Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,731)

Search Parameters:
Keywords = 2×2-operator matrix

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2825 KB  
Article
The Impact of Information Layout and Auxiliary Instruction Display Mode on the Usability of Virtual Fitting Interaction Interfaces
by Xingmin Lin and Peiling Pan
Information 2025, 16(10), 862; https://doi.org/10.3390/info16100862 (registering DOI) - 4 Oct 2025
Abstract
With the widespread adoption of virtual fitting technology in e-commerce and fashion, optimizing user experience through interface design has become increasingly critical. However, research on the usability of virtual fitting interaction interfaces remains limited. Current interfaces frequently suffer from disorganized information layouts and [...] Read more.
With the widespread adoption of virtual fitting technology in e-commerce and fashion, optimizing user experience through interface design has become increasingly critical. However, research on the usability of virtual fitting interaction interfaces remains limited. Current interfaces frequently suffer from disorganized information layouts and ambiguous auxiliary instructions, reducing efficiency and immersion. This study systematically investigates the effects of information layout (matrix layout, list layout, horizontal layout) and auxiliary instruction display mode (positive polarity: dark content on light background; negative polarity: light content on dark background) on user task performance and subjective experience. A between-subjects experiment was conducted with 60 participants across six conditions. Participants performed a series of tasks, and data were collected on task completion time, subjective ratings, and Technology Acceptance Model responses. Analyses were conducted using two-way ANOVA. The main findings were as follows: (1) The matrix layout demonstrated higher efficiency in multi-target search and complex decision-making tasks, and also received higher subjective ratings for perceived ease of use. (2) The positive polarity display mode demonstrated better performance in single-information search and cognitively intensive tasks, coupled with higher subjective ratings for interface rationality and information clarity. (3) A significant interaction effect was identified between information layout and display mode. The matrix layout combined with positive polarity improved efficiency, whereas the list layout with negative polarity impaired task performance. The horizontal layout was also rated lower for operational fluency. These findings provide practical guidance for designing virtual fitting interfaces that enhance both performance and subjective user experience. Full article
Show Figures

Figure 1

25 pages, 1245 KB  
Article
Evaluating Cybersecurity Measures for Smart Grids Under Uncertainty: A Picture Fuzzy SWARA–CODAS Approach
by Betul Kara, Ertugrul Ayyildiz, Bahar Yalcin Kavus and Tolga Kudret Karaca
Appl. Sci. 2025, 15(19), 10704; https://doi.org/10.3390/app151910704 - 3 Oct 2025
Abstract
Smart grid operators face escalating cyber threats and tight resource constraints, demanding the transparent, defensible prioritization of security controls. This paper asks how to select cybersecurity controls for smart grids while retaining picture fuzzy evidence throughout and supporting policy-sensitive “what-if” analyses. We propose [...] Read more.
Smart grid operators face escalating cyber threats and tight resource constraints, demanding the transparent, defensible prioritization of security controls. This paper asks how to select cybersecurity controls for smart grids while retaining picture fuzzy evidence throughout and supporting policy-sensitive “what-if” analyses. We propose a hybrid Picture Fuzzy Stepwise Weight Assessment Ratio Analysis (SWARA) and Combinative Distance-based Assessment (CODAS) framework that carries picture fuzzy evidence end-to-end over a domain-specific cost/benefit criteria system and a relative-assessment matrix, complemented by multi-scenario sensitivity analysis. Applied to ten prominent solutions across twenty-nine sub-criteria in four dimensions, the model highlights Performance as the most influential main criterion; at the sub-criterion level, the decisive factors are updating against new threats, threat-detection capability, and policy-customization flexibility; and Zero Trust Architecture emerges as the best overall alternative, with rankings stable under varied weighting scenarios. A managerial takeaway is that foundation controls (e.g., OT-integrated monitoring and ICS-aware detection) consistently remain near the top, while purely deceptive or access-centric options rank lower in this context. The framework contributes an end-to-end picture fuzzy risk-assessment model for smart grid cybersecurity and suggests future work on larger expert panels, cross-utility datasets, and dynamic, periodically refreshed assessments. Full article
(This article belongs to the Special Issue Applications of Fuzzy Systems and Fuzzy Decision Making)
17 pages, 5383 KB  
Article
High-Temperature Sulfate Corrosion Resistance and Wear Performance of NiCr-Cr3C2 Coatings for the Water Wall of Power Plant Boilers
by Hang Zhang, Zhao Zhang, Cheng Zhou, Fangzhou Jin, Yongfeng Cai, Yifan Ni, Xinmin Ma, Chenghao Fan, Shulin Xiang and Dan Song
Coatings 2025, 15(10), 1152; https://doi.org/10.3390/coatings15101152 - 3 Oct 2025
Abstract
Water walls in power plant boilers are prone to failure under extreme conditions involving high temperature, corrosion, and wear, which severely threaten unit reliability and operational economy. In this work, a NiCr-Cr3C2 protective coating was deposited on SA213-T12 steel substrates [...] Read more.
Water walls in power plant boilers are prone to failure under extreme conditions involving high temperature, corrosion, and wear, which severely threaten unit reliability and operational economy. In this work, a NiCr-Cr3C2 protective coating was deposited on SA213-T12 steel substrates using high-velocity oxy-fuel (HVOF) spraying, with arc-sprayed PS45 coating as a reference. The NiCr-Cr3C2 coating exhibited a dense, low-porosity structure with homogeneous dispersion of Cr3C2 hard phases in the NiCr matrix, forming a typical cauliflower-like composite morphology. During high-temperature sulfate corrosion tests at 750 °C, the NiCr-Cr3C2 coating demonstrated superior corrosion resistance, with a weight gain of only 2.7 mg/cm2, significantly lower than that of the PS45 coating and the SA213-T12 substrate. The higher microhardness and lower friction coefficient also indicate excellent high-temperature wear resistance. The enhanced performance of the NiCr-Cr3C2 coating is attributed to the high Cr content, which promotes the formation of a continuous and protective scale composed of Cr2O3 and NiCr2O4, effectively inhibiting corrosive diffusion and penetration. This work demonstrates the application prospects of NiCr-Cr3C2 coatings on water walls of power plant boilers and guides the development of advanced HVOF coatings. Full article
(This article belongs to the Special Issue Anti-Corrosion Coatings: New Ideas to Make Them More Effective)
Show Figures

Figure 1

23 pages, 7104 KB  
Article
A Patient-Derived Scaffold-Based 3D Culture Platform for Head and Neck Cancer: Preserving Tumor Heterogeneity for Personalized Drug Testing
by Alinda Anameriç, Emilia Reszczyńska, Tomasz Stankiewicz, Adrian Andrzejczak, Andrzej Stepulak and Matthias Nees
Cells 2025, 14(19), 1543; https://doi.org/10.3390/cells14191543 - 2 Oct 2025
Abstract
Head and neck cancer (HNC) is highly heterogeneous and difficult to treat, underscoring the need for rapid, patient-specific models. Standard three-dimensional (3D) cultures often lose stromal partners that influence therapy response. We developed a patient-derived system maintaining tumor cells, cancer-associated fibroblasts (CAFs), and [...] Read more.
Head and neck cancer (HNC) is highly heterogeneous and difficult to treat, underscoring the need for rapid, patient-specific models. Standard three-dimensional (3D) cultures often lose stromal partners that influence therapy response. We developed a patient-derived system maintaining tumor cells, cancer-associated fibroblasts (CAFs), and cells undergoing partial epithelial–mesenchymal transition (pEMT) for drug sensitivity testing. Biopsies from four HNC patients were enzymatically dissociated. CAFs were directly cultured, and their conditioned medium (CAF-CM) was collected. Cryopreserved primary tumor cell suspensions were later revived, screened in five different growth media under 2D conditions, and the most heterogeneous cultures were re-embedded in 3D hydrogels with varied gel mixtures, media, and seeding geometries. Tumoroid morphology was quantified using a perimeter-based complexity index. Viability after treatment with cisplatin or Notch modulators (RIN-1, recombination signal-binding protein for immunoglobulin κ J region (RBPJ) inhibitor; FLI-06, inhibitor) was assessed by live imaging and the water-soluble tetrazolium-8 (WST-8) assay. Endothelial Cell Growth Medium 2 (ECM-2) medium alone produced compact CAF-free spheroids, whereas ECM-2 supplemented with CAF-CM generated invasive aggregates that deposited endogenous matrix. Matrigel with this medium and single-point seeding gave the highest complexity scores. Two of the three patient tumoroids were cisplatin-sensitive, and all showed significant growth inhibition with the FLI-06 Notch inhibitor, while the RBPJ inhibitor RIN-1 induced minimal change. The optimized scaffold retains tumor–stroma crosstalk and provides patient-specific drug response data within days after operation, supporting personalized treatment selection in HNC. Full article
(This article belongs to the Special Issue 3D Cultures and Organ-on-a-Chip in Cell and Tissue Cultures)
15 pages, 883 KB  
Article
An Enhanced RPN Model Incorporating Maintainability Complexity for Risk-Based Maintenance Planning in the Pharmaceutical Industry
by Shireen Al-Hourani and Ali Hassanlou
Processes 2025, 13(10), 3153; https://doi.org/10.3390/pr13103153 - 2 Oct 2025
Abstract
In pharmaceutical manufacturing, the reliability of machines and utility assets is critical to ensuring product quality, regulatory compliance, and uninterrupted operations. Traditional Risk-Based Maintenance (RBM) models quantify asset criticality using the Risk Priority Number (RPN), calculated from the probability and impact of failure [...] Read more.
In pharmaceutical manufacturing, the reliability of machines and utility assets is critical to ensuring product quality, regulatory compliance, and uninterrupted operations. Traditional Risk-Based Maintenance (RBM) models quantify asset criticality using the Risk Priority Number (RPN), calculated from the probability and impact of failure alongside detectability. However, these models often neglect the practical challenges involved in diagnosing and resolving equipment issues, particularly in GMP-regulated environments. This study proposes an enhanced RPN framework that replaces the conventional detectability component with Maintainability Complexity (MC), quantified through two practical indicators: Ease of Diagnosis (ED) and Ease of Resolution (ER). Thirteen Key Performance Indicators (KPIs) were developed to assess Probability, Impact, and MC across 185 pharmaceutical utility assets. To enable objective risk stratification, Jenks Natural Breaks Optimization was applied to group assets into Low, Medium, and High risk tiers. Both multiplicative and normalized averaging methods were tested for score aggregation, allowing comparative analysis of their impact on prioritization outcomes. The enhanced model produced stronger alignment with operational realities, enabling more accurate asset classification and maintenance scheduling. A 3D risk matrix was introduced to translate scores into proactive strategies, offering traceability and digital compatibility with Computerized Maintenance Management Systems (CMMS). This framework provides a practical, auditable, and scalable approach to maintenance planning, supporting Industry 4.0 readiness in pharmaceutical operations. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

23 pages, 5971 KB  
Article
Improved MNet-Atten Electric Vehicle Charging Load Forecasting Based on Composite Decomposition and Evolutionary Predator–Prey and Strategy
by Xiaobin Wei, Qi Jiang, Huaitang Xia and Xianbo Kong
World Electr. Veh. J. 2025, 16(10), 564; https://doi.org/10.3390/wevj16100564 - 2 Oct 2025
Abstract
In the context of low carbon, achieving accurate forecasting of electrical energy is critical for power management with the continuous development of power systems. For the sake of improving the performance of load forecasting, an improved MNet-Atten electric vehicle charging load forecasting based [...] Read more.
In the context of low carbon, achieving accurate forecasting of electrical energy is critical for power management with the continuous development of power systems. For the sake of improving the performance of load forecasting, an improved MNet-Atten electric vehicle charging load forecasting based on composite decomposition and the evolutionary predator–prey and strategy model is proposed. In this light, through the data decomposition theory, each subsequence is processed using complementary ensemble empirical mode decomposition and filters out high-frequency white noise by using singular value decomposition based on matrix operation, which improves the anti-interference ability and computational efficiency of the model. In the model construction stage, the MNet-Atten prediction model is developed and constructed. The convolution module is used to mine the local dependencies of the sequences, and the long term and short-term features of the data are extracted through the loop and loop skip modules to improve the predictability of the data itself. Furthermore, the evolutionary predator and prey strategy is used to iteratively optimize the learning rate of the MNet-Atten for improving the forecasting performance and convergence speed of the model. The autoregressive module is used to enhance the ability of the neural network to identify linear features and improve the prediction performance of the model. Increasing temporal attention to give more weight to important features for global and local linkage capture. Additionally, the electric vehicle charging load data in a certain region, as an example, is verified, and the average value of 30 running times of the combined model proposed is 117.3231 s, and the correlation coefficient PCC of the CEEMD-SVD-EPPS-MNet-Atten model is closer to 1. Furthermore, the CEEMD-SVD-EPPS-MNet-Atten model has the lowest MAPE, RMSE, and PCC. The results show that the model in this paper can better extract the characteristics of the data, improve the modeling efficiency, and have a high data prediction accuracy. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Graphical abstract

17 pages, 828 KB  
Article
Quantum Coherence and Mixedness in Hydrogen Atoms: Probing Hyperfine Structure Dynamics Under Dephasing Constraints
by Kamal Berrada and Smail Bougouffa
Symmetry 2025, 17(10), 1633; https://doi.org/10.3390/sym17101633 - 2 Oct 2025
Abstract
We investigate the quantum dynamics of coherence in the hyperfine structure of hydrogen atoms subjected to dephasing noise, modeled using the Lindblad master equation. The effective Hamiltonian describes the spin–spin interaction between the electron and proton, with dephasing introduced via Lindblad operators. Analytical [...] Read more.
We investigate the quantum dynamics of coherence in the hyperfine structure of hydrogen atoms subjected to dephasing noise, modeled using the Lindblad master equation. The effective Hamiltonian describes the spin–spin interaction between the electron and proton, with dephasing introduced via Lindblad operators. Analytical solutions for the time-dependent density matrix are derived for various initial states, including separable, partially entangled, and maximally entangled configurations. Quantum coherence is quantified through the l1-norm measures, while purity is evaluated to assess mixedness. Results demonstrate that coherence exhibits oscillatory decay modulated by the dephasing rate, with antiparallel spin states showing greater resilience against noise compared to parallel configurations. These findings highlight the interplay between coherent hyperfine dynamics and environmental dephasing, offering insights into preserving quantum resources in atomic systems for applications in quantum information science. Full article
(This article belongs to the Special Issue Applications Based on Symmetry/Asymmetry in Quantum Mechanics)
Show Figures

Figure 1

16 pages, 3175 KB  
Article
Defects Identification in Ceramic Composites Based on Laser-Line Scanning Thermography
by Yalei Wang, Jianqiu Zhou, Leilei Ding, Xiaohan Liu and Senlin Jin
J. Compos. Sci. 2025, 9(10), 532; https://doi.org/10.3390/jcs9100532 - 1 Oct 2025
Abstract
Infrared thermography non-destructive testing technology has been widely used in the defect detection of composite structures due to its advantages, including non-contact operation, rapidity, low cost, and high precision. In this study, a laser-line scanning system combined with an infrared thermography was developed, [...] Read more.
Infrared thermography non-destructive testing technology has been widely used in the defect detection of composite structures due to its advantages, including non-contact operation, rapidity, low cost, and high precision. In this study, a laser-line scanning system combined with an infrared thermography was developed, along with a corresponding dynamic sequence image reconstruction method, enabling rapid localization of surface damages. Then, high-precision quantitative characterization of defect morphology in reconstructed images was achieved by integrating an edge gradient detection algorithm. The reconstruction method was validated through finite element simulations and experimental studies. The results demonstrated that the laser-line scanning thermography effectively enables both rapid localization of surface damages and precise quantitative characterization of their morphology. Experimental measurements of ceramic materials indicate that the relative error in detecting crack width is about 6% when the crack is perpendicular to the scanning direction, and the relative error gradually increases when the angle between the crack and the scanning direction decreases. Additionally, an alumina ceramic plate with micrometer-width cracks is inspected by the continuous laser-line scanning thermography. The morphology detection results are completely consistent with the actual morphology. However, limited by the spatial resolution of the thermal imager in the experiment, the quantitative identification of the crack width cannot be carried out. Finally, the proposed method is also effective for detecting surface damage of wrinkles in ceramic matrix composites. It can localize damage and quantify its geometric features with an average relative error of less than 3%, providing a new approach for health monitoring of large-scale ceramic matrix composite structures. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

36 pages, 2656 KB  
Article
Energy Footprint and Reliability of IoT Communication Protocols for Remote Sensor Networks
by Jerzy Krawiec, Martyna Wybraniak-Kujawa, Ilona Jacyna-Gołda, Piotr Kotylak, Aleksandra Panek, Robert Wojtachnik and Teresa Siedlecka-Wójcikowska
Sensors 2025, 25(19), 6042; https://doi.org/10.3390/s25196042 - 1 Oct 2025
Abstract
Excessive energy consumption of communication protocols in IoT/IIoT systems constitutes one of the key constraints for the operational longevity of remote sensor nodes, where radio transmission often incurs higher energy costs than data acquisition or local computation. Previous studies have remained fragmented, typically [...] Read more.
Excessive energy consumption of communication protocols in IoT/IIoT systems constitutes one of the key constraints for the operational longevity of remote sensor nodes, where radio transmission often incurs higher energy costs than data acquisition or local computation. Previous studies have remained fragmented, typically focusing on selected technologies or specific layers of the communication stack, which has hindered the development of comparable quantitative metrics across protocols. The aim of this study is to design and validate a unified evaluation framework enabling consistent assessment of both wired and wireless protocols in terms of energy efficiency, reliability, and maintenance costs. The proposed approach employs three complementary research methods: laboratory measurements on physical hardware, profiling of SBC devices, and simulations conducted in the COOJA/Powertrace environment. A Unified Comparative Method was developed, incorporating bilinear interpolation and weighted normalization, with its robustness confirmed by a Spearman rank correlation coefficient exceeding 0.9. The analysis demonstrates that MQTT-SN and CoAP (non-confirmable mode) exhibit the highest energy efficiency, whereas HTTP/3 and AMQP incur the greatest energy overhead. Results are consolidated in the ICoPEP matrix, which links protocol characteristics to four representative RS-IoT scenarios: unmanned aerial vehicles (UAVs), ocean buoys, meteorological stations, and urban sensor networks. The framework provides well-grounded engineering guidelines that may extend node lifetime by up to 35% through the adoption of lightweight protocol stacks and optimized sampling intervals. The principal contribution of this work is the development of a reproducible, technology-agnostic tool for comparative assessment of IoT/IIoT communication protocols. The proposed framework addresses a significant research gap in the literature and establishes a foundation for further research into the design of highly energy-efficient and reliable IoT/IIoT infrastructures, supporting scalable and long-term deployments in diverse application environments. Full article
(This article belongs to the Collection Sensors and Sensing Technology for Industry 4.0)
9 pages, 852 KB  
Article
A Fast Designed Thresholding Algorithm for Low-Rank Matrix Recovery with Application to Missing English Text Completion
by Haizhen He, Angang Cui and Hong Yang
Mathematics 2025, 13(19), 3135; https://doi.org/10.3390/math13193135 - 1 Oct 2025
Abstract
This article is proposing a fast version of adaptive iterative matrix designed thresholding (AIMDT) algorithm which is studied in our previous work. In AIMDT algorithm, a designed thresholding operator is studied to the problem of recovering the low-rank matrices. By adjusting the size [...] Read more.
This article is proposing a fast version of adaptive iterative matrix designed thresholding (AIMDT) algorithm which is studied in our previous work. In AIMDT algorithm, a designed thresholding operator is studied to the problem of recovering the low-rank matrices. By adjusting the size of the parameter, this designed operator can apply less bias to the singular values of a matrice. Using this proposed designed operator, the AIMDT algorithm has been generated to solve the matrix rank minimization problem, and the numerical experiments have shown the superiority of AIMDT algorithm. However, the AIMDT algorithm converges slowly in general. In order to recover the low-rank matrices more quickly, we present a fast AIMDT algorithm to recover the low-rank matrices in this paper. The numerical results on some random low-rank matrix completion problems and a missing English text completion problem show that the our proposed fast algorithm has much faster convergence than the previous AIMDT algorithm. Full article
(This article belongs to the Special Issue Numerical Optimization: Algorithms and Applications)
Show Figures

Figure 1

14 pages, 1476 KB  
Article
Reconfigurable Cascaded Chirped-Grating Delay Lines for Silicon Photonic Convolutional Computing
by Guangping Zhong, Guang Chen, Lidan Lu, Fengyu She, Yingjie Xu, Jieyu Yang, Bangze Wu, Senyan Chun and Yulin Li
Photonics 2025, 12(10), 974; https://doi.org/10.3390/photonics12100974 - 30 Sep 2025
Abstract
Silicon photonic computing system is expected to replace traditional electronic computing systems in specific applications in the future, owing to its advantages in high speed, large bandwidth, low power consumption, and resistance to electro-magnetic interference. In this paper, we propose a tunable time-delay [...] Read more.
Silicon photonic computing system is expected to replace traditional electronic computing systems in specific applications in the future, owing to its advantages in high speed, large bandwidth, low power consumption, and resistance to electro-magnetic interference. In this paper, we propose a tunable time-delay photonic computing architecture based on chirped Bragg gratings (CBG), which replaces traditional dispersion fibers to achieve the required delay function in system architecture, while providing reconfigurability capabilities of time delay control. Simulation results, using 3rd-order and 4th-order input matrices to convolve with 2nd-order convolution kernel matrices, demonstrates that the proposed photonic computing architecture can effectively perform matrix convolutional operations of various orders. Furthermore, the functionality and performance of design tunable time delay module based on CBG is also verified in the system. Therefore, our proposed scheme can be employed in the matrix multiplications of photonic computing architecture, which provides an optional efficient solution for future photonic convolutional neural networks. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
15 pages, 2670 KB  
Article
Simulation of Macroscopic Chloride Ion Diffusion in Concrete Members
by Zhaorui Ji, Bin Peng, Wendong Guo and Mingyang Sun
Coatings 2025, 15(10), 1131; https://doi.org/10.3390/coatings15101131 - 30 Sep 2025
Abstract
To quantitatively analyze the macroscopic diffusion process of chloride ions in existing concrete members, the Peridynamic Differential Operator (PDDO) was introduced to formulate a discrete format for Fick’s second law, and a simulation model was established and validated. Subsequently, the influence of specific [...] Read more.
To quantitatively analyze the macroscopic diffusion process of chloride ions in existing concrete members, the Peridynamic Differential Operator (PDDO) was introduced to formulate a discrete format for Fick’s second law, and a simulation model was established and validated. Subsequently, the influence of specific or randomly distributed defects in the concrete is reflected by adjusting the coefficients in the model’s global matrix. Moreover, the complex geometry of concrete members is captured by employing a point set-based spatial discretization approach. The model also accommodates for the complex corrosion conditions encountered in practice by imposing different boundary conditions. These features allowed for the simulation and validation of chloride ion diffusion experiments on concrete under natural environmental conditions. The study further analyzed how factors such as defects, diffusion coefficients, boundary conditions, and the geometric shape of members influence the macroscopic diffusion process. The findings indicate that the numerical model based on the PDDO can effectively quantify the macroscopic diffusion of chloride ions in existing concrete members. It provides fundamental data for the durability maintenance of concrete infrastructures and potentially reduces their carbon footprint by preventing unnecessary rehabilitation or reconstruction. Full article
Show Figures

Graphical abstract

15 pages, 3091 KB  
Article
Dark-Field Lau Interferometer: Barker-Babinet Gratings
by Cristina Margarita Gómez-Sarabia and Jorge Ojeda-Castañeda
Appl. Sci. 2025, 15(19), 10580; https://doi.org/10.3390/app151910580 - 30 Sep 2025
Abstract
We design a phase rendering technique that exploits the link between the angular deviations of a beam and the optical implementation of cross-correlations. We employ two suitably coded gratings, which are incorporated as part of a new device here called a dark-field, Lau [...] Read more.
We design a phase rendering technique that exploits the link between the angular deviations of a beam and the optical implementation of cross-correlations. We employ two suitably coded gratings, which are incorporated as part of a new device here called a dark-field, Lau interferometer. To this end, we use a first grating whose unit cell is coded with the white and black versions of a Barker sequence. We employ a second grating that is coded as the Babinet’s complementary of the first grating. We describe the cross-correlation operation by using a compact matrix formulation, which is amenable to numerical evaluation. Full article
(This article belongs to the Special Issue Interdisciplinary Approaches and Applications of Optics & Photonics)
Show Figures

Figure 1

19 pages, 5384 KB  
Article
Dynamic Risk Assessment of Equipment Operation in Coalbed Methane Gathering Stations Based on the Combination of DBN and CSM Assessment Models
by Jian Li, Chaoke Shi, Xiang Li, Dashuang Zeng, Yuchen Zhang, Xiaojie Yu, Shuang Yan and Yuntao Li
Energies 2025, 18(19), 5161; https://doi.org/10.3390/en18195161 - 28 Sep 2025
Abstract
The operational risks of equipment in coalbed methane (CBM) gathering stations exhibit dynamic characteristics. To address this, a dynamic risk assessment method based on Dynamic Bayesian Networks (DBNs) is proposed for CBM station equipment. Additionally, a comprehensive safety management evaluation model is established [...] Read more.
The operational risks of equipment in coalbed methane (CBM) gathering stations exhibit dynamic characteristics. To address this, a dynamic risk assessment method based on Dynamic Bayesian Networks (DBNs) is proposed for CBM station equipment. Additionally, a comprehensive safety management evaluation model is established for gathering station equipment. This approach enables accurate risk assessment and effective implementation of safety management in CBM gathering stations. This method primarily consists of three core components: risk factor identification, dynamic risk analysis, and comprehensive safety management evaluation. First, the Bow-tie model is applied to comprehensively identify risk factors associated with station equipment. Next, a DBN is constructed based on the identified risks, and Markov theory is employed to determine the state transition matrix. Finally, a Comprehensive Safety Management (CSM) evaluation model for gathering station equipment is established. The feasibility of the proposed method is validated through case study applications. The results indicate that during the operation of equipment at CBM gathering stations, priority should be given to strengthening maintenance for medium-hole and enhancing prevention and emergency measures for jet fires. Temperature-controlled spiral-wound heat exchangers, skid-mounted circulating pumps, and pipelines have been identified as critical factors affecting accident occurrence at CBM gathering stations. Enhanced daily inspection and maintenance of this equipment should be implemented. Furthermore, compared to other safety evaluation indicators, the Emergency Preparedness and Response indicator has the most significant impact on the operational safety of CBM gathering station equipment. It requires high-priority attention, thorough implementation of relevant measures, and continuous improvement through targeted actions. Full article
Show Figures

Figure 1

29 pages, 6194 KB  
Article
Study on the Evolution Mechanism of Cultural Landscapes Based on the Analysis of Historical Events—A Case Study of Gubeikou, Beijing
by Ding He, Hanghui Dong, Shihao Li and Minmin Fang
Buildings 2025, 15(19), 3495; https://doi.org/10.3390/buildings15193495 - 28 Sep 2025
Abstract
The cultural landscape of Gubeikou, with distinct historical stratification and event-relatedness, bears unique value. Against the backdrop of increasingly prominent themes of cultural heritage development and transformation, research on Gubeikou’s cultural landscapes remains fragmented and lacking in depth. This research explores its evolution [...] Read more.
The cultural landscape of Gubeikou, with distinct historical stratification and event-relatedness, bears unique value. Against the backdrop of increasingly prominent themes of cultural heritage development and transformation, research on Gubeikou’s cultural landscapes remains fragmented and lacking in depth. This research explores its evolution mechanism via historical events to fill gaps. This study takes Gubeikou Town as the research object, applies the text analysis method to sort and categorize 302 historical events, summarizes 12 event types, identifies 19 landscape elements, and constructs a data matrix based on co-occurrence frequencies. It performs clustering analysis on these using Principal Component Analysis (PCA) and Agglomerative Hierarchical Clustering (AHC), while integrating historical and geographical data. Findings: (1) The landscape evolution of Gubeikou can be divided into four main stages: the military embryonic period, the functional expansion period, the system maturity period, and the multi-element integration period. (2) The dynamic evolutionary trajectory of the correlation between its landscapes and events shows that the core factors affecting the evolution of cultural landscapes in each period not only maintain the dominance of military elements throughout the evolutionary process but also integrate diverse elements like economy, culture, and folk customs with social development, presenting the characteristics of composite evolution. (3) The landscape evolution is driven by the “primary–secondary synergy” dynamic structure composed of four types of activities: military–political, transportation, production–trade, and construction. It is the product of the coupling effect of political goals, social operation, and geographical conditions. This study provides a basis for the sustainable protection and utilization of Gubeikou, and also offers a reference for other regions. Full article
(This article belongs to the Special Issue Advanced Research on Cultural Heritage—2nd Edition)
Show Figures

Figure 1

Back to TopTop