Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,351)

Search Parameters:
Keywords = 24-hydroxylase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2612 KB  
Article
Enhanced Bone Formation in Segmental Defect Healing Using 3D Printed Scaffolds Containing Bone Marrow Stromal Cells and Small Molecules Targeting Chondrogenesis and Osteogenesis
by Charles H. Rundle, Sheila Pourteymoor, Enoch Lai, Chandrasekhar Kesavan and Subburaman Mohan
Biomedicines 2026, 14(1), 227; https://doi.org/10.3390/biomedicines14010227 - 20 Jan 2026
Abstract
Background/Objectives: Nonunion bone healing results from a critical size defect that fails to bridge a bone injury to produce bony union. Novel approaches are critical for refining therapy in clinically challenging bone injuries, but the complex and coordinated nature of fracture callus tissue [...] Read more.
Background/Objectives: Nonunion bone healing results from a critical size defect that fails to bridge a bone injury to produce bony union. Novel approaches are critical for refining therapy in clinically challenging bone injuries, but the complex and coordinated nature of fracture callus tissue development requires study outside of the simple closed murine fracture model. Methods: We have utilized a three-dimensional printing approach to develop a scaffold construct with layers designed to sequentially release small molecule therapy within the tissues of a murine endochondral segmental defect to augment different mechanisms of fracture repair during critical stages of nonunion bone healing. Initially, a sonic hedgehog (SHH) agonist is released from a fibrin layer to promote chondrogenesis. A prolyl-hydroxylase domain (PHD)2 inhibitor is subsequently released from a β-tricalcium phosphate (β-TCP) layer to promote hypoxia-inducible factor (HIF)-1α regulation of angiogenesis. This sequential approach to therapy delivery is assisted by the inclusion of bone marrow stromal cells (BMSCs) to increase the cell substrate available for the small molecule therapy. Results: Immunohistochemistry of fracture callus tissue revealed increased expression of PTCH1 and HIF1α, targets of hedgehog and hypoxia signaling pathways, respectively, in the SAG21k/IOX2-treated mice compared to vehicle control. MicroCT and histology analyses showed increased bone in the fracture callus of mice that received therapy compared to control vehicle scaffolds. Conclusions: While our findings establish feasibility for the use of BMSCs and small molecules in the fibrin gel/β-TCP scaffolds to promote new bone formation for segmental defect healing, further optimization of these approaches is required to develop a fracture callus capable of completing bony union in a large defect. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

18 pages, 7843 KB  
Article
Mechanistic Evaluation of Roxadustat for Pulmonary Fibrosis: Integrating Network Pharmacology, Transcriptomics, and Experimental Validation
by Congcong Zhang, Xinyue Huang, Huina Ye, Haidong Tang, Minwei Huang, Shu Jia, Jingping Shao, Jingyi Wu and Xiaomin Yao
Pharmaceuticals 2026, 19(1), 179; https://doi.org/10.3390/ph19010179 - 20 Jan 2026
Abstract
Background: Pulmonary fibrosis (PF) currently lacks effective therapeutic interventions. Roxadustat, an oral small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase, has been shown in several studies to attenuate the progression of fibrotic diseases. However, its therapeutic efficacy in PF remains to be fully [...] Read more.
Background: Pulmonary fibrosis (PF) currently lacks effective therapeutic interventions. Roxadustat, an oral small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase, has been shown in several studies to attenuate the progression of fibrotic diseases. However, its therapeutic efficacy in PF remains to be fully elucidated. The aim of this study was to evaluate roxadustat’s therapeutic benefits on PF as well as the underlying mechanisms of action. Methods: Bleomycin was administered intraperitoneally to establish a PF mouse model. H&E staining, Masson staining, and immunohistochemistry (IHC) were used to assess histopathological and fibrotic changes. Changes in the expression levels of inflammatory mediators, including IL-1β, TGF-β1, and TNF-α, were examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Network pharmacology combined with transcriptomic analysis was employed to identify potential target genes and associated signaling pathways. Subsequently, RT-qPCR and Western blot analyses were carried out to experimentally validate the predicted targets and pathways and to verify the protective effects of roxadustat in PF mice. Results: Roxadustat markedly ameliorated bleomycin-induced pulmonary fibrosis in mice. The therapeutic effect was evidenced by a reduction in alveolar damage, thinner alveolar septa, diminished infiltration of inflammatory cells, and decreased collagen deposition. Concomitantly, the expression levels of inflammatory mediators, including IL-1β, TGF-β1, and TNF-α, were significantly lowered. Integrated network pharmacology and transcriptomic analyses revealed the involvement of critical signaling pathways, specifically nuclear factor-kappa B (NF-κB) and peroxisome proliferator-activated receptor (PPAR). Experimental validation further demonstrated that roxadustat downregulated the expression of key genes (S100A8, S100A9, and Fos) in murine lung tissues. It also suppressed the protein ratios of phosphorylated p65 to total p65 and phosphorylated IκBα to total IκBα. Moreover, roxadustat treatment upregulated PPARγ protein expression. Conclusions: These data indicate that roxadustat ameliorates bleomycin-induced PF in mice, an effect associated with modulation of the NF-κB and PPAR signaling pathways. The findings provide a preclinical rationale for further investigation of roxadustat as a potential treatment for PF. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

16 pages, 3410 KB  
Article
Systematic Evaluation of a Mouse Model of Aging-Associated Parkinson’s Disease Induced with MPTP and D-Galactose
by Tongzheng Liu, Xiaoyu Liu, Qiuyue Chen, Jinfeng Ren, Zifa Li, Xiao Qiu, Xinyu Wang, Lidan Wu, Minghui Hu, Dan Chen, Hao Zhang and Xiwen Geng
Biology 2026, 15(2), 169; https://doi.org/10.3390/biology15020169 - 17 Jan 2026
Viewed by 106
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by motor dysfunction and non-motor symptoms, including cognitive decline. Animal models that replicate PD’s clinical features are essential for therapeutic research. The widely used subacute 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP)-induced mouse model effectively mimics motor deficits but [...] Read more.
Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by motor dysfunction and non-motor symptoms, including cognitive decline. Animal models that replicate PD’s clinical features are essential for therapeutic research. The widely used subacute 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP)-induced mouse model effectively mimics motor deficits but fails to fully represent aging-related non-motor symptoms. In this study, we established an aging-associated PD mouse model by combining MPTP with D-galactose treatment. Compared to mice treated with MPTP alone, MPTP + D-galactose-treated mice exhibited typical motor impairments alongside cognitive deficits in the Morris water maze and Y-maze tests. D-galactose alone induced cognitive impairment without motor dysfunction. Pathological analysis showed that the MPTP + D-galactose treatment caused tyrosine hydroxylase-positive neuron loss similar to MPTP, while D-galactose did not damage these neurons. Additionally, Micro-CT revealed bone loss in both the MPTP + D-galactose and D-galactose groups. This model recapitulates both the motor and aging-related non-motor symptoms of PD, including cognitive impairment and bone loss, providing a more comprehensive tool for studying PD pathogenesis and evaluating potential therapies. Full article
(This article belongs to the Special Issue Animal Models of Neurodegenerative Diseases)
Show Figures

Figure 1

17 pages, 2992 KB  
Article
Farnesol, a Dietary Sesquiterpene, Attenuates Rotenone-Induced Dopaminergic Neurodegeneration by Inhibiting Oxidative Stress, Inflammation, and Apoptosis via Mediation of Cell Signaling Pathways in Rats
by Lujain Bader Eddin, Seenipandi Arunachalam, Sheikh Azimullah, Mohamed Fizur Nagoor Meeran, Mouza Ali Hasan AlQaishi Alshehhi, Amar Mahgoub, Rami Beiram and Shreesh Ojha
Int. J. Mol. Sci. 2026, 27(2), 811; https://doi.org/10.3390/ijms27020811 - 14 Jan 2026
Viewed by 158
Abstract
Parkinson’s disease is a neurodegenerative disorder that affects the elderly population worldwide. Rotenone (ROT) is an environmental toxin that impairs mitochondrial dynamics by inhibiting respiratory chain complex I and thus inducing oxidative stress. Farnesol (FSL) is a dietary sesquiterpene with antioxidant and anti-inflammatory [...] Read more.
Parkinson’s disease is a neurodegenerative disorder that affects the elderly population worldwide. Rotenone (ROT) is an environmental toxin that impairs mitochondrial dynamics by inhibiting respiratory chain complex I and thus inducing oxidative stress. Farnesol (FSL) is a dietary sesquiterpene with antioxidant and anti-inflammatory properties reported in various in vivo models. To evaluate the efficacy of FSL in the management of PD, Wistar rats were injected with ROT (2.5 mg/kg, i.p) and pretreated with FSL. Immunohistochemical staining measured tyrosine hydroxylase-positive cells in the substantia nigra and striatum. Western blotting was employed to determine protein expression of inflammatory, apoptotic, and autophagic markers. Our results indicate that FSL significantly protected against ROT-induced inflammation by suppressing microglial and astrocytic activation through the downregulation of Toll-Like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), inhibitor of kappa B (IkB), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX), matrix metalloproteinase-9 (MMP-9) expression. FSL has also demonstrated an antioxidant effect by enhancing the activity of superoxide dismutase and catalase while reducing the level of Malondialdehyde and nitric oxide. Moreover, it restored homeostasis in ROT-induced imbalance between pro- and anti-apoptotic proteins. Impaired autophagy observed in ROT-injected rats was corrected by FSL treatment, which upregulated phosphorylated mammalian target of rapamycin (p-mTOR) expression and downregulated P62, an autophagosome marker. The protective effect of FSL was further supported by preserving the brain-derived neurotrophic factor (BDNF) and tyrosine hydroxylase in the brain. These findings demonstrate the neuroprotective ability of FSL and its potential to be developed as a pharmaceutical or nutraceutical agent for the prevention and treatment of PD by mitigating neuropathological changes observed in dopaminergic neurodegeneration. Full article
Show Figures

Figure 1

24 pages, 4165 KB  
Article
Dihydrotanshinone as a Natural Product-Based CYP17A1 Lyase Inhibitor for Hyperandrogenic Disorders
by Kaige Li, Jibira Yakubu, Flemming Steen Jørgensen and Amit V. Pandey
Biomolecules 2026, 16(1), 144; https://doi.org/10.3390/biom16010144 - 14 Jan 2026
Cited by 1 | Viewed by 251
Abstract
Selective inhibition of CYP17A1 17,20-lyase is critical for treating hyperandrogenic disorders without the cortisol-depleting side effects of non-selective drugs like abiraterone. We evaluated tanshinones from Salvia miltiorrhiza as potential selective inhibitors using biochemical assays and computational modeling. Dihydrotanshinone (DT) emerged as the superior [...] Read more.
Selective inhibition of CYP17A1 17,20-lyase is critical for treating hyperandrogenic disorders without the cortisol-depleting side effects of non-selective drugs like abiraterone. We evaluated tanshinones from Salvia miltiorrhiza as potential selective inhibitors using biochemical assays and computational modeling. Dihydrotanshinone (DT) emerged as the superior candidate; at 10 µM, it inhibited 17,20-lyase activity by 56.6% while preserving >93% of 17α-hydroxylase activity. This yields a selectivity index of 8.67, drastically outperforming abiraterone (0.73). Furthermore, DT displayed minimal off-target inhibition of CYP21A2 (14.9%) compared to abiraterone (29.8%). Molecular modeling suggests DT’s efficacy arises from a unique, functionally disruptive binding pose rather than superior thermodynamic affinity. Consequently, DT is validated as a potent natural product lead. Its dual selectivity over 17α-hydroxylase and CYP21A2 establishes the tanshinone scaffold as a promising candidate for developing safer therapies that suppress androgens while sparing cortisol biosynthesis. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

23 pages, 17045 KB  
Article
BAP31 Modulates Mitochondrial Homeostasis Through PINK1/Parkin Pathway in MPTP Parkinsonism Mouse Models
by Wanting Zhang, Shihao Meng, Zhenzhen Hao, Xiaoshuang Zhu, Lingwei Cao, Qing Yuan and Bing Wang
Cells 2026, 15(2), 137; https://doi.org/10.3390/cells15020137 - 12 Jan 2026
Viewed by 179
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by age-dependent degeneration of dopaminergic neurons in the substantia nigra, a process mediated by α-synuclein aggregation, mitochondrial dysfunction, and impaired proteostasis. While BAP31—an endoplasmic reticulum protein critical for protein trafficking and degradation—has been implicated in [...] Read more.
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by age-dependent degeneration of dopaminergic neurons in the substantia nigra, a process mediated by α-synuclein aggregation, mitochondrial dysfunction, and impaired proteostasis. While BAP31—an endoplasmic reticulum protein critical for protein trafficking and degradation—has been implicated in neuronal processes, its role in PD pathogenesis remains poorly understood. To investigate the impact of BAP31 deficiency on PD progression, we generated dopamine neuron-specific BAP31 conditional knockout with DAT-Cre (cKO) mice (Slc6a3cre-BAP31fl/fl) and subjected them to MPTP-lesioned Parkinsonian models. Compared to BAP31fl/fl controls, Slc6a3cre-BAP31fl/fl mice exhibited exacerbated motor deficits following MPTP treatment, including impaired rotarod performance, reduced balance beam traversal time, and diminished climbing and voluntary motor capacity abilities. BAP31 conditional deletion showed no baseline phenotype, with deficits emerging only after MPTP. Our results indicate that these behavioral impairments correlated with neuropathological hallmarks: decreased NeuN neuronal counts, elevated GFAP astrogliosis, reduced tyrosine hydroxylase levels in the substantia nigra, and aggravated dopaminergic neurodegeneration. Mechanistically, BAP31 deficiency disrupted mitochondrial homeostasis by suppressing the PINK1–Parkin mitophagy pathway. Further analysis revealed that BAP31 regulates PINK1 transcription via the transcription factor Engrailed Homeobox 1. Collectively, our findings identify BAP31 as a neuroprotective modulator that mitigates PD-associated motor dysfunction by preserving mitochondrial stability, underscoring its therapeutic potential as a target for neurodegenerative disorders. Full article
Show Figures

Figure 1

10 pages, 1226 KB  
Case Report
Adrenal Venous Sampling Aids in Distinguishing 17-Hydroxyprogesterone Hypersecreting Adrenal Cortical Adenomas from Non-Classical 21-Hydroxylase Deficiency
by Ruojun Qiu, Tian Yang, Chengxin Shang, Weifen Zhu and Fenping Zheng
Diagnostics 2026, 16(2), 202; https://doi.org/10.3390/diagnostics16020202 - 8 Jan 2026
Viewed by 218
Abstract
Background and Clinical Significance: This report presents the case of a 33-year-old female with recurrent miscarriage, investigated for an adrenal cortical adenoma characterized by autonomous secretion of 17-hydroxyprogesterone (17-OHP). The findings challenge the established diagnostic paradigm, which predominantly attributes elevated serum 17-OHP to [...] Read more.
Background and Clinical Significance: This report presents the case of a 33-year-old female with recurrent miscarriage, investigated for an adrenal cortical adenoma characterized by autonomous secretion of 17-hydroxyprogesterone (17-OHP). The findings challenge the established diagnostic paradigm, which predominantly attributes elevated serum 17-OHP to congenital adrenal hyperplasia (CAH) or non-classical CAH (NCCAH). Case Presentation: The patient was found to have elevated serum 17-OHP and a 2 cm left adrenal mass. Normal testosterone and precursor levels, along with whole-exome sequencing (WES), argued against a diagnosis of non-classical 21-hydroxylase deficiency (NC-21OHD). An ACTH stimulation test elicited a mild-to-moderate rise in 17-OHP, while adrenal venous sampling (AVS) confirmed marked lateralization of 17-OHP hypersecretion to the left side. Postoperative normalization of 17-OHP levels further supported the diagnosis of a 17-OHP-secreting tumor. Histopathological analysis identified tumor regions with non-uniformly high expression of CYP17A1 and CYP21A2. Preliminary transcriptomic profiling revealed that differentially expressed genes (DEGs) were enriched in microRNA-related and PI3K-Akt signaling pathways. Conclusions: This paradigm-shifting case indicates that, in addition to 21OHD, a 17-OHP-hypersecreting adrenal adenoma should be considered in the differential diagnosis of elevated 17-OHP. The integration of multimodal diagnostic techniques, particularly AVS, is valuable for localizing hormonally active tumors. Preliminary mechanistic insights suggest a potential role for epigenetic dysregulation in the pathogenesis of this tumor type. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

25 pages, 18578 KB  
Article
CDK5RAP3 Regulates Testosterone Production in Mouse Leydig Cells
by Jian Ruan, Qianyi Dong, Yufan Jin, Yuhong Yang, Jun Li and Yafei Cai
Int. J. Mol. Sci. 2026, 27(2), 586; https://doi.org/10.3390/ijms27020586 - 6 Jan 2026
Viewed by 172
Abstract
Testosterone (T) produced by Leydig cells (LCs) is essential for male reproduction; yet, the regulatory mechanisms underlying steroidogenesis remain incompletely understood. Here, we investigated the role of cyclin-dependent kinase 5 regulatory subunit-associated protein 3 (CDK5RAP3) in Leydig cell development and steroidogenesis, based on [...] Read more.
Testosterone (T) produced by Leydig cells (LCs) is essential for male reproduction; yet, the regulatory mechanisms underlying steroidogenesis remain incompletely understood. Here, we investigated the role of cyclin-dependent kinase 5 regulatory subunit-associated protein 3 (CDK5RAP3) in Leydig cell development and steroidogenesis, based on its identification by immunoprecipitation-mass spectrometry (IP-MS) as a protein associated with steroidogenesis and cholesterol metabolism in mouse testicular tissue. Using human samples, we found that CDK5RAP3 expression was significantly reduced in Leydig cells from patients with spermatogenic failure (T < 10.4 nmol/L). Notably, CDK5RAP3 expression increased during mouse postnatal Leydig cell maturation and regeneration in an ethane dimethanesulfonate (EDS)-induced rat model. Functional analyses in primary LCs and MLTC-1 cells showed that hCG stimulation triggered CDK5RAP3 nuclear translocation without altering its overall expression, while CDK5RAP3 knockdown markedly impaired hCG-induced testosterone production and reduced the expression of the steroidogenic regulator steroidogenic acute regulatory (STAR) protein, as well as key steroidgenic enzymes, including cytochrome P450 family 11 subfamily A member 1 (CYP11A1), 17a-hydroxylase (CYP17A1), and 3β-hydroxysteroid dehydrogenase (HSD3B). Conversely, CDK5RAP3 overexpression enhanced testosterone production in the absence of hCG. In vivo, AAV2/9-mediated CDK5RAP3 silencing in adult mouse testes resulted in a significant reduction in serum testosterone levels compared with controls (3.60 ± 0.38 ng/mL vs. 1.83 ± 0.37 ng/mL). Mechanistically, CDK5RAP3 interacted with SMAD4 and CEBPB, and BMP pathway inhibition by Noggin rescued the testosterone deficit caused by CDK5RAP3 loss. Together, these findings identify CDK5RAP3 as an essential regulator of Leydig cell steroidogenesis and provide insight into its potential relevance to male infertility associated with low testosterone. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

26 pages, 1063 KB  
Review
Microbial Cell Factories for Phenylethanoid Glycosides: A Review on Engineering Strategies and Perspectives
by Qian Yang, Yu Wang and Xin Zhao
Fermentation 2026, 12(1), 32; https://doi.org/10.3390/fermentation12010032 - 6 Jan 2026
Viewed by 493
Abstract
Due to the neuroprotective and antioxidant properties, phenylethanoid glycosides (PhGs) are valuable plant-derived compounds. Traditional extraction methods are constrained by low yields and limited resources, prompting the integration of synthetic biology and enzyme engineering technologies for sustainable production. This review summarizes the advances [...] Read more.
Due to the neuroprotective and antioxidant properties, phenylethanoid glycosides (PhGs) are valuable plant-derived compounds. Traditional extraction methods are constrained by low yields and limited resources, prompting the integration of synthetic biology and enzyme engineering technologies for sustainable production. This review summarizes the advances in the microbial synthesis of PhGs, emphasizing the elucidation of biosynthetic pathways, enzyme engineering modifications of glycosyltransferases and acyltransferases, and strategies for optimizing microbial cell factories in Escherichia coli and Saccharomyces cerevisiae. Significant advancements encompass the efficient synthesis of verbascoside and echinacoside in S. cerevisiae, as well as the comprehensive elucidation of the echinacoside biosynthetic pathway in Cistanche spp., including the identification of key steps catalyzed by a rhamnosyltransferase, a CYP450 hydroxylase, and a terminal glucosyltransferase that enable pathway reconstruction in S. cerevisiae. We conduct a systematic analysis of methods to address the biosynthetic bottlenecks via protein engineering, including rational design and directed evolution, as well as the metabolic engineering strategies such as precursor enhancement and cofactor recycling. Additionally, we investigate the synthesis of non-natural PhG analogues and the prospective integration with AI-assisted design, emphasizing the significant potential of microbial systems in overcoming the supply challenges for medicine-food homologous ingredients. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

13 pages, 4041 KB  
Article
Mutated Hif-1αa Proteins with Increased Stability Under Normoxic Conditions Enhance Hypoxia Tolerance of Otomorphs by Promoting Glycolysis and Lactate Shuttle
by Xianzong Wang, Junli Yan, Huili Zhai, Jiali Guo, Xueyi Wang, Qing Liu and Shaozhen Liu
Animals 2026, 16(1), 119; https://doi.org/10.3390/ani16010119 - 31 Dec 2025
Viewed by 361
Abstract
Fishes are frequently exposed to hypoxic stress, yet their tolerance to hypoxia varies significantly among species. The association between this variation and alterations in the hypoxia-inducible factor (HIF) pathway remains unclear. We discovered that otomorphs generally retain two Hif-1α paralogs (Hif-1αa and Hif-1αb), [...] Read more.
Fishes are frequently exposed to hypoxic stress, yet their tolerance to hypoxia varies significantly among species. The association between this variation and alterations in the hypoxia-inducible factor (HIF) pathway remains unclear. We discovered that otomorphs generally retain two Hif-1α paralogs (Hif-1αa and Hif-1αb), resulting from the teleost-specific genome duplication (TGD), whereas most euteleosts possess only a single Hif-1αa copy. In otomorphs, key mutations disrupt one conserved Leu-X-X-Leu-Ala-Pro (LXXLAP) motif in the oxygen-dependent degradation (ODD) domain of the Hif-1αa proteins. Molecular dynamics simulations revealed that these mutations impede the recognition of the critical proline residue by prolyl hydroxylase domain protein 2 (PHD2), suggesting enhanced normoxic stability of Hif-1αa. We also investigated the expression profiles of hif-1α and downstream genes in four fish species (two otomorphs and two euteleosts). In otomorphs, the hif-1αa genes were highly expressed specifically in the heart; concomitantly, two critical downstream genes, ldha and mct4, exhibited relatively high expression levels in vital tissues such as the heart, brain, and muscle. This coordinated expression pattern promotes a heightened glycolytic capacity and facilitates lactate shuttling in these tissues, thereby ensuring energy supply during hypoxic stress. Our integrated computational analyses indicate that otomorphs achieve enhanced hypoxia tolerance through the subfunctionalization of Hif-1α paralogs. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

21 pages, 1616 KB  
Review
The TRiC/CCT Complex at the Crossroads of Metabolism and Hypoxia in GBM: Implications for IDH-Dependent Therapeutic Targeting
by Giusi Alberti, Giuseppa D’Amico, Maria Antonella Augello, Francesco Cappello, Marta Anna Szychlinska, Celeste Caruso Bavisotto and Federica Scalia
Int. J. Mol. Sci. 2026, 27(1), 373; https://doi.org/10.3390/ijms27010373 - 29 Dec 2025
Viewed by 338
Abstract
Glioblastoma (GBM) is characterized by its unique molecular features, such as self-renewal and tumorigenicity of glioma stem cells that promote resistance, largely resulting in treatment failure. Among the molecular alterations significant to GBM biology and treatment, mutations in isocitrate dehydrogenase (IDH) have assumed [...] Read more.
Glioblastoma (GBM) is characterized by its unique molecular features, such as self-renewal and tumorigenicity of glioma stem cells that promote resistance, largely resulting in treatment failure. Among the molecular alterations significant to GBM biology and treatment, mutations in isocitrate dehydrogenase (IDH) have assumed particular relevance. IDH-mutant and IDH-wild-type tumors exhibit significantly different metabolic characteristics, clinical behavior, and therapeutic sensitivities, making IDH status a critical determinant in determining prognosis and treatment strategies for GBM. In the context of cancer, chaperones were shown to promote tumor progression by supporting malignant cells over healthy ones. While heat shock proteins (HSPs) have long been implicated in the molecular mechanisms of tumor phenotype progression, recent attention has turned to CCT (chaperonin containing TCP1), orchestrating proteostasis. The chaperonin CCT is being explored as a diagnostic and therapeutic target in many cancers, including GBM, owing to its involvement in key oncogenic signaling pathways such as Wnt, VEGF, EGFR, and PI3K/AKT/mTOR. However, its role in the GBM-tricarboxylic acid (TCA) cycle cascade is still not well understood. Therefore, the present review highlights the potential role of the CCT complex in regulating hypoxia-inducible factor (HIF) activation by modulating enzymes responsive to metabolites derived from glucose metabolism and the TCA cycle in a manner dependent on oxygen availability and IDH mutation status. Full article
(This article belongs to the Special Issue Targeting Glioblastoma Metabolism)
Show Figures

Figure 1

24 pages, 3339 KB  
Article
Prospective Mapping of Transcriptional Changes Associated with Lipid and Carotenoid Production in Rhodotorula glutinis Using Different Feeding Approaches
by Nora Elfeky, Yongheng Yang, Guoping Zhu and Yongming Bao
Biology 2026, 15(1), 60; https://doi.org/10.3390/biology15010060 - 29 Dec 2025
Viewed by 264
Abstract
The oleaginous yeast Rhodotorula glutinis is a promising industrial host for the simultaneous production of lipids and carotenoids, yet the transcriptional regulation governing carbon flux toward these metabolites is poorly understood. As a foundational step, we performed a comparative transcriptomic analysis on bioreactor [...] Read more.
The oleaginous yeast Rhodotorula glutinis is a promising industrial host for the simultaneous production of lipids and carotenoids, yet the transcriptional regulation governing carbon flux toward these metabolites is poorly understood. As a foundational step, we performed a comparative transcriptomic analysis on bioreactor cultures under optimized fed-batch conditions with varying carbon-to-nitrogen (C/N) ratios and metal supplementation, comparing a nutrient-replete control (C) with conditions favoring high lipid (HLP) or high carotenoid (HCP) production. This study was designed as a preliminary, in-depth case study using single, well-controlled bioreactor runs per condition, with the goal of generating a comprehensive transcriptional map to identify key candidate genes for future validation. The data delineates two distinct presumptive metabolic strategies. The HLP regime was associated with broad transcriptional downregulation, channeling carbon toward lipogenesis via specific upregulation of the fatty acid synthase complex (FAS1/2, Log2FC(HLP/HCP) > 2.99) and concerted suppression of β-oxidation genes (Log2FC < −9.70). Conversely, the HCP condition was characterized by significant upregulation of NADPH-supplying pathways, including the pentose phosphate pathway (e.g., rpiA, Log2FC(HCP/C) = 11.39) and an NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (gapN, Log2FC(HCP/C) = 12.24). Notably, a putative beta-carotene hydroxylase (CrtZ) was uniquely sustained in the HCP condition (Log2FC(HLP/HCP) = −10.65), strongly correlating with torularhodin accumulation and suggesting its novel role in torulene hydroxylation. This exploratory study reveals prospective transcriptional determinants of carbon partitioning in R. glutinis and provides a prioritized genetic blueprint for future hypothesis-driven research with full biological replication. Full article
Show Figures

Figure 1

19 pages, 4242 KB  
Article
Nanomodified Nexavar Enhances Efficacy in Caco-2 Cells via Targeting Aspartate β-Hydroxylase-Driven Mitochondrial Cell Death
by Ahmed M. Tabl, Mohamed E. Ebeid, Yasser B. M. Ali, Khaled A. Elawdan, Mai Alalem, Ahood A. Al-Eidan, Nedaa Alalem, Ahmed S. Mansour, Ahmed M. Awad, Eman A. El-Madawy, Shymaa A. Elbuckley, Rofaida Refaai, Amany M. Elshamy and Hany Khalil
Immuno 2026, 6(1), 5; https://doi.org/10.3390/immuno6010005 - 25 Dec 2025
Viewed by 283
Abstract
Colorectal tumors consist of diverse cell populations, including cancer cells and immune cells. Sorafenib (Nexavar), an oral multikinase inhibitor, targets tumor growth and angiogenesis while inducing apoptosis. However, its clinical use is hindered by poor solubility, rapid metabolism, and low bioavailability. This study [...] Read more.
Colorectal tumors consist of diverse cell populations, including cancer cells and immune cells. Sorafenib (Nexavar), an oral multikinase inhibitor, targets tumor growth and angiogenesis while inducing apoptosis. However, its clinical use is hindered by poor solubility, rapid metabolism, and low bioavailability. This study explores a nanotechnology-based approach to enhance Sorafenib’s efficacy against colon cancer. Nexavar was encapsulated into nanoparticles using an oil phase and Span 80 as a stabilizer to produce sub-100 nm droplets. The resulting Nano-Nexavar was evaluated for cytotoxicity on Caco-2 colorectal cancer cells and compared with free Nexavar on both Caco-2 and normal NCM-460 colon cells. Nano-Nexavar significantly reduced cancer cell viability at lower concentrations, with no observed toxicity to normal cells. Both formulations induced lactate dehydrogenase release and cell reduction at 2.5 µM, but Nano-Nexavar triggered nearly 60% apoptosis in Caco-2 cells. It inhibited Raf-1, NFκB, and ERK signaling, and reduced epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) levels over time. Notably, unlike Nexavar, the Nano-Nexavar suppressed aspartate β-hydroxylase (ASPH) and enhanced mitochondrial-mediated apoptosis by increasing Bax expression, mitochondrial accumulation, and mtDNA levels indicated by immunofluorescence, immunoblotting, flow cytometry, and qRT-PCR. These data demonstrate that Nano-Nexavar potentiates Sorafenib’s anticancer activity by targeting ASPH, thereby amplifying mitochondrial signaling–induced cell death. Full article
(This article belongs to the Special Issue New Insights of Anti-cancer Immunity and Cancer Immune Evasion)
Show Figures

Figure 1

11 pages, 318 KB  
Article
Neonatal Screening for Congenital Adrenal Hyperplasia in Guangzhou: 7 Years of Experience
by Xuefang Jia, Ting Xie, Xiang Jiang, Fang Tang, Minyi Tan, Qianyu Chen, Sichi Liu, Yonglan Huang and Li Tao
Int. J. Neonatal Screen. 2025, 11(4), 116; https://doi.org/10.3390/ijns11040116 - 17 Dec 2025
Viewed by 414
Abstract
This study was designed to assess the effectiveness of neonatal congenital adrenal hyperplasia (CAH) screening in Guangzhou, China. A total of 818,417 newborns were screened for CAH by measuring 17-hydroxyprogesterone (17-OHP) concentrations. Cut-off values were stratified based on gestational age (GA) and the [...] Read more.
This study was designed to assess the effectiveness of neonatal congenital adrenal hyperplasia (CAH) screening in Guangzhou, China. A total of 818,417 newborns were screened for CAH by measuring 17-hydroxyprogesterone (17-OHP) concentrations. Cut-off values were stratified based on gestational age (GA) and the timing of sample collection. Neonates with initial positive results (17-OHP ≥ cut-off value) were recalled for a second dried blood spot sample to reassess 17-OHP levels. Confirmatory testing involved biochemical analyses, Sanger sequencing, and multiplex ligation-dependent probe amplification of the CYP21A2 gene. From 2018 to 2024, a total of 40 patients with classical 21-hydroxylase deficiency were identified, including 28 cases (70%) of the salt-wasting form and 12 cases (30%) of the simple virilizing form. The overall incidence of CAH was 1 in 20,653 (95% confidence interval: 1:34,928, 1:14,661). No statistically significant differences in prevalence were observed between sexes or between preterm and full-term infants (p > 0.05). 17-OHP concentrations are influenced by GA and the timing of sample collection. The screening efficiency for CAH could be improved by adopting a multitiered cut-off value system adjusted for GA and collection time. Full article
Show Figures

Figure 1

17 pages, 4196 KB  
Article
Phenotypic Characterization and Genomic Mining of Uric Acid Catabolism Genes in Lactiplantibacillus plantarum YC
by Yuqing Zhao, Sen Yang, Miao He, Peihan Chai, Zhenou Sun, Qiaomei Zhu, Zhenjing Li, Qingbin Guo and Huanhuan Liu
Foods 2025, 14(24), 4343; https://doi.org/10.3390/foods14244343 - 17 Dec 2025
Viewed by 438
Abstract
This study presents the phenotypic characterization and genomic mining of uric acid catabolism genes in Lactiplantibacillus plantarum YC, a novel food-grade lactic acid bacterium isolated from traditional fermented vegetables with potent uric acid-lowering activity. YC is non-hemolytic, catalase- and gelatinase-negative, exhibits strong adhesion [...] Read more.
This study presents the phenotypic characterization and genomic mining of uric acid catabolism genes in Lactiplantibacillus plantarum YC, a novel food-grade lactic acid bacterium isolated from traditional fermented vegetables with potent uric acid-lowering activity. YC is non-hemolytic, catalase- and gelatinase-negative, exhibits strong adhesion and broad antibacterial activity, and degrades 29.22% of uric acid in vitro, along with complete (100%) degradation of inosine and guanosine. Whole-genome sequencing revealed a 3,214,448 bp chromosome encoding 3026 protein-coding genes. Comparative genomics-based functional annotation highlighted abundant CAZy-related genes and antimicrobial factors, including lysozyme and monooxygenase. Crucially, genomic mining identified a complete uric acid degradation gene cluster, comprising pucK (uric acid permease), hpxO (uric acid hydroxylase), eight copies of hiuH (5-hydroxyisourate hydrolase), allB (allantoinase), and purine nucleoside transport/metabolism genes (rihA, rihB, rihC, pbuG). This work provides the first comparative genomic insight into the genetic architecture and distribution of uric acid metabolism in L. plantarum, elucidating YC’s dual urate-lowering mechanism and delivering key molecular markers for developing enzyme-based functional foods and microbial therapeutics against hyperuricemia. Full article
(This article belongs to the Special Issue Emerging Trends in Food Enzyme Catalysis and Food Synthetic Biology)
Show Figures

Figure 1

Back to TopTop