Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,300)

Search Parameters:
Keywords = 2S rRNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2816 KiB  
Article
Influence of the Origin, Feeding Status, and Trypanosoma cruzi Infection in the Microbial Composition of the Digestive Tract of Triatoma pallidipennis
by Everardo Gutiérrez-Millán, Alba N. Lecona-Valera, Mario H. Rodriguez and Ana E. Gutiérrez-Cabrera
Biology 2025, 14(8), 984; https://doi.org/10.3390/biology14080984 (registering DOI) - 2 Aug 2025
Abstract
Triatoma pallidipennis, the main vector of Chagas disease in central Mexico, hosts a diverse and complex gut bacterial community shaped by environmental and physiological factors. To gain insight into these microbes’ dynamics, we characterised the gut bacterial communities of wild and insectary [...] Read more.
Triatoma pallidipennis, the main vector of Chagas disease in central Mexico, hosts a diverse and complex gut bacterial community shaped by environmental and physiological factors. To gain insight into these microbes’ dynamics, we characterised the gut bacterial communities of wild and insectary insects under different feeding and Trypanosoma cruzi infection conditions, using 16S rRNA gene sequencing. We identified 91 bacterial genera across 8 phyla, with Proteobacteria dominating most samples. Wild insects showed greater bacterial diversity, led by Acinetobacter and Pseudomonas, while insectary insects exhibited lower diversity and were dominated by Arsenophonus. The origin of the insects, whether they were reared in the insectary (laboratory) or collected from wild populations, was the principal factor structuring the gut microbiota, followed by feeding and T. cruzi infection. A stable core microbiota of 12 bacterial genera was present across all conditions, suggesting key functional roles in host physiology. Co-occurrence and functional enrichment analyses revealed that feeding and infection induced condition-specific microbial interactions and metabolic pathways. Our findings highlight the ecological plasticity of the triatomine gut microbiota and its potential role in modulating vector competence, providing a foundation for future microbiota-based control strategies. Full article
(This article belongs to the Special Issue Metabolic Interactions between the Gut Microbiome and Host)
Show Figures

Figure 1

15 pages, 758 KiB  
Article
Effect of Multi-Species Probiotic Supplementation on Fecal Microbiota in Pre-Weaned Holstein Dairy Calves in California
by Yoonsuk Lee, Heidi A. Rossow, Deniece R. Williams, Sejin Cheong, Hedmon Okella, Logan Widmer and Emmanuel Okello
Microorganisms 2025, 13(8), 1810; https://doi.org/10.3390/microorganisms13081810 (registering DOI) - 2 Aug 2025
Abstract
The gross benefit of feeding multi-species probiotics has been reported, but the effect on the gut microbiota in pre-weaned dairy calves has not been elucidated. To address this gap, a randomized controlled trial was conducted in California, USA, to investigate the effect of [...] Read more.
The gross benefit of feeding multi-species probiotics has been reported, but the effect on the gut microbiota in pre-weaned dairy calves has not been elucidated. To address this gap, a randomized controlled trial was conducted in California, USA, to investigate the effect of feeding probiotics on the fecal microbiota of pre-weaned dairy calves. A total of 30 neonatal calves were randomly assigned to either the probiotic (PRO) or control (CON) treatment. Fecal samples were collected at four age timepoints: days 7, 14, 21, and 42. Fecal bacterial population was analyzed using 16S rRNA amplicon sequencing. Differential abundance analysis was conducted to investigate the difference between the PRO and CON treatments, and diarrheic and non-diarrheic calves in each PRO and CON group. The PRO group had decreased Clostridium perfringens and Fusobacterium varium compared to the CON at 7 days of age. At 7 days of age, diarrheic calves in CON had more abundant F. varium compared to non-diarrheic calves, but there was no difference between diarrheic and non-diarrheic calves in the PRO group. In conclusion, probiotics administration decreased the population of pathogenic bacteria in feces from pre-weaned dairy calves on Day 7 of age. However, the treatment did not have an impact on bacterial diversity. These results suggest that the administration of probiotics has the potential to control gastrointestinal pathogens. Full article
(This article belongs to the Special Issue Gut Microbiota of Food Animal)
12 pages, 757 KiB  
Brief Report
DNA-Programmable Oligonucleotide Insecticide Eriola-11 Targets Mitochondrial 16S rRNA and Exhibits Strong Insecticidal Activity Against Woolly Apple Aphid (Eriosoma lanigerum) Hausmann
by Vol Oberemok, Kate Laikova, Oksana Andreeva, Anastasia Dmitrienko, Tatiana Rybareva, Jamin Ali and Nikita Gal’chinsky
Int. J. Mol. Sci. 2025, 26(15), 7486; https://doi.org/10.3390/ijms26157486 (registering DOI) - 2 Aug 2025
Abstract
The potent and selective ‘genetic zipper’ method for insect pest control consists of three essential components: an antisense DNA (the finder), its complementary mature rRNA or pre-rRNA of the pest (the target), and the host’s endogenous DNA-guided rRNase (the degrader). Although this approach [...] Read more.
The potent and selective ‘genetic zipper’ method for insect pest control consists of three essential components: an antisense DNA (the finder), its complementary mature rRNA or pre-rRNA of the pest (the target), and the host’s endogenous DNA-guided rRNase (the degrader). Although this approach has been validated, the spectrum of effective rRNA targets remains insufficiently explored. In this study, we report for the first time the insecticidal efficacy of a novel oligonucleotide insecticide, Eriola-11, which targets the mitochondrial 16S rRNA of the woolly apple aphid Eriosoma lanigerum Hausmann. We hypothesized that the antisense-mediated silencing of mitochondrial rRNA would impair aphid viability and lead to physiological disruptions associated with mitochondrial energy metabolism. Eriola-11 was applied either once or twice (with a 24 h interval) to aphid-infested plants, and aphid mortality was recorded over 14 days. Mitochondrial 16S rRNA expression levels were quantified using molecular assays, and the degradation kinetics of Eriola-11 were assessed in aphid tissue homogenates. Results showed significant insecticidal activity, with 67.55% mortality after a single treatment and 83.35% after two treatments. Treated aphids exhibited the loss of their characteristic white woolly wax covering, and mitochondrial 16S rRNA expression was reduced 0.66-fold relative to the control. Additionally, Eriola-11 was fully degraded by aphid DNases from tissue homogenates within 3 h, highlighting its rapid biodegradability. These findings establish mitochondrial 16S rRNA as a viable target for antisense insecticides and expand the catalogue of potential rRNA-based targets, offering a promising avenue for environmentally sustainable pest control strategies. Full article
(This article belongs to the Special Issue Antisense Oligonucleotides: Versatile Tools with Broad Applications)
Show Figures

Figure 1

20 pages, 4612 KiB  
Article
Effect of a Gluten-Free Diet on the Intestinal Microbiota of Women with Celiac Disease
by M. Mar Morcillo Serrano, Paloma Reche-Sainz, Daniel González-Reguero, Marina Robas-Mora, Rocío de la Iglesia, Natalia Úbeda, Elena Alonso-Aperte, Javier Arranz-Herrero and Pedro A. Jiménez-Gómez
Antibiotics 2025, 14(8), 785; https://doi.org/10.3390/antibiotics14080785 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives: Celiac disease (CD) is an autoimmune disorder characterized by small intestinal enteropathy triggered by gluten ingestion, often associated with gut dysbiosis. The most effective treatment is strict adherence to a gluten-free diet (GFD), which alleviates symptoms. This study uniquely integrates taxonomic, [...] Read more.
Background/Objectives: Celiac disease (CD) is an autoimmune disorder characterized by small intestinal enteropathy triggered by gluten ingestion, often associated with gut dysbiosis. The most effective treatment is strict adherence to a gluten-free diet (GFD), which alleviates symptoms. This study uniquely integrates taxonomic, functional, and resistance profiling to evaluate the gut microbiota of women with CD on a GFD. Methods: To evaluate the long-term impact of a GFD, this study analyzed the gut microbiota of 10 women with CD on a GFD for over a year compared to 10 healthy controls with unrestricted diets. Taxonomic diversity (16S rRNA gene sequencing and the analysis of α and β-diversity), metabolic functionality (Biolog EcoPlates®), and antibiotic resistance profiles (Cenoantibiogram) were assessed. Results: Metagenomic analysis revealed no significant differences in taxonomic diversity but highlighted variations in the abundance of specific bacterial genera. Women with CD showed increased proportions of Bacteroides, Streptococcus, and Clostridium, associated with inflammation, but also elevated levels of beneficial genera such as Roseburia, Oxalobacter, and Paraprevotella. Despite no significant differences in metabolic diversity, higher minimum inhibitory concentrations (MICs) in women in the healthy control group suggest that dietary substrates in unrestricted diets may promote the proliferation of fast-growing bacteria capable of rapidly developing and disseminating antibiotic resistance mechanisms. Conclusions: These findings indicate that prolonged adherence to a GFD in CD supports remission of gut dysbiosis, enhances microbiota functionality, and may reduce the risk of antibiotic resistance, emphasizing the importance of dietary management in CD. Full article
(This article belongs to the Special Issue Antibiotic Resistance: A One-Health Approach, 2nd Edition)
Show Figures

Figure 1

23 pages, 1603 KiB  
Article
Impact of Heat Stress on Rumen Fermentation Patterns and Microbiota Diversity and Its Association with Thermotolerance in Indigenous Goats
by Mullakkalparambil Velayudhan Silpa, Veerasamy Sejian, Chinnasamy Devaraj, Artabandhu Sahoo and Raghavendra Bhatta
Fermentation 2025, 11(8), 450; https://doi.org/10.3390/fermentation11080450 (registering DOI) - 1 Aug 2025
Abstract
Goats are considered to be the ideal climate-resilient animal species in the tropics. Fewer studies are documented assessing the heat stress response of caprine ruminal microbiota, which can also be a crucial indicator of the resilience and/or adaptability of animals. This study was [...] Read more.
Goats are considered to be the ideal climate-resilient animal species in the tropics. Fewer studies are documented assessing the heat stress response of caprine ruminal microbiota, which can also be a crucial indicator of the resilience and/or adaptability of animals. This study was conducted to comparatively assess the heat stress responses of two indigenous goat breeds, Nandidurga and Bidri, based on changes associated with the rumen fermentation pattern and distribution pattern of rumen microbiota. A total of 24 adult animals were randomly allocated into four groups of six animals each, NC (n = 6; Nandidurga control), NHS (n = 6; Nandidurga heat stress), BC (n = 6; Bidri control) and BHS (n = 6; Bidri heat stress). The animals were reared in climate chambers for a duration of 45 days wherein the NC and BC animals were maintained under thermoneutral temperature while the NHS and BHS animals were subjected to simulated heat stress. Heat stress was observed to significantly reduce the rumen ammonia, extracellular CMCase, intracellular carboxy methyl cellulase (CMCase) and total CMCase both in Nandidurga and Bidri goats. In addition to this, a significant reduction in acetate, propionate and total volatile fatty acids (VFAs) was observed in Nandidurga goats. The V3–V4 16s rRNA sequencing further revealed a significant alteration in the rumen microbiota in heat-stressed Nandidurga and Bidri goats. While both the breeds exhibited nearly similar responses in the rumen microbial abundance levels due to heat stress, breed-specific differences were also observed. Furthermore, the LEFSe analysis revealed a significant alteration in the abundances of microbes at the genus level, which were observed to be relatively greater in Bidri goats than Nandidurga goats. Furthermore, these alterations were predicted to impair the functional pathways, especially pathways associated with metabolism. This study therefore provided an insight into the rumen microbial dynamics in heat-stressed goats. Though both the breeds exhibited excellent resilience to the subjected heat stress, there were relatively less ruminal alterations in Nandidurga goats than in Bidri goats. Full article
(This article belongs to the Special Issue Research Progress of Rumen Fermentation)
19 pages, 812 KiB  
Article
Harnessing Extremophile Bacillus spp. for Biocontrol of Fusarium solani in Phaseolus vulgaris L. Agroecosystems
by Tofick B. Wekesa, Justus M. Onguso, Damaris Barminga and Ndinda Kavesu
Bacteria 2025, 4(3), 39; https://doi.org/10.3390/bacteria4030039 (registering DOI) - 1 Aug 2025
Abstract
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been [...] Read more.
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been explored, most microbial agents are sourced from mesophilic environments and show limited effectiveness under abiotic stress. Here, we report the isolation and characterization of extremophilic Bacillus spp. from the hypersaline Lake Bogoria, Kenya, and their biocontrol potential against F. solani. From 30 isolates obtained via serial dilution, 9 exhibited antagonistic activity in vitro, with mycelial inhibition ranging from 1.07-1.93 cm 16S rRNA sequencing revealed taxonomic diversity within the Bacillus genus, including unique extremotolerant strains. Molecular screening identified genes associated with the biosynthesis of antifungal metabolites such as 2,4-diacetylphloroglucinol, pyrrolnitrin, and hydrogen cyanide. Enzyme assays confirmed substantial production of chitinase (1.33–3160 U/mL) and chitosanase (10.62–28.33 mm), supporting a cell wall-targeted antagonism mechanism. In planta assays with the lead isolate (B7) significantly reduced disease incidence (8–35%) and wilt severity (1–5 affected plants), while enhancing root colonization under pathogen pressure. These findings demonstrate that extremophile-derived Bacillus spp. possess robust antifungal traits and highlight their potential as climate-resilient biocontrol agents for sustainable bean production in arid and semi-arid agroecosystems. Full article
23 pages, 2657 KiB  
Article
Enrichment Cultures of Extreme Acidophiles with Biotechnological Potential
by Khussain Valiyev, Aliya Yskak, Elena Latyuk, Alena Artykova, Rakhimbayev Berik, Vadim Chashkov and Aleksandr Bulaev
Mining 2025, 5(3), 49; https://doi.org/10.3390/mining5030049 (registering DOI) - 1 Aug 2025
Abstract
The purpose of this work was to obtain specialized enrichment cultures from an original extreme acidophilic consortium of extremely acidophilic microorganisms and to study their microbial community composition and biotechnological potential. At temperatures of 25, 35, 40 and 50 °C, distinct enrichments of [...] Read more.
The purpose of this work was to obtain specialized enrichment cultures from an original extreme acidophilic consortium of extremely acidophilic microorganisms and to study their microbial community composition and biotechnological potential. At temperatures of 25, 35, 40 and 50 °C, distinct enrichments of extremely acidophilic microorganisms used in the processes of bioleaching sulfide ores were obtained using nutrient media containing ferrous sulfate, elemental sulfur and a copper sulfide concentrate as nutrient inorganic substrates, with and without the addition of 0.02% yeast extract. The microbial community composition was studied using the sequencing of the V3–V4 hypervariable region of the 16S rRNA genes. The different growth conditions led to changes in the microbial composition and relative abundance of mesophilic and moderately thermophilic, strict autotrophic and mixotrophic microorganisms in members of the genera Acidithiobacillus, Sulfobacillus, Leptospirillum, Acidibacillus, Ferroplasma and Cuniculiplasma. The dynamics of the oxidation of ferrous iron, sulfur, and sulfide minerals (pyrite and chalcopyrite) by the enrichments was also studied in the temperature range of 25 to 50 °C. The study of enrichment cultures using the molecular biological method using the metabarcoding method of variable V3–24 V4 fragments of 16S rRNA genes showed that enrichment cultures obtained under different conditions differed in composition, which can be explained by differences in the physiological properties of the identified microorganisms. Regarding the dynamics of the oxidation of ferrous ions, sulfur, and sulfide minerals (pyrite and chalcopyrite), each enrichment culture was studied at a temperature range of 25 to 50 °C and indicated that all obtained enrichments were capable of oxidizing ferrous iron, sulfur and minerals at different rates. The obtained enrichment cultures may be used in further work to increase bioleaching by using the suitable inoculum for the temperature and process conditions. Full article
Show Figures

Figure 1

19 pages, 4046 KiB  
Article
TMAO Activates the NLRP3 Inflammasome, Disrupts Gut–Kidney Interaction, and Promotes Intestinal Inflammation
by Leyao Fang, Junxi Shen, Nenqun Xiao and Zhoujin Tan
Int. J. Mol. Sci. 2025, 26(15), 7441; https://doi.org/10.3390/ijms26157441 (registering DOI) - 1 Aug 2025
Abstract
Gut microbiota-derived trimethylamine N-oxide (TMAO) has been implicated in both intestinal and renal diseases; however, its specific role in modulating gut–kidney interactions remains unclear. This study aimed to investigate the effects of TMAO on gut–kidney crosstalk using a mouse model of diarrhea. Mice [...] Read more.
Gut microbiota-derived trimethylamine N-oxide (TMAO) has been implicated in both intestinal and renal diseases; however, its specific role in modulating gut–kidney interactions remains unclear. This study aimed to investigate the effects of TMAO on gut–kidney crosstalk using a mouse model of diarrhea. Mice were divided into four groups: normal, model, TMAO, and TMAO + model. The normal group received sterile water, while the other groups were administered adenine + Folium sennae, TMAO, or a combination of TMAO and adenine + Folium sennae. Samples were collected to assess morphological changes in the colon and kidney, evaluate the colonic mucosal barrier and renal function, and measure NLRP3 inflammasome activity and inflammatory cytokine levels in colonic and renal tissues. TMAO levels and the gut microbiota composition were analyzed using 16S rRNA sequencing. The model group exhibited altered stool morphology, which was further aggravated by TMAO intervention. Both the model and TMAO + model groups exhibited significant damage to intestinal and renal tissues, along with compromised intestinal mucosal barriers and impaired renal function compared to controls. Inflammatory markers were elevated in these groups, with the TMAO + model group showing the most pronounced increases. Correlation analysis indicated significant relationships among TMAO levels, inflammasome activation, and inflammatory cytokines. The genera Mucispirillum and Anaerotruncus negatively correlated with TMAO, whereas Parabacteroides and Parasutterella genera positively correlated with TMAO. In conclusion, TMAO plays a critical role in modulating gut–kidney crosstalk by promoting inflammation, disrupting mucosal and renal integrity, and altering the gut microbial ecosystem. Full article
(This article belongs to the Collection Advances in Cell and Molecular Biology)
Show Figures

Figure 1

15 pages, 1894 KiB  
Article
Microbial Communities’ Composition of Supralittoral and Intertidal Sediments in Two East African Beaches (Djibouti Republic)
by Sonia Renzi, Alessandro Russo, Aldo D’Alessandro, Samuele Ciattini, Saida Chideh Soliman, Annamaria Nistri, Carlo Pretti, Duccio Cavalieri and Alberto Ugolini
Microbiol. Res. 2025, 16(8), 173; https://doi.org/10.3390/microbiolres16080173 (registering DOI) - 1 Aug 2025
Abstract
Tropical sandy beaches are dynamic ecosystems where microbial communities play crucial roles in biogeochemical processes and tracking human impact. Despite their importance, these habitats remain underexplored. Here, using amplicon-based sequencing of bacterial (V3-V4 16S rRNA) and fungal (ITS2) markers, we first describe microbial [...] Read more.
Tropical sandy beaches are dynamic ecosystems where microbial communities play crucial roles in biogeochemical processes and tracking human impact. Despite their importance, these habitats remain underexplored. Here, using amplicon-based sequencing of bacterial (V3-V4 16S rRNA) and fungal (ITS2) markers, we first describe microbial communities inhabiting supralittoral–intertidal sediments of two contrasting sandy beaches in the Tadjoura Gulf (Djibouti Republic): Sagallou-Kalaf (SK, rural, siliceous sand) and Siesta Plage (SP, urban, calcareous sand). Sand samples were collected at low tide along 10 m transects perpendicular to the shoreline. Bacterial communities differed significantly between sites and along the sea-to-land gradient, suggesting an influence from both anthropogenic activity and sediment granulometry. SK was dominated by Escherichia-Shigella, Staphylococcus, and Bifidobacterium, associated with human and agricultural sources. SP showed higher richness, with enriched marine-associated genera such as Hoeflea, Xanthomarina, and Marinobacter, also linked to hydrocarbon degradation. Fungal diversity was less variable, but showed significant shifts along transects. SK communities were dominated by Kluyveromyces and Candida, while SP hosted a broader fungal assemblage, including Pichia, Rhodotorula, and Aureobasidium. The higher richness at SP suggests that calcium-rich sands, possibly due to their buffering capacity and greater moisture retention, offer more favorable conditions for microbial colonization. Full article
Show Figures

Graphical abstract

20 pages, 1383 KiB  
Review
The Multifaceted Role of miR-211 in Health and Disease
by Juan Rayo Parra, Zachary Grand, Gabriel Gonzalez, Ranjan Perera, Dipendra Pandeya, Tracey Weiler and Prem Chapagain
Biomolecules 2025, 15(8), 1109; https://doi.org/10.3390/biom15081109 (registering DOI) - 1 Aug 2025
Abstract
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor [...] Read more.
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor suppressor and oncogene. In physiological contexts, miR-211 regulates cell cycle progression, metabolism, and differentiation through the modulation of key signaling pathways, including TGF-β/SMAD and PI3K/AKT. miR-211 participates in retinal development, bone physiology, and protection against renal ischemia–reperfusion injury. In pathological conditions, miR-211 expression is altered in various diseases, particularly cancer, where it may be a useful diagnostic and prognostic biomarker. Its stability in serum and differential expression in various cancer types make it a promising candidate for non-invasive diagnostics. The review also explores miR-211’s therapeutic potential, discussing both challenges and opportunities in developing miRNA-based treatments. Understanding miR-211’s complex regulatory interactions and context-dependent functions is crucial for advancing its clinical applications for diagnosis, prognosis, and targeted therapy in multiple diseases. Full article
(This article belongs to the Special Issue DNA Damage, Mutagenesis, and Repair Mechanisms)
Show Figures

Figure 1

22 pages, 7580 KiB  
Article
Bacterial and Physicochemical Dynamics During the Vermicomposting of Bovine Manure: A Comparative Analysis of the Eisenia fetida Gut and Compost Matrix
by Tania Elizabeth Velásquez-Chávez, Jorge Sáenz-Mata, Jesús Josafath Quezada-Rivera, Rubén Palacio-Rodríguez, Gisela Muro-Pérez, Alan Joel Servín-Prieto, Mónica Hernández-López, Pablo Preciado-Rangel, María Teresa Salazar-Ramírez, Juan Carlos Ontiveros-Chacón and Cristina García-De la Peña
Microbiol. Res. 2025, 16(8), 177; https://doi.org/10.3390/microbiolres16080177 (registering DOI) - 1 Aug 2025
Abstract
Vermicomposting is a sustainable biotechnological process that transforms organic waste through the synergistic activity of earthworms, such as Eisenia fetida, and their associated microbiota. This study evaluated bacterial and physicochemical dynamics during the vermicomposting of bovine manure by analyzing the microbial composition [...] Read more.
Vermicomposting is a sustainable biotechnological process that transforms organic waste through the synergistic activity of earthworms, such as Eisenia fetida, and their associated microbiota. This study evaluated bacterial and physicochemical dynamics during the vermicomposting of bovine manure by analyzing the microbial composition of the substrate and the gut of E. fetida at three time points (weeks 0, 6, and 12). The V3–V4 region of the 16S rRNA gene was sequenced, and microbial diversity was characterized using QIIME2. Significant differences in alpha diversity (observed features, Shannon index, and phylogenetic diversity) and beta diversity indicated active microbial succession. Proteobacteria, Bacteroidota, and Actinobacteriota were the dominant phyla, with abundances varying across habitats and over time. A significant enrichment of Proteobacteria, Bacteroidota, and the genera Chryseolinea, Flavobacterium, and Sphingomonas was observed in the manure treatments. In contrast, Actinobacteriota, Firmicutes, and the genera Methylobacter, Brevibacillus, Enhygromyxa, and Bacillus, among others, were distinctive of the gut samples and contributed to their dissimilarity from the manure treatments. Simultaneously, the physicochemical parameters indicated progressive substrate stabilization and nutrient enrichment. Notably, the organic matter and total organic carbon contents decreased (from 79.47% to 47.80% and from 46.10% to 27.73%, respectively), whereas the total nitrogen content increased (from 1.70% to 2.23%); these effects reduced the C/N ratio, which is a recognized indicator of maturity, from 27.13 to 12.40. The macronutrient contents also increased, with final values of 1.41% for phosphorus, 1.50% for potassium, 0.89% for magnesium, and 2.81% for calcium. These results demonstrate that vermicomposting modifies microbial communities and enhances substrate quality, supporting its use as a biofertilizer for sustainable agriculture, soil restoration, and agrochemical reduction. Full article
Show Figures

Figure 1

13 pages, 1085 KiB  
Article
Comparative Endosymbiont Community Structures of Nonviruliferous and Rice Stripe Virus-Viruliferous Laodelphax striatellus (Hemiptera: Delphacidae) in Korea
by Jiho Jeon, Minhyeok Kwon, Bong Choon Lee and Eui-Joon Kil
Viruses 2025, 17(8), 1074; https://doi.org/10.3390/v17081074 - 1 Aug 2025
Abstract
Insects and their bacterial endosymbionts form intricate ecological relationships, yet their role in host–pathogen interactions are not fully elucidated. The small brown planthopper (Laodelphax striatellus), a polyphagous pest of cereal crops, acts as a key vector for rice stripe virus (RSV), [...] Read more.
Insects and their bacterial endosymbionts form intricate ecological relationships, yet their role in host–pathogen interactions are not fully elucidated. The small brown planthopper (Laodelphax striatellus), a polyphagous pest of cereal crops, acts as a key vector for rice stripe virus (RSV), a significant threat to rice production. This study aimed to compare the endosymbiont community structures of nonviruliferous and RSV-viruliferous L. striatellus populations using 16S rRNA gene sequencing with high-throughput sequencing technology. Wolbachia was highly dominant in both groups; however, the prevalence of other endosymbionts, specifically Rickettsia and Burkholderia, differed markedly depending on RSV infection. Comprehensive microbial diversity and composition analyses revealed distinct community structures between nonviruliferous and RSV-viruliferous populations, highlighting potential interactions and implications for vector competence and virus transmission dynamics. These findings contribute to understanding virus-insect-endosymbiont dynamics and could inform strategies to mitigate viral spread by targeting symbiotic bacteria. Full article
(This article belongs to the Special Issue Plant Viruses and Their Vectors: Epidemiology and Control)
Show Figures

Figure 1

13 pages, 292 KiB  
Article
Molecular Detection of Multiple Antimicrobial Resistance Genes in Helicobacter pylori-Positive Gastric Samples from Patients Undergoing Upper Gastrointestinal Endoscopy with Gastric Biopsy in Algarve, Portugal
by Francisco Cortez Nunes, Catarina Aguieiras, Mauro Calhindro, Ricardo Louro, Bruno Peixe, Patrícia Queirós, Pedro Castelo-Branco and Teresa Letra Mateus
Antibiotics 2025, 14(8), 780; https://doi.org/10.3390/antibiotics14080780 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Helicobacter pylori (H. pylori) is a common gastric pathogen linked to gastritis, gastroduodenal ulcers, and gastric cancer. Rising antimicrobial resistance (AMR) poses challenges for effective treatment and has prompted the WHO to classify H. pylori as a high-priority pathogen. [...] Read more.
Background/Objectives: Helicobacter pylori (H. pylori) is a common gastric pathogen linked to gastritis, gastroduodenal ulcers, and gastric cancer. Rising antimicrobial resistance (AMR) poses challenges for effective treatment and has prompted the WHO to classify H. pylori as a high-priority pathogen. This study aimed to detect the prevalence of AMR genes in H. pylori-positive gastric samples from patients in Algarve, Portugal, where regional data is scarce. Methods: Eighteen H. pylori-positive gastric biopsy samples from patients undergoing upper gastrointestinal endoscopy were analyzed. PCR and sequencing were used to identify genes associated with resistance to amoxicillin (Pbp1A), metronidazole (rdxA, frxA), tetracycline (16S rRNA mutation) and clarithromycin (23S rRNA). Sequence identity and homologies were verified using tBLASTx and the Comprehensive Antibiotic Resistance Database (CARD). Results: Out of the 18 H. pylori-positive samples, 16 (88.9%) contained at least one AMR gene. The most frequent genes were rdxA (83.3%) and frxA (66.7%) for metronidazole resistance, and the 16S rRNA mutation (66.7%) for tetracycline. Resistance to amoxicillin and clarithromycin was detected in 27.8% and 16.7% of cases, respectively. Most samples (72.2%) had multiple resistance genes. A significantly strong association was found between female sex and the presence of the rdxA gene (p = 0.043). Conclusions: The study reveals a high prevalence of H. pylori resistance genes in Algarve, particularly against metronidazole and tetracycline. These findings highlight the need for local surveillance and tailored treatment strategies. Further research with larger populations is warranted to assess regional resistance patterns and improve eradication efforts. Full article
Show Figures

Graphical abstract

23 pages, 4116 KiB  
Article
Taxonomic and Functional Profiling of Bacterial Communities in Leather Biodegradation: Insights into Metabolic Pathways and Diversity
by Manuela Bonilla-Espadas, Marcelo Bertazzo, Irene Lifante-Martinez, Mónica Camacho, Elena Orgilés-Calpena, Francisca Arán-Aís and María-José Bonete
Bacteria 2025, 4(3), 37; https://doi.org/10.3390/bacteria4030037 (registering DOI) - 1 Aug 2025
Abstract
Leather biodegradation is a complex microbial process with increasing relevance for sustainable waste management. In this study, we investigated bacterial communities responsible for the degradation of leather treated with different tanning agents (chrome, Zeolite, Biole®) using high-throughput 16S rRNA gene sequencing [...] Read more.
Leather biodegradation is a complex microbial process with increasing relevance for sustainable waste management. In this study, we investigated bacterial communities responsible for the degradation of leather treated with different tanning agents (chrome, Zeolite, Biole®) using high-throughput 16S rRNA gene sequencing and metatranscriptomic analysis. Proteobacteria, Bacteroidetes, and Patescibacteria emerged as the dominant phyla, while genera such as Acinetobacter, Pseudomonas, and Sphingopyxis were identified as key contributors to enzymatic activity and potential metal resistance. A total of 1302 enzymes were expressed across all the conditions, including 46 proteases, with endopeptidase La, endopeptidase Clp, and methionyl aminopeptidase being the most abundant. Collagen samples exhibited the highest functional diversity and total enzyme expression, whereas chrome-treated samples showed elevated protease activity, indicating selective pressure from heavy metals. Differential enzyme expression patterns were linked to both the microbial identity and tanning chemistry, revealing genus- and treatment-specific enzymatic signatures. These findings deepen our understanding of how tanning agents modulate the microbial structure and function and identify proteases with potential applications in the bioremediation and eco-innovation of leather waste processing. Full article
Show Figures

Figure 1

13 pages, 1191 KiB  
Article
Gut Microbiome Structural Dynamics in Japanese Quail Across Developmental Stages
by Daniela da Silva Gomes, Alexandre Lemos de Barros Moreira Filho, Wydemberg José de Araújo, Gustavo Felipe Correia Sales, Hemilly Marques da Silva, Thalis José de Oliveira, Antonio Venício de Sousa, Celso José Bruno de Oliveira and Patrícia Emília Naves Givisiez
Microbiol. Res. 2025, 16(8), 167; https://doi.org/10.3390/microbiolres16080167 - 1 Aug 2025
Abstract
The cecal microbiota is essential for intestinal health and performance. This study describes the succession patterns of the cecal microbiota in Japanese quail (Coturnix japonica) until 42 days of age. Sixty quails were raised using standard conditions and fed corn–soybean meal [...] Read more.
The cecal microbiota is essential for intestinal health and performance. This study describes the succession patterns of the cecal microbiota in Japanese quail (Coturnix japonica) until 42 days of age. Sixty quails were raised using standard conditions and fed corn–soybean meal diets. Cecal contents were sampled from five birds weekly from 7 to 42 days of age and submitted to Illumina 16S rRNA sequencing for metabarcoding analysis. Diversity and functional prediction were carried out with QIIME2, PICRUSt2, STAMP and MicrobiomeAnalyst 2.0. Firmicutes increased from 50% at 7 days to more than 80% at 42 days, whereas Bacteroidota decreased from 45% to 12% in the same period. Alpha diversity progressively increased with age, indicating a richer and more balanced microbiota at later ages. Genera such as Bacteroides were predominant in the beginning and later were replaced by Lachnospiraceae, Ruminococcus and Faecalibacterium. These developmental taxonomic features aligned with significant shifts in ten metabolic pathways identified by prediction, revealing a transition from biosynthetic functions to complex carbohydrate metabolism and cell wall biosynthesis. The first seven days are considered a critical window for probiotics intervention, which may favor the establishment of a microbiota that is more stable and beneficial to quail performance. Full article
Show Figures

Figure 1

Back to TopTop