5(1H)-one
by Andrea Defant, Nicole Innocenti and Ines Mancini
Molbank 2024, 2024(3), M1859; https://doi.org/10.3390/M1859 - 28 Jul 2024
Viewed by 1175
Abstract
With the aim of producing new heterocycle molecules, the previously reported 2-(aminomethyl)-2-(4-chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one was converted efficiently by reacting with N,N′-dithiocarbonyldiimidazole (DTCI) to produce the substituted imidazolidine-2-thione moiety inserted in a three-fused-ring scaffold of the title compound. The molecular composition was confirmed [...] Read more.
With the aim of producing new heterocycle molecules, the previously reported 2-(aminomethyl)-2-(4-chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one was converted efficiently by reacting with N,N′-dithiocarbonyldiimidazole (DTCI) to produce the substituted imidazolidine-2-thione moiety inserted in a three-fused-ring scaffold of the title compound. The molecular composition was confirmed by a high-resolution MS experiment, and its structure was elucidated by 1H, 13CNMR, and IR analyses. The thioacetamide form of the product was supported by density functional theory (DFT)–NMR analysis where 13C chemical shifts of the thioacetamide form and of its iminothiol tautomer were calculated in chloroform at the BP86/Jgauss-TZP2 level of theory. The very strong linear correlation between 13C chemical shifts from experimental findings and by calculation for the NHC=S form confirmed the structure. Full article
Show Figures

Figure 1

23 pages, 2536 KiB  
Article
In Vitro α-Glucosidase and α-Amylase Inhibition, Cytotoxicity and Free Radical Scavenging Profiling of the 6-Halogeno and Mixed 6,8-Dihalogenated 2-Aryl-4-methyl-1,2-dihydroquinazoline 3-Oxides
by Nontokozo M. Magwaza, Garland K. More, Samantha Gildenhuys and Malose J. Mphahlele
Antioxidants 2023, 12(11), 1971; https://doi.org/10.3390/antiox12111971 - 6 Nov 2023
Cited by 5 | Viewed by 2262
Abstract
Series of the 6-bromo/iodo substituted 2-aryl-4-methyl-1,2-dihydroquinazoline-3-oxides and their mixed 6,8-dihalogenated (Br/I and I/Br) derivatives were evaluated for inhibitory properties against α-glucosidase and/or α-amylase activities and for cytotoxicity against breast (MCF-7) and lung (A549) cancer cell lines. The 6-bromo-2-phenyl substituted 3a and its corresponding [...] Read more.
Series of the 6-bromo/iodo substituted 2-aryl-4-methyl-1,2-dihydroquinazoline-3-oxides and their mixed 6,8-dihalogenated (Br/I and I/Br) derivatives were evaluated for inhibitory properties against α-glucosidase and/or α-amylase activities and for cytotoxicity against breast (MCF-7) and lung (A549) cancer cell lines. The 6-bromo-2-phenyl substituted 3a and its corresponding 6-bromo-8-iodo-2-phenyl-substituted derivative 3i exhibited dual activity against α-glucosidase (IC50 = 1.08 ± 0.02 μM and 1.01 ± 0.05 μM, respectively) and α-amylase (IC50 = 5.33 ± 0.01 μM and 1.18 ± 0.06 μM, respectively) compared to acarbose (IC50 = 4.40 ± 0.05 μM and 2.92 ± 0.02 μM, respectively). The 6-iodo-2-(4-fluorophenyl)-substituted derivative 3f, on the other hand, exhibited strong activity against α-amylase and significant inhibitory effect against α-glucosidase with IC50 values of 0.64 ± 0.01 μM and 9.27 ± 0.02 μM, respectively. Compounds 3c, 3l and 3p exhibited the highest activity against α-glucosidase with IC50 values of 1.04 ± 0.03, 0.92 ± 0.01 and 0.78 ± 0.05 μM, respectively. Moderate cytotoxicity against the MCF-7 and A549 cell lines was observed for these compounds compared to the anticancer drugs doxorubicin (IC50 = 0.25 ± 0.05 μM and 0.36 ± 0.07 μM, respectively) and gefitinib (IC50 = 0.19 ± 0.04 μM and 0.25 ± 0.03 μM, respectively), and their IC50 values are in the range of 10.38 ± 0.08–25.48 ± 0.08 μM and 11.39 ± 0.12–20.00 ± 0.05 μM, respectively. The test compounds generally exhibited moderate to strong antioxidant capabilities, as demonstrated via robust free radical scavenging activity assays, viz., DPPH and NO. The potential of selected derivatives to inhibit superoxide dismutase (SOD) was also investigated via enzymatic assay in vitro. Molecular docking revealed the N-O moiety as essential to facilitate electrostatic interactions of the test compounds with the protein residues in the active site of α-glucosidase and α-amylase. The presence of bromine and/or iodine atoms resulted in increased hydrophobic (alkyl and/or π-alkyl) interactions and therefore increased inhibitory effect against both enzymes. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

58 pages, 12119 KiB  
Article
Synthesis and Biological Evaluation of Some New 3-Aryl-2-thioxo-2,3-dihydroquinazolin-4(1H)-ones and 3-Aryl-2-(benzylthio)quinazolin-4(3H)-ones as Antioxidants; COX-2, LDHA, α-Glucosidase and α-Amylase Inhibitors; and Anti-Colon Carcinoma and Apoptosis-Inducing Agents
by Nahed Nasser Eid El-Sayed, Taghreed M. Al-Otaibi, Assem Barakat, Zainab M. Almarhoon, Mohd. Zaheen Hassan, Maha I. Al-Zaben, Najeh Krayem, Vijay H. Masand and Abir Ben Bacha
Pharmaceuticals 2023, 16(10), 1392; https://doi.org/10.3390/ph16101392 - 1 Oct 2023
Cited by 2 | Viewed by 3122
Abstract
Oxidative stress, COX-2, LDHA and hyperglycemia are interlinked contributing pathways in the etiology, progression and metastasis of colon cancer. Additionally, dysregulated apoptosis in cells with genetic alternations leads to their progression in malignant transformation. Therefore, quinazolinones 3a3h and 5a5h [...] Read more.
Oxidative stress, COX-2, LDHA and hyperglycemia are interlinked contributing pathways in the etiology, progression and metastasis of colon cancer. Additionally, dysregulated apoptosis in cells with genetic alternations leads to their progression in malignant transformation. Therefore, quinazolinones 3a3h and 5a5h were synthesized and evaluated as antioxidants, enzymes inhibitors and cytotoxic agents against LoVo and HCT-116 cells. Moreover, the most active cytotoxic derivatives were evaluated as apoptosis inducers. The results indicated that 3a, 3g and 5a were efficiently scavenged DPPH radicals with lowered IC50 values (mM) ranging from 0.165 ± 0.0057 to 0.191 ± 0.0099, as compared to 0.245 ± 0.0257 by BHT. Derivatives 3h, 5a and 5h were recognized as more potent dual inhibitors than quercetin against α-amylase and α-glucosidase, in addition to 3a, 3c, 3f and 5b5f against α-amylase. Although none of the compounds demonstrated a higher efficiency than the reference inhibitors against COX-2 and LDHA, 3a and 3g were identified as the most active derivatives. Molecular docking studies were used to elucidate the binding affinities and binding interactions between the inhibitors and their target proteins. Compounds 3a and 3f showed cytotoxic activities, with IC50 values (µM) of 294.32 ± 8.41 and 383.5 ± 8.99 (LoVo), as well as 298.05 ± 13.26 and 323.59 ± 3.00 (HCT-116). The cytotoxicity mechanism of 3a and 3f could be attributed to the modulation of apoptosis regulators (Bax and Bcl-2), the activation of intrinsic and extrinsic apoptosis pathways via the upregulation of initiator caspases-8 and -9 as well as executioner caspase-3, and the arrest of LoVo and HCT-116 cell cycles in the G2/M and G1 phases, respectively. Lastly, the physicochemical, medicinal chemistry and ADMET properties of all compounds were predicted. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

14 pages, 3256 KiB  
Article
Actinoquinazolinone, a New Quinazolinone Derivative from a Marine Bacterium Streptomyces sp. CNQ-617, Suppresses the Motility of Gastric Cancer Cells
by Sultan Pulat, Da-Ae Kim, Prima F. Hillman, Dong-Chan Oh, Hangun Kim, Sang-Jip Nam and William Fenical
Mar. Drugs 2023, 21(9), 489; https://doi.org/10.3390/md21090489 - 13 Sep 2023
Cited by 6 | Viewed by 2591
Abstract
A HPLC-UV guided fractionation of the culture broth of Streptomyces sp. CNQ-617 has led to the isolation of a new quinazolinone derivative, actinoquinazolinone (1), as well as two known compounds, 7-hydroxy-6-methoxy-3,4-dihydroquinazolin-4-one (2) and 7-methoxy-8-hydroxy cycloanthranilylproline (3). The [...] Read more.
A HPLC-UV guided fractionation of the culture broth of Streptomyces sp. CNQ-617 has led to the isolation of a new quinazolinone derivative, actinoquinazolinone (1), as well as two known compounds, 7-hydroxy-6-methoxy-3,4-dihydroquinazolin-4-one (2) and 7-methoxy-8-hydroxy cycloanthranilylproline (3). The interpretation of 1D, 2D NMR, and MS spectroscopic data revealed the planar structure of 1. Furthermore, compound 1 suppressed invasion ability by inhibiting epithelial–mesenchymal transition markers (EMT) in AGS cells at a concentration of 5 µM. In addition, compound 1 decreased the expression of seventeen genes related to human cell motility and slightly suppressed the signal transducer and activator of the transcription 3 (STAT3) signal pathway in AGS cells. Together, these results demonstrate that 1 is a potent inhibitor of gastric cancer cells. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents 3.0)
Show Figures

Graphical abstract

10 pages, 1094 KiB  
Article
Identifying a Detoxifying Uridine Diphosphate Glucosyltransferase (UGT), MdUGT83K2, Which Can Glycosylate the Aryloxyphenoxypropionate Herbicide
by Pan Li, Aijuan Zhao, Ru Li, Shibo Han, Na Li, Lusha Ji and Kang Lei
Agronomy 2023, 13(2), 306; https://doi.org/10.3390/agronomy13020306 - 19 Jan 2023
Cited by 3 | Viewed by 2021
Abstract
Glycosylation is a common modification reaction in plants. The products obtained upon glycosylation have different biological functions, making glycosylation an important mechanism affecting and regulating the balance of plant growth and metabolism. In this study, we first speculated that Group I in the [...] Read more.
Glycosylation is a common modification reaction in plants. The products obtained upon glycosylation have different biological functions, making glycosylation an important mechanism affecting and regulating the balance of plant growth and metabolism. In this study, we first speculated that Group I in the apple glycosyltransferase family may have a predicted function like UGT83A1, according to gene chip data published online. Subsequently, by real-time PCR (polymerase chain reaction), we analyzed whether the expression of nine glycosyltransferase genes in Group I was induced by our previously reported ACCase (Acetyl-CoA carboxylase) inhibition-based herbicide QPP ((R)-ethyl·2-(4-((6-fluoro-3-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)oxy) phenoxy) propanoate). It was found that expression of the MdUGT83K2 gene in Group I was significantly increased by QPP. In order to determine whether MdUGT83K2 can glycosylate QPP, we confirmed the enzymatic reaction of MdUGT83K2 in vitro and the presence of QPP glycosides in MdUGT83K2 transgenic apple seedlings by HPLC (High Performance Liquid Chromatography), and found that MdUGT83K2 can transfer glucose to QPP in vivo, which is glycosylated. In this work, we identified a novel apple glycosyltransferase, MdUGT83K2, which functions to glycosylate the ACCase-inhibiting herbicide QPP and may be involved in plant detoxification. Key Contribution: A novel apple glycosyltransferase, MdUGT83K2, was identified, which may be involved in plant detoxification by glycosylation modification of the ACCase-inhibiting herbicide. Full article
Show Figures

Figure 1

27 pages, 20222 KiB  
Article
Novel Approaches for the Solid-Phase Synthesis of Dihydroquinazoline-2(1H)-One Derivatives and Biological Evaluation as Potential Anticancer Agents
by Qiong Wang, Ying Pan, Hongjun Luo, Yanmei Zhang, Fenfei Gao, Jinzhi Wang and Jinhong Zheng
Molecules 2022, 27(23), 8577; https://doi.org/10.3390/molecules27238577 - 5 Dec 2022
Cited by 6 | Viewed by 3396
Abstract
In the design of antineoplastic drugs, quinazolinone derivatives are often used as small molecule inhibitors for kinases or receptor kinases, such as the EGFR tyrosine kinase inhibitor gefitinib, p38MAP kinase inhibitor DQO-501, and BRD4 protein inhibitor PFI-1. A novel and convenient [...] Read more.
In the design of antineoplastic drugs, quinazolinone derivatives are often used as small molecule inhibitors for kinases or receptor kinases, such as the EGFR tyrosine kinase inhibitor gefitinib, p38MAP kinase inhibitor DQO-501, and BRD4 protein inhibitor PFI-1. A novel and convenient approach for the solid-phase synthesis of dihydroquinazoline-2(1H)-one derivatives was proposed and 19 different compounds were synthesized. Cytotoxicity tests showed that most of the target compounds had anti-proliferative activity against HepG-2, A2780 and MDA-MB-231 cell lines. Among them, compounds CA1-e and CA1-g had the most potent effect on A2780 cells, with IC50 values of 22.76 and 22.94 μM, respectively. In addition, in an antioxidant assay, the IC50 of CA1-7 was 57.99 μM. According to bioinformatics prediction, ERBB2, SRC, TNF receptor, and AKT1 were predicted to be the key targets and play an essential role in cancer treatment. ADMET prediction suggested 14 of the 19 compounds had good pharmacological properties, i.e., these compounds displayed clinical potential. The correct structure of the final compounds was confirmed based on LC/MS, 1H NMR, and 13C NMR. Full article
Show Figures

Graphical abstract

11 pages, 2796 KiB  
Article
Copper Catalyst-Supported Modified Magnetic Chitosan for the Synthesis of Novel 2-Arylthio-2,3-dihydroquinazolin-4(1H)-one Derivatives via Chan–Lam Coupling
by Nastaran Ghasemi, Ali Yavari, Saeed Bahadorikhalili, Ali Moazzam, Samanehsadat Hosseini, Bagher Larijani, Aida Iraji, Shahram Moradi and Mohammad Mahdavi
Inorganics 2022, 10(12), 231; https://doi.org/10.3390/inorganics10120231 - 29 Nov 2022
Cited by 9 | Viewed by 2174
Abstract
In this paper, magnetic chitosan is used as a support for the immobilization of copper catalyst (Cu@MChit). The fabricated catalyst is successfully synthesized and characterized by several techniques. The activity of Cu@MChit catalyst is evaluated in the synthesis of novel derivatives of 3-alkyl-2-arylthio-2,3-dihydroquinazolin-4(1 [...] Read more.
In this paper, magnetic chitosan is used as a support for the immobilization of copper catalyst (Cu@MChit). The fabricated catalyst is successfully synthesized and characterized by several techniques. The activity of Cu@MChit catalyst is evaluated in the synthesis of novel derivatives of 3-alkyl-2-arylthio-2,3-dihydroquinazolin-4(1H)-ones. The products are synthesized in three simple steps via Chan–Lam coupling reaction. The synthetic route is based on the reaction of isatoic anhydride and an amine, followed by the reaction with carbon disulfide. Cu@MChit-catalyzed reaction of the obtained intermediate with phenylboronic acid leads to the desired products. The scope of the reaction is confirmed by using various amine and phenylboronic acid derivatives and the products are obtained in high isolated yields. Full article
(This article belongs to the Special Issue Inorganics: 10th Anniversary)
Show Figures

Graphical abstract

10 pages, 5810 KiB  
Proceeding Paper
1,4-Butane-Sultone Functionalized Graphitic Carbon Nitride as a Highly Efficient Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolines Derivatives
by Hossein Ghafuri, Zahra Nasri and Zeinab Tajik
Chem. Proc. 2022, 12(1), 94; https://doi.org/10.3390/ecsoc-26-13672 - 17 Nov 2022
Viewed by 1821
Abstract
1,4-Butane-sultone functionalized graphitic carbon nitride nanosheets (g-C3N4@Bu-SO3H) was prepared and applied as an efficient heterogeneous catalyst for the synthesis of various quinazolines derivatives with high yield. In next step, the structure and morphology of catalyst was characterized [...] Read more.
1,4-Butane-sultone functionalized graphitic carbon nitride nanosheets (g-C3N4@Bu-SO3H) was prepared and applied as an efficient heterogeneous catalyst for the synthesis of various quinazolines derivatives with high yield. In next step, the structure and morphology of catalyst was characterized by different analyses such as, FT-IR, EDS, XRD and FE-SEM. On the other side, considering the noticeable features of g-C3N4@Bu- SO3H such as high stability, easy to synthesize, non-toxicity, excellent reusability, and so on, the synthesis of 2,3-dihydroquinazolines derivatives with numerous advantages such as short reaction time reaction condition, easy separation and etc were realized. Full article
Show Figures

Figure 1

5 pages, 382 KiB  
Short Note
Methyl 2-((3-(3-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetate
by Maja Molnar, Mario Komar and Igor Jerković
Molbank 2022, 2022(3), M1434; https://doi.org/10.3390/M1434 - 25 Aug 2022
Cited by 1 | Viewed by 2579
Abstract
A green synthetic procedure was developed for the two-step synthesis of methyl 2-((3-(3-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetate from anthranilic acid, using two green chemistry approaches: utilization of the DES and microwave-induced synthesis. The first step includes a synthesis of 2-mercapto-3-(3-methoxyphenyl)quinazolin-4(3H)-one which was performed in choline [...] Read more.
A green synthetic procedure was developed for the two-step synthesis of methyl 2-((3-(3-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetate from anthranilic acid, using two green chemistry approaches: utilization of the DES and microwave-induced synthesis. The first step includes a synthesis of 2-mercapto-3-(3-methoxyphenyl)quinazolin-4(3H)-one which was performed in choline chloride:urea DES. In the second step S-alkylation of 2-mercapto-3-(3-methoxyphenyl)quinazolin-4(3H)-one was performed in a microwave-induced reaction. The desired compound was successfully obtained in a yield of 59% and was characterized by different spectral methods. Full article
Show Figures

Figure 1

20 pages, 4836 KiB  
Article
Antitubercular, Cytotoxicity, and Computational Target Validation of Dihydroquinazolinone Derivatives
by Katharigatta N. Venugopala, Nizar A. Al-Shar’i, Lina A. Dahabiyeh, Wafa Hourani, Pran Kishore Deb, Melendhran Pillay, Bashaer Abu-Irmaileh, Yasser Bustanji, Sandeep Chandrashekharappa, Christophe Tratrat, Mahesh Attimarad, Anroop B. Nair, Nagaraja Sreeharsha, Pottathil Shinu, Michelyne Haroun, Mahmoud Kandeel, Abdulmalek Ahmed Balgoname, Rashmi Venugopala and Mohamed A. Morsy
Antibiotics 2022, 11(7), 831; https://doi.org/10.3390/antibiotics11070831 - 21 Jun 2022
Cited by 9 | Viewed by 3511
Abstract
A series of 2,3-dihydroquinazolin-4(1H)-one derivatives (3a3m) was screened for in vitro whole-cell antitubercular activity against the tubercular strain H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 3l and 3m with di-substituted aryl moiety (halogens) attached to [...] Read more.
A series of 2,3-dihydroquinazolin-4(1H)-one derivatives (3a3m) was screened for in vitro whole-cell antitubercular activity against the tubercular strain H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 3l and 3m with di-substituted aryl moiety (halogens) attached to the 2-position of the scaffold showed a minimum inhibitory concentration (MIC) of 2 µg/mL against the MTB strain H37Rv. Compound 3k with an imidazole ring at the 2-position of the dihydroquinazolin-4(1H)-one also showed significant inhibitory action against both the susceptible strain H37Rv and MDR strains with MIC values of 4 and 16 µg/mL, respectively. The computational results revealed the mycobacterial pyridoxal-5′-phosphate (PLP)-dependent aminotransferase (BioA) enzyme as the potential target for the tested compounds. In vitro, ADMET calculations and cytotoxicity studies against the normal human dermal fibroblast cells indicated the safety and tolerability of the test compounds 3k3m. Thus, compounds 3k3m warrant further optimization to develop novel BioA inhibitors for the treatment of drug-sensitive H37Rv and drug-resistant MTB. Full article
(This article belongs to the Special Issue Design and Preparation of Antimicrobial Agents)
Show Figures

Figure 1

19 pages, 3377 KiB  
Communication
Antiproliferative Activity of a New Quinazolin-4(3H)-One Derivative via Targeting Aurora Kinase A in Non-Small Cell Lung Cancer
by Ji Yun Lee, Huarong Yang, Donghwa Kim, Kay Zin Kyaw, Ruoci Hu, Yanhua Fan and Sang Kook Lee
Pharmaceuticals 2022, 15(6), 698; https://doi.org/10.3390/ph15060698 - 2 Jun 2022
Cited by 6 | Viewed by 3158
Abstract
Non-small cell lung cancer (NSCLC) is the most common lung cancer subtype. Although chemotherapy and targeted therapy are used for the treatment of patients with NSCLC, the survival rate remains very low. Recent findings suggested that aurora kinase A (AKA), a cell cycle [...] Read more.
Non-small cell lung cancer (NSCLC) is the most common lung cancer subtype. Although chemotherapy and targeted therapy are used for the treatment of patients with NSCLC, the survival rate remains very low. Recent findings suggested that aurora kinase A (AKA), a cell cycle regulator, is a potential target for NSCLC therapy. Previously, we reported that a chemical entity of quinazolin-4(3H)-one represents a new template for AKA inhibitors, with antiproliferative activity against cancer cells. A quinazolin-4(3H)-one derivative was further designed and synthesized in order to improve the pharmacokinetic properties and antiproliferation activity against NSCLC cell lines. The derivative, BIQO-19 (Ethyl 6-(4-oxo-3-(pyrimidin-2-ylmethyl)-3,4-dihydroquinazolin-6-yl)imidazo [1,2-a]pyridine-2-carboxylate), exhibited improved solubility and antiproliferative activity in NSCLC cells, including epidermal growth factor receptor–tyrosine kinase inhibitor (EGFR-TKI)-resistant NSCLC cells. BIQO-19 effectively inhibited the growth of the EGFR-TKI-resistant H1975 NSCLC cells, with the suppression of activated AKA (p-AKA) expression in these cells. The inhibition of AKA by BIQO-19 significantly induced G2/M phase arrest and subsequently evoked apoptosis in H1975 cells. In addition, the combination of gefitinib and BIQO-19 exhibited synergistic antiproliferative activity in NSCLC cells. These findings suggest the potential of BIQO-19 as a novel therapeutic agent for restoring the sensitivity of gefitinib in EGFR-TKI-resistant NSCLC cells. Full article
(This article belongs to the Special Issue Protein Kinases and Cancer)
Show Figures

Graphical abstract

17 pages, 4159 KiB  
Article
2,3-Dihydroquinazolin-4(1H)-one as a New Class of Anti-Leishmanial Agents: A Combined Experimental and Computational Study
by Muhammad Sarfraz, Chenxi Wang, Nargis Sultana, Humna Ellahi, Muhammad Fayyaz ur Rehman, Muhammad Jameel, Shahzaib Akhter, Fariha Kanwal, Muhammad Ilyas Tariq and Song Xue
Crystals 2022, 12(1), 44; https://doi.org/10.3390/cryst12010044 - 29 Dec 2021
Cited by 8 | Viewed by 3764
Abstract
Leishmaniasis is a neglected parasitic disease caused by various Leishmania species. The discovery of new protozoa drugs makes it easier to treat the disease; but, conventional clinical issues like drug resistance, cumulative toxicity, and target selectivity are also getting attention. So, there is [...] Read more.
Leishmaniasis is a neglected parasitic disease caused by various Leishmania species. The discovery of new protozoa drugs makes it easier to treat the disease; but, conventional clinical issues like drug resistance, cumulative toxicity, and target selectivity are also getting attention. So, there is always a need for new therapeutics to treat Leishmaniasis. Here, we have reported 2,3-dihydroquinazolin-4(1H)-one derivative as a new class of anti-leishmanial agents. Two derivatives, 3a (6,8-dinitro-2,2-disubstituted-2,3-dihydroquinazolin-4(1H)-ones) and 3b (2-(4-chloro-3-nitro-phenyl)-2-methyl-6,8-dinitro-2,3-dihydro-1H-quinazolin-4-one) were prepared that show promising in silico anti-leishmanial activities. Molecular docking was performed against the Leishmanial key proteins including Pyridoxal Kinase and Trypanothione Reductase. The stability of the ligand-protein complexes was further studied by 100 ns MD simulations and MM/PBSA calculations for both compounds. 3b has been shown to be a better anti-leishmanial candidate. In vitro studies also agree with the in-silico results where IC50 for 3a and 3b was 1.61 and 0.05 µg/mL, respectively. Full article
Show Figures

Figure 1

15 pages, 1587 KiB  
Article
Electrophilically Activated Nitroalkanes in Synthesis of 3,4-Dihydroquinozalines
by Alexander V. Aksenov, Igor Yu. Grishin, Nicolai A. Aksenov, Vladimir V. Malyuga, Dmitrii A. Aksenov, Mezvah A. Nobi and Michael Rubin
Molecules 2021, 26(14), 4274; https://doi.org/10.3390/molecules26144274 - 14 Jul 2021
Cited by 8 | Viewed by 3597
Abstract
Nitroalkanes activated with polyphosphoric acid serve as efficient electrophiles in reactions with various nucleophilic amines. Strategically placed second functionality allows for the design of annulation reactions enabling preparation of various heterocycles. This strategy was employed to develop an innovative synthetic approach towards 3,4-dihydroquinazolines [...] Read more.
Nitroalkanes activated with polyphosphoric acid serve as efficient electrophiles in reactions with various nucleophilic amines. Strategically placed second functionality allows for the design of annulation reactions enabling preparation of various heterocycles. This strategy was employed to develop an innovative synthetic approach towards 3,4-dihydroquinazolines from readily available 2-(aminomethyl)anilines. Full article
(This article belongs to the Special Issue The Chemistry of Nitrocompounds)
Show Figures

Figure 1

Back to TopTop