Defects Identification in Ceramic Composites Based on Laser-Line Scanning Thermography
Abstract
1. Introduction
2. Methodology
3. Simulation and Validation
4. Experiments
4.1. Experimental Setup
4.2. Ceramic Plate with Surface Cracks
4.3. Alumina Ceramic Plates with Microcracks
4.4. Ceramic Matrix Composite Plate with Surface Damages
5. Conclusions
- (1)
- Continuous laser-line scanning excitation combined with an edge gradient detection algorithm can rapidly and effectively perform quantitative characterization of the localization and morphology of cracks at different angles. With a scanning speed of approximately 5–10 mm/s, detection of a 1-square-meter area can be achieved within half an hour, demonstrating high detection efficiency.
- (2)
- Experimental results indicate that the continuous laser-line scanning infrared imaging technique is capable for crack size detection. When the crack is perpendicular to the scanning direction, the relative error in detecting crack width is about 6%. As the angle between the crack and the scanning direction decreases, the relative error in detecting crack width gradually increases.
- (3)
- An alumina ceramic plate with micrometer-width cracks was inspected using continuous laser-line scanning thermography. The morphology detection results are completely consistent with the actual morphology. However, limited by the spatial resolution of the thermal imager in the experiment, the quantitative identification of the crack width could not be carried out.
- (4)
- The continuous laser-line scanning method is also effective for detecting other types of surface damage (such as wrinkles) in ceramic matrix composites. It can localize damage through temperature field differences and quantify its geometric features with an average relative error of less than 3%, providing a new approach for health monitoring of large-scale ceramic matrix composite structures.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.; Cheng, L.; Ma, B.; Liu, Y.; Zhang, L. Effect of CVD ZrB2 coating thickness on anti-ablation performance of C/SiC composites. Ceram. Int. 2018, 44, 8166–8175. [Google Scholar] [CrossRef]
- Zhang, M.; Pang, Z.; Jia, Y.; Li, J.; Shan, C. Research progress and development trend of fiber-reinforced ceramic matrix composites. J. Aeronaut. Mater. 2021, 41, 14–27. [Google Scholar]
- Bertrand, D.J.; Sabelkin, V.; Zawada, L.; Mall, S. Fatigue behavior of sylramic-iBN/BN/CVI SiC ceramic matrix composite in combustion environment. J. Mater. Sci. 2015, 50, 7437–7447. [Google Scholar] [CrossRef]
- Liu, S.; Liu, F.; Zhang, Q.; Li, Z.; Zhang, B.; Wang, L. Non-destructive characterisation and evaluation of manufacturing defects in SiCf/SiC composites using the relative energy attenuation behaviour of X-rays. Ceram. Int. 2020, 46, 26044–26054. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Gui, Z.; Zhou, S.; Ren, Z. Damage mechanisms of 2.5D SiO2f/SiO2 woven ceramic matrix composites under compressive impact. Ceram. Int. 2023, 49, 9203–9218. [Google Scholar] [CrossRef]
- Smith, C.E.; Morscher, G.N.; Xia, Z. Electrical resistance as a nondestructive evaluation technique for SiC/SiC ceramic matrix composites under creep-rupture loading. Int. J. Appl. Ceram. Technol. 2011, 8, 298–307. [Google Scholar] [CrossRef]
- Papa, I.; Ricciardi, M.R.; Antonucci, V.; Langella, A.; Tirillò, J.; Sarasini, F.; Pagliarulo, V.; Ferraro, P.; Lopresto, V. Comparison between different non-destructive techniques methods to detect and characterize impact damage on composite laminates. J. Compos. Mater. 2020, 54, 617–631. [Google Scholar] [CrossRef]
- Jiang, H.J.; Chen, L. Application of infrared thermography in nondestructive testing of composite materials. Nondestruct. Test. 2018, 40, 37–41. (In Chinese) [Google Scholar]
- Senthilkumar, M.; Sreekanth, T.G.; Manikanta Reddy, S. Nondestructive health monitoring techniques for composite materials: A review. Polym. Polym. Compos. 2021, 29, 528–540. [Google Scholar] [CrossRef]
- Podymova, N.B.; Karabutov, A.A. Combined effects of reinforcement fraction and porosity on ultrasonic velocity in SiC particulate aluminum alloy matrix composites. Compos. Part B Eng. 2017, 113, 138–143. [Google Scholar] [CrossRef]
- Liu, F.; Liu, S.; Zhang, Q.; Li, Z.; Qiu, H. Quantitative non-destructive evaluation of drilling defects in SiCf/SiC composites using low-energy X-ray imaging technique. NDT & E Int. 2020, 116, 102364. [Google Scholar]
- Zhu, J.; Mao, Z.; Wu, D.; Zhou, J.; Jiao, D.; Shi, W.; Zhu, W.; Liu, Z. Progress and trends in non-destructive testing for thermal barrier coatings based on infrared thermography: A review. J. Nondestruct. Eval. 2022, 41, 49. [Google Scholar] [CrossRef]
- Zhuo, L.; Xu, Y.; Zhu, J.; Chen, H.; Yang, Q. Depth estimation of internal defects from a sensitive frequency using thermal wave radar. NDT E Int. 2025, 154, 103367. [Google Scholar] [CrossRef]
- Zhuo, L.; Xu, Y.; Zhu, J.; Liu, C.; Yi, F. Quantitative Evaluation of Interfacial Defect Size and Pattern by Solving a 3D Inverse Problem Based on Step Heating Thermography. Exp. Mech. 2024, 64, 245–259. [Google Scholar] [CrossRef]
- Zhuo, L.; Yang, Y.; Zhu, J.; Huang, Z.; Chao, J.; Xie, W. Size determination of interior defects by reconstruction of subsurface virtual heat flux for step heating thermography. NDT E Int. 2023, 133, 102734. [Google Scholar] [CrossRef]
- Huang, H.; Zhu, J.; Zhuo, L.; Li, C.; Liu, C.; Hao, W.; Xie, W. Non-destructive evaluation of uneven coating thickness based on active long pulse thermography. NDT E Int. 2022, 130, 102672. [Google Scholar] [CrossRef]
- Schroeder, J.A.; Ahmed, T.; Chaudhry, B.; Shepard, S. Non-destructive testing of structural composites and adhesively bonded composite joints: Pulsed thermography. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1511–1517. [Google Scholar] [CrossRef]
- De Oliveira, L.A.; Gomes, G.F.; Pereira, J.L.J.; Francisco, M.B.; Demarbaix, A.; Cunha, S.S. New trends of damage detection and identification based on vibrothermography in composite materials. J. Nondestruct. Eval. 2023, 42, 57. [Google Scholar] [CrossRef]
- Philippe, D.; Jean-Claude, G.; Daniel, S. Damage detection in composites by vibrothermography and local resonances. Mech. Ind. 2013, 14, 137–143. [Google Scholar] [CrossRef]
- Yi, Q.; Tian, G.Y.; Malekmohammadi, H.; Zhu, J.; Laureti, S.; Ricci, M. New features for delamination depth evaluation in carbon fiber reinforced plastic materials using eddy current pulse-compression thermography. NDT E Int. 2019, 102, 264–273. [Google Scholar] [CrossRef]
- He, Y.; Tian, G.; Pan, M.; Chen, D. Impact evaluation in carbon fiber reinforced plastic (CFRP) laminates using eddy current pulsed thermography. Compos. Struct. 2014, 109, 1–7. [Google Scholar] [CrossRef]
- Sun, J.G.; Benz, J. Flash duration effect in one-sided thermal imaging. AIP Conf. Proc. 2005, 760, 650–654. [Google Scholar] [CrossRef]
- Chung, Y.; Lee, S.; Shrestha, R.; Kim, W. Detectability of subsurface defects in polypropylene/glass fiber composites using multiple lock-in frequency modulated algorithms. Appl. Sci. 2023, 13, 545. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Meng, X.B.; Ma, Y.C. A new measurement method of coatings thickness based on lock-in thermography. Infrared Phys. Technol. 2016, 76, 655–660. [Google Scholar] [CrossRef]
- Wang, F.; Liu, J.; Mohammad, O.; Wang, Y. Research on debonding defects in thermal barrier coatings structure by thermal-wave radar imaging (TWRI). Int. J. Thermophys. 2018, 39, 71. [Google Scholar] [CrossRef]
- Liu, L.; Mandelis, A.; Melnikov, A.; Wang, L. Comparative analysis of single- and multiple-frequency thermal wave radar imaging inspection of glass fiber reinforced polymer (GFRP). Int. J. Extreme Manuf. 2022, 4, 025201. [Google Scholar] [CrossRef]
- Li, T.; Almond, D.P.; Rees, D.A.S. Crack imaging by scanning laser-line thermography and laser-spot thermography. Meas. Sci. Technol. 2011, 22, 035701. [Google Scholar] [CrossRef]
- He, M.; Zhang, L.; Zheng, W.; Feng, Y. Crack detection based on a moving mode of eddy current thermography method. Measurement 2017, 109, 119–129. [Google Scholar] [CrossRef]
- Jiao, D.; Shi, W.; Liu, Z.; Xie, H. Laser multi-mode scanning thermography method for fast inspection of micro-cracks in TBCs surface. J. Nondestruct. Eval. 2018, 37, 30. [Google Scholar] [CrossRef]
- Liu, X.; Yang, S.; Liu, Y.; Chi, Y.; Gu, X. Surface crack identification on a cylinder using the signal enhancement of the scanning laser line source method. Appl. Sci. 2018, 8, 1796. [Google Scholar] [CrossRef]
- Qiu, J.; Pei, C.; Yang, Y.; Wang, R.; Liu, H.; Chen, Z. Remote measurement and shape reconstruction of surface-breaking fatigue cracks by laser-line thermography. Int. J. Fatigue 2021, 142, 105950. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.; Yin, W.; Chen, H.; Liu, Y. Defect detection method for CFRP based on line laser thermography. Micromachines 2022, 13, 612. [Google Scholar] [CrossRef]
- He, Z.; Wang, H.; He, Y.; Zhang, G.; Wang, J.; Zou, G.; Chady, T. Joint scanning laser thermography defect detection method for carbon fiber reinforced polymer. IEEE Sens. J. 2020, 20, 328–336. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, W.T.; Suh, H.K. Correlation data augmentation-based YOLO-integrated object detection of thermal-equalization video using line scanning inductive thermography. Appl. Sci. 2024, 14, 11903. [Google Scholar] [CrossRef]
- Geng, C.; Zhong, Q.; Luo, H.; Shi, W.; Xie, H.; He, W. A novel method to in-situ characterize fatigue crack growth behavior of nickel-based superalloys by laser thermography. Exp. Mech. 2025, 65, 5–23. [Google Scholar] [CrossRef]
- Zhang, C.; He, W.; Xie, H.M. Automatic crack tip localization in enormous DIC images to in-situ characterize high-temperature fatigue crack growth behavior. Int. J. Fatigue 2024, 185, 108364. [Google Scholar] [CrossRef]
- Li, C.; Zhu, J.; Zhuo, L.; Li, J.; Zhang, D. Continuous laser-line scanning thermography with data-processing algorithm for rapid and accurate defect inspection. NDT E Int. 2024, 142, 103028. [Google Scholar] [CrossRef]
- Li, C.; Zhu, J.; Zhuo, L.; Jin, E.; Liu, H. Defect detection in CFRP laminate structures using continuous laser-line scanning thermography with parameter optimization and PCA fusion method. NDT E Int. 2025, 155, 103438. [Google Scholar] [CrossRef]
- Shi, L.; Zhao, Y.F. Edge detection of high-resolution remote sensing image based on multi-directional improved Sobel operator. IEEE Access 2023, 11, 135979–135993. [Google Scholar] [CrossRef]
- Ma, Y.L.; Ma, H.Y.; Chu, P.C. Demonstration of quantum image edge extration enhancement through improved Sobel operator. IEEE Access 2020, 8, 210277–210285. [Google Scholar] [CrossRef]
Parameters | Ceramic | Air |
---|---|---|
Density, ρ/(kg·m3) | 3800 | 1.16 |
Specific heat capacity, cp/(J·kg−1·K−1) | 750 | 1007 |
Thermal conductivity, k/(W·K−1·m−1) | 15 | 0.026 |
Width | Measurement (mm) | Relative Error | Standard Deviation (mm) | |
---|---|---|---|---|
Crack-1 | Maximum | 2.05 | 5.13% | 0.23 |
Minimum | 1.45 | 7.41% | 0.14 | |
Average | 1.73 | 6.13% | 0.18 | |
Crack-2 | Maximum | 1.64 | 5.81% | 0.20 |
Minimum | 1.56 | 7.59% | 0.19 | |
Average | 1.59 | 6.00% | 0.18 |
Width | Measurement (mm) | Relative Error | Standard Deviation (mm) |
---|---|---|---|
Maximum | 1.66 | 7.10% | 0.24 |
Minimum | 1.59 | 9.66% | 0.25 |
Average | 1.64 | 9.33% | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhou, J.; Ding, L.; Liu, X.; Jin, S. Defects Identification in Ceramic Composites Based on Laser-Line Scanning Thermography. J. Compos. Sci. 2025, 9, 532. https://doi.org/10.3390/jcs9100532
Wang Y, Zhou J, Ding L, Liu X, Jin S. Defects Identification in Ceramic Composites Based on Laser-Line Scanning Thermography. Journal of Composites Science. 2025; 9(10):532. https://doi.org/10.3390/jcs9100532
Chicago/Turabian StyleWang, Yalei, Jianqiu Zhou, Leilei Ding, Xiaohan Liu, and Senlin Jin. 2025. "Defects Identification in Ceramic Composites Based on Laser-Line Scanning Thermography" Journal of Composites Science 9, no. 10: 532. https://doi.org/10.3390/jcs9100532
APA StyleWang, Y., Zhou, J., Ding, L., Liu, X., & Jin, S. (2025). Defects Identification in Ceramic Composites Based on Laser-Line Scanning Thermography. Journal of Composites Science, 9(10), 532. https://doi.org/10.3390/jcs9100532