Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (159)

Search Parameters:
Keywords = 2’-O-methyl RNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3832 KiB  
Article
The Construction of a Mutant Library of Linseed and the Molecular Mechanism of High Oleic Acid Mutants from a Multi-Omics Perspective
by Caiyue Liu, Xinsen Yang, Qiaoling Tang, Xiuxia Cao, Aiping Qian, Zhiwei Yang, Limin Wang, Jianping Zhang, Xinwu Pei and Lu Gan
Plants 2025, 14(16), 2583; https://doi.org/10.3390/plants14162583 - 20 Aug 2025
Viewed by 190
Abstract
Flax (Linum usitatissimum L.) is a globally important oilseed crop, valued for its edible and industrial uses. Flax seeds are rich in unsaturated fatty acids. In this study, ethyl methyl sulfone was employed to construct a mutant library from the flax cultivar [...] Read more.
Flax (Linum usitatissimum L.) is a globally important oilseed crop, valued for its edible and industrial uses. Flax seeds are rich in unsaturated fatty acids. In this study, ethyl methyl sulfone was employed to construct a mutant library from the flax cultivar Longya 10 (WT). Screening efforts identified M45, a stable mutant with an oleic acid content of 43.22% at 40 days after flowering, representing a 21.23% increase over the wild-type. RNA-Seq analysis revealed the presence of two homologs of the SAD (stearoyl-ACP desaturase) family and two homologs of the FAD2 (fatty acid desaturase 2) family, which showed differential expression in a trend consistent with the phenotype of M45. A BSA-Seq analysis was conducted to identify genes with SNPs (single nucleotide polymorphisms) and Indel (insertions/deletions) variant loci that were associated with increased oleic acid. The combination of BSA-Seq, RNA-Seq, and metabolomic analyses identified L.us.o.g.scaffold122.86, a gene that may be co-expressed with L.us.o.g.scaffold7.26 to affect oleic acid accumulation via FAD2. Full article
(This article belongs to the Special Issue Safety of Genetically Modified Crops and Plant Functional Genomics)
Show Figures

Figure 1

20 pages, 6384 KiB  
Article
Identification of Epigenetic Regulatory Networks of Gene Methylation–miRNA–Transcription Factor Feed-Forward Loops in Basal-like Breast Cancer
by Larissa M. Okano, Alexandre L. K. de Azevedo, Tamyres M. Carvalho, Jean Resende, Jessica M. Magno, Bonald C. Figueiredo, Tathiane M. Malta, Mauro A. A. Castro and Luciane R. Cavalli
Cells 2025, 14(16), 1235; https://doi.org/10.3390/cells14161235 - 10 Aug 2025
Viewed by 466
Abstract
Basal-like breast cancer (BLBC) is associated with poor prognosis, high recurrence rates, and limited therapeutic options, largely due to its molecular heterogeneity and complexity, which include epigenetic alterations. This study investigated epigenetic regulatory networks in BLBC by analyzing DNA methylation in distal cis-regulatory [...] Read more.
Basal-like breast cancer (BLBC) is associated with poor prognosis, high recurrence rates, and limited therapeutic options, largely due to its molecular heterogeneity and complexity, which include epigenetic alterations. This study investigated epigenetic regulatory networks in BLBC by analyzing DNA methylation in distal cis-regulatory regions and its impact on genes, transcription factors (TFs), and microRNAs (miRNAs) expression. Data from TCGA were processed using the ELMER and DESeq2 tools to identify differentially methylated regions and differentially expressed genes, TFs, and miRNAs. The FANMOD algorithm was used to identify the regulatory interactions uncovering the feed-forward loops (FFLs). The analysis identified 110 TF-mediated FFLs, 43 miRNA-mediated FFLs, and five composite FFLs, involving 18 hypermethylated and 32 hypomethylated genes, eight upregulated and nine downregulated TFs, and 21 upregulated and seven downregulated miRNAs. The TF-mediated FFLs major regulators involved the AR, EBF1, FOS, FOXM1, and TEAD4 TFs, while key miRNAs were miR-3662, miR-429, and miR-4434. Enriched pathways involved cAMP, ErbB, FoxO, p53, TGF-beta, Rap1, and Ras signaling. Differences in hallmark gene set categories reflected distinct methylation and miRNA expression profiles. Overall, this integrative analysis mapped the intricate epigenetic landscape of BLBC, emphasizing the role of FFLs as regulatory motifs that integrate DNA methylation, TFs, and miRNAs in orchestrating disease’s development and progression and offering potential targets for future diagnostic and therapeutic strategies. Full article
Show Figures

Figure 1

9 pages, 932 KiB  
Brief Report
scaRNA1 Expression Levels Affect Alternative Splicing of mRNA
by Madeleine Brown, Brittnei Earl, Michael Filla, Nataliya Kibiryeva, James E. O’Brien and Douglas C. Bittel
Genes 2025, 16(8), 864; https://doi.org/10.3390/genes16080864 - 24 Jul 2025
Viewed by 266
Abstract
Our previous research identified 12 small Cajal body-specific RNAs (scaRNAs) with reduced expression in the right ventricle in infant patients with tetralogy of Fallot. Likewise, we showed that there were significant changes in mRNA processing in the RV in these patients. ScaRNAs play [...] Read more.
Our previous research identified 12 small Cajal body-specific RNAs (scaRNAs) with reduced expression in the right ventricle in infant patients with tetralogy of Fallot. Likewise, we showed that there were significant changes in mRNA processing in the RV in these patients. ScaRNAs play a crucial role in the biochemical maturation of spliceosomal RNAs (pseudouridylation and 2′-O-methylation). We showed that variations in scaRNA1 levels resulted in changes in alternative splicing in human cells. To investigate further the role that scaRNAs play in mRNA processing, we examine here the impact of knocking down scaRNA1 in quail myoblast cells (Coturnix japonica, a well-established animal model for studying embryonic development). Following the knockdown of scaRNA1, transcriptome analysis revealed that the genes Tjp1, Map3k7, and Sppl2a were alternatively spliced. Growing evidence indicates that alternative splicing of mRNA plays an important role in regulating cell differentiation and tissue development. Our data presented here provide additional support for research to clarify the specific roles that individual scaRNAs play in regulating spliceosome function and mRNA splicing. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

22 pages, 1643 KiB  
Article
Skin Wound Healing: The Impact of Treatment with Antimicrobial Nanoparticles and Mesenchymal Stem Cells
by Pavel Rossner, Eliska Javorkova, Michal Sima, Zuzana Simova, Barbora Hermankova, Katerina Palacka, Zuzana Novakova, Irena Chvojkova, Tereza Cervena, Kristyna Vrbova, Anezka Vimrova, Jiri Klema, Andrea Rossnerova and Vladimir Holan
J. Xenobiot. 2025, 15(4), 119; https://doi.org/10.3390/jox15040119 - 18 Jul 2025
Viewed by 548
Abstract
An investigation into the biological mechanisms initiated in wounded skin following the application of mesenchymal stem cells (MSCs) and nanoparticles (NPs) (Ag, ZnO), either alone or combined, was performed in mice, with the aim of determining the optimal approach to accelerate the healing [...] Read more.
An investigation into the biological mechanisms initiated in wounded skin following the application of mesenchymal stem cells (MSCs) and nanoparticles (NPs) (Ag, ZnO), either alone or combined, was performed in mice, with the aim of determining the optimal approach to accelerate the healing process. This combined treatment was hypothesized to be beneficial, as it is associated with the production of molecules supporting the healing process and antimicrobial activity. The samples were collected seven days after injury. When compared with untreated wounded animals (controls), the combined (MSCs+NPs) treatment induced the expression of Sprr2b, encoding small proline-rich protein 2B, which is involved in keratinocyte differentiation, the response to tissue injury, and inflammation. Pathways associated with keratinocyte differentiation were also affected. Ag NP treatment (alone or combined) modulated DNA methylation changes in genes involved in desmosome organization. The percentage of activated regulatory macrophages at the wound site was increased by MSC-alone and Ag-alone treatments, while the production of nitric oxide, an inflammatory marker, by stimulated macrophages was decreased by both MSC/Ag-alone and MSCs+Ag treatments. Ag induced the expression of Col1, encoding collagen-1, at the injury site. The results of the MSC and NP treatment of skin wounds (alone or combined) suggest an induction of processes accelerating the proliferative phase of healing. Thus, MSC-NP interactions are a key factor affecting global mRNA expression changes in the wound. Full article
Show Figures

Graphical abstract

18 pages, 1047 KiB  
Article
Protein Functional Effector (pfe) Noncoding RNAS Are Identical to Fragments from Various Noncoding RNAs
by Roberto Patarca and William A. Haseltine
Int. J. Mol. Sci. 2025, 26(14), 6870; https://doi.org/10.3390/ijms26146870 - 17 Jul 2025
Viewed by 432
Abstract
Protein functional effector (pfe)RNAs were introduced in 2015 as PIWI-interacting-like small noncoding (nc)RNAs and were later categorized as a novel group based on being 2′-O-methylated at their 3′-end, directly binding and affecting protein function, but not levels, and not matching known RNAs. Here, [...] Read more.
Protein functional effector (pfe)RNAs were introduced in 2015 as PIWI-interacting-like small noncoding (nc)RNAs and were later categorized as a novel group based on being 2′-O-methylated at their 3′-end, directly binding and affecting protein function, but not levels, and not matching known RNAs. Here, we document that human pfeRNAs match fragments of GenBank database-annotated human ncRNAs. PDLpfeRNAa matches the 3′-half fragment of a mitochondrial transfer (t)RNA, and PDLpfeRNAb matches a 28S ribosomal (r)RNA fragment. These PDLpfeRNAs are known to bind to tumor programmed death ligand (PD-L)1, enhancing or inhibiting its interaction with lymphocyte PD-1 and consequently tumor immune escape, respectively. In a validated 8-pfeRNA-set classifier for pulmonary nodule presence and benign vs. malignant nature, seven here match one or more of the following: transfer, micro, Y, PIWI, long (lnc)RNAs, and a PDLpfeRNAa fragment. The previously identified chromosomal locations of these pfeRNAs and their matches partially overlap. Another 2-pfeRNA set was previously determined to distinguish between controls, patients with pulmonary tuberculosis, and those with lung cancer. One pfeRNA, previously shown to bind p60-DMAD and affect apoptosis, complements small nucleolar RNA SNORD45C, matching smaller 18S rRNA and lncRNA segments. Thus, pfeRNAs appear to have a common origin with known multifunctional ncRNA fragments. Differential modification may contribute to the multifunctionality of ncRNAs. For instance, for tRNA fragments, stabilizing 3′-end 2′-O-methylation, 3′-aminoacylation, and glycosylation modifications may regulate protein function, translation, and extracellular effects, respectively. One ncRNA gene can encode multiple fragments, multiple genes can encode the same fragment, and differentially modified ncRNA fragments might synergize or antagonize each other. Full article
(This article belongs to the Special Issue Targeting RNA Molecules)
Show Figures

Graphical abstract

14 pages, 844 KiB  
Review
The Role of Chemical Modifications in the Genome of Negative-Sense RNA Viruses on the Innate Immune Response
by María-Alejandra Ceballos and Mónica L. Acevedo
Viruses 2025, 17(6), 795; https://doi.org/10.3390/v17060795 - 30 May 2025
Viewed by 849
Abstract
Negative-sense RNA viruses comprise a wide array of viral families, such as Orthomyxoviridae, Paramyxoviridae, Rhabdoviridae, and Morbillivirus, all of which are adept at inciting significant epidemic outbreaks. Throughout their replication cycle, these viruses engage in a variety of RNA modifications, during both the [...] Read more.
Negative-sense RNA viruses comprise a wide array of viral families, such as Orthomyxoviridae, Paramyxoviridae, Rhabdoviridae, and Morbillivirus, all of which are adept at inciting significant epidemic outbreaks. Throughout their replication cycle, these viruses engage in a variety of RNA modifications, during both the co-transcriptional and post-transcriptional phases, which are mediated by specific enzymatic activities. These chemical alterations play a critical role in shaping viral fitness, particularly in terms of evading innate immune responses. Key chemical modifications, such as adenosine methylation, 2′-O methylation of nucleosides, and adenosine-to-inosine editing, play critical roles in determining the stability, translational efficiency, and immune recognition of viral RNA. These modifications can reduce the activation of immune sensors, thereby suppressing interferon production and broader antiviral responses. In contrast, certain modifications may enhance immune recognition, which opens avenues for novel vaccine and antiviral strategy development. A comprehensive understanding of these RNA chemical modifications and their implications for virus–host interactions is essential for advancing therapeutic strategies aimed at manipulating innate immunity and optimizing the efficacy of RNA-based vaccines. This review examines the mechanisms and implications of RNA chemical modifications in negative-sense RNA viruses, emphasizing their dual roles in either evading or activating the innate immune system. Full article
(This article belongs to the Special Issue Functional and Structural Features of Viral RNA Elements)
Show Figures

Figure 1

15 pages, 3987 KiB  
Article
Evolutionary Origins and Functional Diversification of 2′-O-Methyltransferases: Insights from Phylogenetic and Structural Analysis
by Sai-Nan Wang, Xiao-Xia Liu, Ling-Jie Lei, Qiang Wang, Zhu-Qing Shao and Yang Liu
Int. J. Mol. Sci. 2025, 26(11), 5260; https://doi.org/10.3390/ijms26115260 - 30 May 2025
Viewed by 611
Abstract
Ribose 2′-O-methylation (Nm), a key RNA modification, is catalyzed by diverse 2′-O-methyltransferases (2′-O-MTases), yet the evolutionary trajectories of these enzymes remain poorly studied. Here, with a comprehensive collection of functionally validated 2′-O-MTases, we classified them into 11 families based on the distinct methyltransferase [...] Read more.
Ribose 2′-O-methylation (Nm), a key RNA modification, is catalyzed by diverse 2′-O-methyltransferases (2′-O-MTases), yet the evolutionary trajectories of these enzymes remain poorly studied. Here, with a comprehensive collection of functionally validated 2′-O-MTases, we classified them into 11 families based on the distinct methyltransferase (MTase) domains. Homology searches across 198 species identified 6746 proteins, revealing the widespread distribution of 2′-O-MTases across the Tree of Life. Eight MTase domains (e.g., FtsJ, SpoU-methylase) existed both in eukaryotes and prokaryotes, indicating their ancient origin in the Last Universal Common Ancestor (LUCA). In contrast, the AdoMet-MTase, TRM13, and Trm56 domains are lineage-specific. Copy number expansion of most 2′-O-MTase families occurred as life evolved from prokaryotes to eukaryotes, where they might engage in more complex regulation of cell differentiation and development. Domain composition, Ka/Ks ratio, and domain structural analyses showed that purifying selection conserved catalytic domains across most families, despite the frequent integration of auxiliary domains. Notably, the FtsJ family diverged into three deeply separated lineages via remodeling the catalytic pocket, with each lineage specializing in the methylation of mRNA caps, rRNA, or tRNA. These findings illuminate the evolutionary trajectory of 2′-O-MTases, highlighting their ancient multiple origins and functional diversification. Full article
(This article belongs to the Special Issue Structural Dynamics of Macromolecules)
Show Figures

Figure 1

26 pages, 564 KiB  
Review
RNA Modifications in Osteoarthritis: Epitranscriptomic Insights into Pathogenesis and Therapeutic Targets
by Shabnam Radbakhsh, Mehdi Najar, Makram Merimi, Mohamed Benderdour, Julio C. Fernandes, Johanne Martel-Pelletier, Jean-Pierre Pelletier and Hassan Fahmi
Int. J. Mol. Sci. 2025, 26(10), 4955; https://doi.org/10.3390/ijms26104955 - 21 May 2025
Viewed by 1056
Abstract
Osteoarthritis (OA) is a chronic joint disorder characterized by progressive degeneration of articular cartilage, pain, synovial inflammation, and bone remodeling. Post-transcriptional RNA modifications, known as epitranscriptome, are a group of biochemical alterations in the primary RNA transcript that might influence RNA structure, stability, [...] Read more.
Osteoarthritis (OA) is a chronic joint disorder characterized by progressive degeneration of articular cartilage, pain, synovial inflammation, and bone remodeling. Post-transcriptional RNA modifications, known as epitranscriptome, are a group of biochemical alterations in the primary RNA transcript that might influence RNA structure, stability, and function. Different kinds of RNA modifications have been recognized, such as methylation, acetylation, pseudouridylation, and phosphorylation. N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), 2′-O-ribose methylation (2′-O-Me), and pseudouridylation (Ψ) are the most prevalent RNA modifications. Recent studies have shown that disruption in these modifications can interfere with gene expression and protein function. Here, we will review all types of RNA modifications and how they contribute to the onset and progression of OA. To the best of our knowledge, this is the first review comprehensively addressing all epitranscriptomic modifications in OA. Full article
Show Figures

Graphical abstract

13 pages, 2870 KiB  
Article
Modulation of the Main Resistance-Associated ABC Transporter’s Expression by Plant Flavonol Isorhamnetin
by Milena Milutinović, Filip Ristanović, Nikola Radenković, Danijela Cvetković, Sandra Radenković, Milan Stanković and Danijela Nikodijević
Pharmaceuticals 2025, 18(4), 494; https://doi.org/10.3390/ph18040494 - 28 Mar 2025
Cited by 1 | Viewed by 713
Abstract
Background/Objectives: Multidrug resistance is one the leading problems in cancer treatment, where the overexpression of P-gp and other drug efflux pumps is regarded as the primary cause. With the intention to develop transporter inhibitors, natural products such as phenolics have shown great [...] Read more.
Background/Objectives: Multidrug resistance is one the leading problems in cancer treatment, where the overexpression of P-gp and other drug efflux pumps is regarded as the primary cause. With the intention to develop transporter inhibitors, natural products such as phenolics have shown great potential and diverse attention recently. Among these, isorhamnetin (ISO), an O-methylated flavonol, is predominantly found in the fruits and leaves of various plants. Thus, this study aimed to investigate the effects of ISO on the mRNA expression of membrane transporters P-gp, BCRP, MRP 1, 2, and 5, the protein expression of P-gp, as well as the GSTP1 and GSH content in DLD1 and HCT-116 colon cancer cells. Methods: The cytotoxic effect of isorhamnetin is assessed using an MTT test, while qPCR and immunocytochemistry methods were used to determine gene and protein expression levels. The concentration of reduced glutathione was determined using the colorimetric method. Results: Based on the results, ISO can modulate the expression of transporters responsible for the resistance development (all transporters on the transcriptional level were downregulated in DLD1 cells, while only MRP1 on HCT-116 cells, and reduced P-gp protein expression on both investigated cell lines). Increased glutathione content in treated cells and GSTP1 expression suggest metabolizing the ISO and potential ejection with GSH-dependent pumps. Conclusions: Thus, in future experiments, ISO as a natural medicinal compound could be used as a chemosensitizer to prevent or overcome membrane transporter-mediated drug resistance. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

23 pages, 7158 KiB  
Article
Positive Prognostic Overall Survival Impacts of Methylated TGFB2 and MGMT in Adult Glioblastoma Patients
by Sanjive Qazi, Michael Potts, Scott Myers, Stephen Richardson and Vuong Trieu
Cancers 2025, 17(7), 1122; https://doi.org/10.3390/cancers17071122 - 27 Mar 2025
Cited by 1 | Viewed by 1457
Abstract
(1) Background: Glioblastoma (GBM) is the most aggressive and common primary malignant brain tumor in adults, constituting 45.6% of tumors. We explored the impact of gene methylation of the O-6-Methylguanine-DNA Methyltransferase (MGMT) and the Transforming Growth Factor Beta (TGFB) gene [...] Read more.
(1) Background: Glioblastoma (GBM) is the most aggressive and common primary malignant brain tumor in adults, constituting 45.6% of tumors. We explored the impact of gene methylation of the O-6-Methylguanine-DNA Methyltransferase (MGMT) and the Transforming Growth Factor Beta (TGFB) gene complex using the TCGA dataset for GBM patients. (2) Methods: We implemented a multivariate Cox proportional hazards model to directly compare hazard ratios for TGFB1/2/3 and MGMT methylation in relation to OS, considering male versus female, age at diagnosis, and age interactions with TGFB2 gene methylation and sex variables. Reactome analysis was performed to identify enriched pathways negatively correlated with TGFB2 methylation. (3) Results: The GBM patients had high levels of TGFB2 gene methylation; this primarily benefited the young adult male patients, and multivariate analysis exhibited a significantly improved OS prognosis HR (95% CI range) = 0.04 (0.006–0.274); p = 0.001) relative to the TGFB1highMe (HR (95% CI range) = 0.657 (0.454–0.951); p = 0.026) and MGMThighMe (HR (95% CI range) = 0.667 (0.475–0.936); p = 0.019) groups of GBM patients. The Reactome pathways collectively represented T-cell activation, differentiation, effector functions, antigen presentation, and Toll-like receptor pathways. Gene level mRNA expression highlighted four positive prognostic genes upregulated in tumor tissues, and their expression was validated in independent single-cell RNA-seq experiments. These genes were highly expressed in macrophages (HIF1A, TRIM22, IRAK4, PARP9). In contrast, MALT1 mRNA expression was the only gene product with a negative prognostic impact on OS in GBM patients (HR (95% CI range) = 1.997 (1.1–3.625); p = 0.023). (4) Conclusions: Increased levels of TGFB2 gene methylation predict improved OS, especially in young adult male GBM patients, above that of MGMT gene methylation, and should be considered during the administration of mRNA-based TGFB2 therapies. Full article
(This article belongs to the Section Cancer Survivorship and Quality of Life)
Show Figures

Figure 1

23 pages, 12079 KiB  
Article
Structure-Based Identification of SARS-CoV-2 nsp10-16 Methyltransferase Inhibitors Using Molecular Dynamics Insights
by Ahmad M. Alharbi
Curr. Issues Mol. Biol. 2025, 47(3), 198; https://doi.org/10.3390/cimb47030198 - 17 Mar 2025
Viewed by 668
Abstract
SARS-CoV-2 evades immune detection via nsp10-16 methyltransferase-mediated 2′-O-methylation of viral mRNA, making it a key antiviral target. Our study employed structure-based drug discovery—including virtual screening, molecular docking, and molecular dynamics (MD) simulations—to identify potent inhibitors of nsp10-16. We identified seven promising inhibitors (Z1–Z7) [...] Read more.
SARS-CoV-2 evades immune detection via nsp10-16 methyltransferase-mediated 2′-O-methylation of viral mRNA, making it a key antiviral target. Our study employed structure-based drug discovery—including virtual screening, molecular docking, and molecular dynamics (MD) simulations—to identify potent inhibitors of nsp10-16. We identified seven promising inhibitors (Z1–Z7) targeting the binding site of the SARS-CoV-2 nsp10-16 methyltransferase, with Z2, Z3, Z4, and Z7 exhibiting strong binding affinities. Further, molecular dynamics simulations confirmed that Z2, Z3, and Z7 effectively stabilized the enzyme by reducing conformational fluctuations and maintaining structural compactness, comparable to the native ligand-bound complex. The conformational deviation revealed that Z2, Z6, and Z7 restricted large-scale conformational transitions, reinforcing their stabilizing effect on the enzyme. The binding free energy calculations ranked Z4 (−37.26 kcal/mol), Z7 (−35.37 kcal/mol), and Z6 (−35.22 kcal/mol) as the strongest binders, surpassing the native tubercidin complex (−23.70 kcal/mol). The interactions analysis identified Asp99, Tyr132, and Cys115 as key stabilizing residues, with Z2, Z6, and Z7 forming high-lifetime hydrogen bonds. The drug-likeness analysis highlighted the selected compounds as promising candidates, exhibiting high gastrointestinal absorption, optimal solubility, and minimal CYP450 inhibition. Further experimental validation and lead optimization are needed to develop potent methyltransferase inhibitors with improved pharmacokinetics and antiviral efficacy. Full article
(This article belongs to the Special Issue New Insight: Enzymes as Targets for Drug Development, 2nd Edition)
Show Figures

Figure 1

18 pages, 7059 KiB  
Article
Analysis of the Expression Patterns of piRNAs in Response to Microsporidian Invasion in Midgut of Workers (Apis cerana cerana)
by Yiqiong Zhang, Mengyi Wang, Wenhua Xu, He Zang, Tizhen Yan, Tao Wu, Kaifei Huang, Dafu Chen, Qingming Luo, Rui Guo and Jianfeng Qiu
Int. J. Mol. Sci. 2025, 26(6), 2402; https://doi.org/10.3390/ijms26062402 - 7 Mar 2025
Viewed by 753
Abstract
Piwi-interacting RNAs (piRNAs) play an essential part in transposon suppression, DNA methylation, and antiviral responses. The current understanding of the roles of piRNAs in honeybees is very limited. This study aims to analyze the expression pattern and regulatory role of piRNAs in the [...] Read more.
Piwi-interacting RNAs (piRNAs) play an essential part in transposon suppression, DNA methylation, and antiviral responses. The current understanding of the roles of piRNAs in honeybees is very limited. This study aims to analyze the expression pattern and regulatory role of piRNAs in the Asian honeybee (Apis cerana) responding to infection by Nosema ceranae, based on previously gained small RNA-seq data. Here, 450 and 422 piRNAs were respectively identified in the midgut tissues of Apis cerana cerana workers at 7 and 10 days post-inoculation (dpi) with N. ceranae, including 539 non-redundant ones. Additionally, one up-regulated (piR-ace-1216942) and one down-regulated (piR-ace-776728) piRNA were detected in the workers’ midgut at 7 dpi, targeting 381 mRNAs involved in 31 GO terms, such as metabolic processes, catalytic activity, and organelles, as well as 178 KEGG pathways, including lysosome, MAPK signaling pathway, and purine metabolism. A total of 35 up-regulated and 11 down-regulated piRNAs were screened from the workers’ midgut at 10 dpi, targeting 13,511 mRNAs engaged in 50 GO terms, such as biological regulation, transporter activity, and membrane, as well as 389 KEGG pathways, including the JAK-STAT signaling pathway, Hippo signaling pathway, and nitrogen metabolism. Further analysis indicated that 28 differentially expressed piRNAs (DEpiRNAs) in the midgut at 10 dpi could target 299 mRNAs annotated to three cellular immune pathways (lysosome, endocytosis, and phagosome), while 24 DEpiRNAs could target 205 mRNAs relevant to four humoral immune pathways (FoxO, JAK-STAT, NF-κB, and MAPK signaling pathway). Through Sanger sequencing and RT-qPCR, the expression of six randomly selected DEpiRNAs was verified. Moreover, the dual-luciferase reporter gene assay confirmed the binding relationships between piR-ace-446232 and CRT as well as between piR-ace-1008436 and EGFR. Our findings not only contribute to enrich our understanding of the role of piRNAs in honeybees but also provide a basis for exploring the host response to N. ceranae infection mediated by piRNAs. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 4662 KiB  
Article
Transcriptome and Physiological Characterization Reveal the Effects of Exogenous MeJA on Turnips Under Salt Stress
by Chenyang Ma, Zhe Tao, Xingling Yang, Ruiqing Xiao and Kai Jia
Horticulturae 2025, 11(2), 197; https://doi.org/10.3390/horticulturae11020197 - 13 Feb 2025
Cited by 1 | Viewed by 867
Abstract
Salt stress severely affects the growth of turnips (Brassica rapa subsp. rapa), leading to a decline in quality and a reduction in yield. Methyl jasmonate is an endogenous plant hormone that plays a role in regulating plant responses to salt stress. [...] Read more.
Salt stress severely affects the growth of turnips (Brassica rapa subsp. rapa), leading to a decline in quality and a reduction in yield. Methyl jasmonate is an endogenous plant hormone that plays a role in regulating plant responses to salt stress. However, its role and mechanism in regulating the response of turnip salt stress remain unclear. Herein, exogenous 100 μM MeJA was applied to four-leaf turnip seedlings subjected to 100 mM NaCl stress to investigate the changes in growth parameters, plant physiology, gene expression, and hormone accumulation after treatment for 3, 5, and 7 days. The results indicated that exogenous spraying of MeJA restricted the growth of turnip seedlings, but enhanced the activity of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), while reducing the generation of hydrogen peroxide (H2O2). Additionally, RNA-seq data showed that exogenous MeJA significantly up-regulates the expression of genes associated with resistance to abiotic stress, specifically those involved in sulfur metabolism, phytohormone signaling, glutathione metabolism, and phenylpropanoid biosynthesis. This up-regulation improved the activity of antioxidant enzymes in vivo, facilitated the scavenging of accumulated reactive oxygen species, and strengthened the plant’s defense mechanisms. In summary, exogenous application of MeJA inhibited the growth of turnip seedlings, but enhanced the plant’s physiological responses to salt stress. Full article
Show Figures

Figure 1

19 pages, 2821 KiB  
Article
Genetic Code Expansion for Controlled Surfactin Production in a High Cell-Density Bacillus subtilis Strain
by Alexander Hermann, Eric Hiller, Philipp Hubel, Lennart Biermann, Elvio Henrique Benatto Perino, Oscar Paul Kuipers, Rudolf Hausmann and Lars Lilge
Microorganisms 2025, 13(2), 353; https://doi.org/10.3390/microorganisms13020353 - 6 Feb 2025
Cited by 1 | Viewed by 1723
Abstract
Background: In biotechnology, B. subtilis is established for heterologous protein production. In addition, the species provides a variety of bioactive metabolites, including the non-ribosomally produced surfactin lipopeptide. However, to control the formation of the target product-forming enzyme, different expression systems could be introduced, [...] Read more.
Background: In biotechnology, B. subtilis is established for heterologous protein production. In addition, the species provides a variety of bioactive metabolites, including the non-ribosomally produced surfactin lipopeptide. However, to control the formation of the target product-forming enzyme, different expression systems could be introduced, including the principle of genetic code expansion by the incorporation of externally supplied non-canonical amino acids. Methods: Integration of an amber stop codon into the srfA operon and additional chromosomal integration of an aminoacyl-tRNA synthetase/tRNA mutant pair from Methanococcus jannaschii enabled site-directed incorporation of the non-canonical amino acid O-methyl-L-tyrosine (OMeY). In different fed-batch bioreactor approaches, OMeY-associated surfactin production was quantified by high-performance thin-layer chromatography (HPTLC). Physiological adaptations of the B. subtilis production strain were analyzed by mass spectrometric proteomics. Results: Using a surfactin-forming B. subtilis production strain, which enables high cell density fermentation processes, the principle of genetic code expansion was introduced. Accordingly, the biosynthesis of the surfactin-forming non-ribosomal peptide synthetase (NRPS) was linked to the addition of the non-canonical amino acid OMeY. In OMeY-associated fed-batch bioreactor fermentation processes, a maximum surfactin titre of 10.8 g/L was achieved. In addition, the effect of surfactin induction was investigated by mass spectrometric proteome analyses. Among other things, adaptations in the B. subtilis motility towards a more sessile state and increased abundances of surfactin precursor-producing enzymes were detected. Conclusions: The principle of genetic code expansion enabled a precise control of the surfactin bioproduction as a representative of bioactive secondary metabolites in B. subtilis. This allowed the establishment of inducer-associated regulation at the post-transcriptional level with simultaneous use of the native promoter system. In this way, inductor-dependent control of the production of the target metabolite-forming enzyme could be achieved. Full article
Show Figures

Figure 1

22 pages, 6308 KiB  
Article
Host-Induced Gene Silencing of the Aspergillus flavus O-Methyl Transferase Gene Enhanced Maize Aflatoxin Resistance
by Olanike Omolehin, Yenjit Raruang, Dongfang Hu, Zhu-Qiang Han, Surassawadee Promyou, Robert L. Brown, Qijian Wei, Kanniah Rajasekaran, Jeffrey W. Cary, Kan Wang, Dan Jeffers and Zhi-Yuan Chen
Toxins 2025, 17(1), 8; https://doi.org/10.3390/toxins17010008 - 27 Dec 2024
Viewed by 1474
Abstract
Maize is one of the major crops that are susceptible to Aspergillus flavus infection and subsequent aflatoxin contamination, which poses a serious health threat to humans and domestic animals. Here, an RNA interference (RNAi) approach called Host-Induced Gene Silencing (HIGS) was employed to [...] Read more.
Maize is one of the major crops that are susceptible to Aspergillus flavus infection and subsequent aflatoxin contamination, which poses a serious health threat to humans and domestic animals. Here, an RNA interference (RNAi) approach called Host-Induced Gene Silencing (HIGS) was employed to suppress the O-methyl transferase gene (omtA, also called aflP), a key gene involved in aflatoxin biosynthesis. An RNAi vector carrying part of the omtA gene was introduced into the B104 maize line. Among the six transformation events that were positive for containing the omtA transgene, OmtA-6 and OmtA-10 were self-pollinated from T1 to T4, and OmtA-7 and OmtA-12 to the T6 generation. These four lines showed at least an 81.3% reduction in aflatoxin accumulation at the T3 generation under laboratory conditions. When screened under field conditions with artificial inoculation, OmtA-7 at T5 and T6 generations and OmtA-10 at T4 generation showed a reduction in aflatoxin contamination between 60% and 91% (p < 0.02 to p < 0.002). In order to develop commercial maize lines with enhanced aflatoxin resistance, the omtA transgene in OmtA-7 was introduced into three elite inbred lines through crossing, and the resulting crosses also exhibited significantly lower aflatoxin accumulation compared to crosses with non-transgenic controls (p < 0.04). In addition, high levels of omtA-specific small RNAs were only detected in the transgenic kernel and leaf tissues. These results demonstrate that suppression of omtA through HIGS can enhance maize resistance to aflatoxin contamination, and this resistance can be transferred to elite backgrounds, providing a viable and practical approach to reduce aflatoxin contamination in maize. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

Back to TopTop