Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = 13C stable isotope tracing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 17095 KiB  
Article
Origin of Dolomite in the Majiagou Formation (Ordovician) of the Liujiang Basin, China: Evidence from Crystal Structure, Isotope and Element Geochemistry
by Huaiyu Xue, Jianping Qian and Wentan Xu
Minerals 2025, 15(7), 717; https://doi.org/10.3390/min15070717 - 8 Jul 2025
Viewed by 269
Abstract
Research on dolomite has long been central in geoscience, yet understanding the origin of Middle Ordovician dolomite in the northeast of the North China Platform remains limited. Based on this, this study focuses on dolomite of Majiagou Formation in Liujiang Basin, and analyzes [...] Read more.
Research on dolomite has long been central in geoscience, yet understanding the origin of Middle Ordovician dolomite in the northeast of the North China Platform remains limited. Based on this, this study focuses on dolomite of Majiagou Formation in Liujiang Basin, and analyzes its genetic process. The research is based on the measured geological section and conducts high-precision analysis and testing, encompassing major and trace elements, rare earth elements, stable carbon and oxygen isotopes, strontium isotopes, crystal structure parameters, and micro-area elements of dolomite. Analysis of V/(V + Ni), Th/U, Sr/Ba, Mn/Sr, (Eu/Eu*) N, (Ce/Ce*) N, and the dolomite crystal parameters indicates that the formation of dolomite is related to evaporation. Furthermore, REE and micro-area characteristics of dolomite, as well as the significant negative deviation of δ13C and δ18O, in conjunction with 87Sr/86Sr deviating from the standard values of Ordovician seawater, suggest an origin of the dolomite in this formation with mixed-water dolomitization and burial dolomitization. A comprehensive assessment of dolomite formation suggests three distinct stages: early-stage evaporation dolomitization, subsequent mixed-water dolomitization, and later-stage burial dolomitization. The research further corroborated that dolomite formation is a complex outcome resulting from the interplay of various geological processes over space and time. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

32 pages, 22279 KiB  
Article
Crafting Urban Landscapes and Monumental Infrastructure: Archaeometric Investigations of White Marble Architectural Elements from Roman Philippopolis (Bulgaria)
by Vasiliki Anevlavi, Walter Prochaska, Plamena Dakasheva, Zdravko Dimitrov and Petya Andreeva
Minerals 2025, 15(7), 704; https://doi.org/10.3390/min15070704 - 1 Jul 2025
Viewed by 293
Abstract
This study explores the provenance of white marble architectural elements from Roman Philippopolis, with a particular focus on the Eastern Gate complex. By determining the origin of the marble, we aim to elucidate economic, social, and urban dynamics related to material selection and [...] Read more.
This study explores the provenance of white marble architectural elements from Roman Philippopolis, with a particular focus on the Eastern Gate complex. By determining the origin of the marble, we aim to elucidate economic, social, and urban dynamics related to material selection and trade networks. The investigation examines the symbolic significance of prestigious marble in elite representation and highlights the role of quarry exploitation in the region’s economic and technological development. The Eastern Gate, a monumental ensemble integrated into the city’s urban fabric, was primarily constructed with local Rhodope marble, alongside imported materials such as Prokonnesian marble. Analytical methods included petrographic examination, chemical analysis of trace elements (Mn, Mg, Fe, Sr, Y, V, Cd, La, Ce, Yb, and U), and stable isotope analysis (δ18O, δ13C). Statistical evaluations were performed for each sample (37 in total) and compared with a comprehensive database of ancient quarry sources. The results underscore the dominance of local materials while also indicating selective use of imports, potentially linked to symbolic or functional criteria. The findings support the hypothesis of local workshop activity in the Asenovgrad/Philippopolis area and shed light on regional and long-distance marble trade during the Roman Imperial period, reflecting broader economic and cultural interconnections. Full article
(This article belongs to the Special Issue Mineralogical and Mechanical Properties of Natural Building Stone)
Show Figures

Figure 1

39 pages, 20692 KiB  
Article
White Marble Sourcing and Regional Workshop Dynamics in Roman Thrace: An Archaeometric Study of Votive Reliefs
by Vasiliki Anevlavi, Walter Prochaska, Petya Andreeva, Kalina Petkova and Benjamin Frerix
Minerals 2025, 15(7), 670; https://doi.org/10.3390/min15070670 - 22 Jun 2025
Viewed by 779
Abstract
Marble votive reliefs from rural sanctuary contexts have seldom undergone archaeometric investigation, despite their potential to illuminate regional trade and production networks. This study focuses on such reliefs from Philippopolis and its hinterland, with particular emphasis on cult sites in Roman Thrace. Using [...] Read more.
Marble votive reliefs from rural sanctuary contexts have seldom undergone archaeometric investigation, despite their potential to illuminate regional trade and production networks. This study focuses on such reliefs from Philippopolis and its hinterland, with particular emphasis on cult sites in Roman Thrace. Using a stable isotope (δ13C and δ18O) and trace element analysis via ICP-MS, integrated with petrography, the provenance of marble used in these artefacts was determined. The results identify Asenovgrad marble—prevalent in the Rhodope Mountains—as the primary material, with a minority of examples sourced from Prokonnesos and the southeastern Rhodopes. The predominantly fine-to-medium-grained nature of Asenovgrad marble may have facilitated the execution of small, detailed iconography. The consistent use of this local stone across votive types and deities implies centralised production, likely by one or more local workshops. These findings contribute to our understanding of marble selection, workshop localisation, and regional connectivity during the Roman period. They also highlight the importance of combining geochemical and petrographic methods for reliable marble provenance. This research demonstrates that even modest sanctuaries can yield critical data on raw material distribution and artisanal practices within broader economic and cultural frameworks. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

26 pages, 6169 KiB  
Article
Petrogenesis of Mafic–Ultramafic Cumulates in the Mayudia Ophiolite Complex, NE Himalaya: Evidence of an Island Arc Root in Eastern Neo-Tethys
by Sapneswar Sahoo, Alik S. Majumdar, Rajagopal Anand, Dwijesh Ray and José M. Fuenlabrada
Minerals 2025, 15(6), 572; https://doi.org/10.3390/min15060572 - 27 May 2025
Viewed by 484
Abstract
Amphibole-rich cumulates provide crucial information pertaining to the petrogenetic history of suprasubduction zone ophiolites and are, therefore, helpful in constraining the evolution and closure of the Neo-Tethys during the late Cretaceous to the early Tertiary period. Following this, the present contribution examines the [...] Read more.
Amphibole-rich cumulates provide crucial information pertaining to the petrogenetic history of suprasubduction zone ophiolites and are, therefore, helpful in constraining the evolution and closure of the Neo-Tethys during the late Cretaceous to the early Tertiary period. Following this, the present contribution examines the meta-hornblendite and meta-hornblende-gabbro lithologies in the Mayudia ophiolite complex (MdOC), NE Himalaya, based on their field and petrographic relations, constituent mineral compositions, whole rock major and trace element chemistry and bulk strontium (Sr)—neodymium (Nd) isotope systematics. MdOC cumulates potentially represent the fossilized record of an island arc root, where amphibole + titanite + magnetite was fractionally crystallized from a super hydrous magma (10.56–13.61 wt.% melt water content) prior to plagioclase in a stable physico-chemical condition (T: 865–940 °C, P: 0.8–1.4 GPa, logfO2: −8.59–−11.19 unit) at lower crustal depths (30–38 km). Such extreme hydrous nature in the parental magma was generated by the flux melting of the sub-arc mantle wedge with aqueous inputs from the dehydrating slab. A super hydrous magmatic reservoir was, therefore, extant at sub-arc mantle depths in the eastern Neo-Tethys, which has likely modulated the composition of the oceanic crust during intraoceanic subduction. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

36 pages, 16597 KiB  
Article
Geochemistry, Isotope Characteristics, and Evolution of the Kesikköprü Iron Deposit (Türkiye)
by Erkan Yılmazer and Mustafa Haydar Terzi
Minerals 2025, 15(5), 528; https://doi.org/10.3390/min15050528 - 15 May 2025
Viewed by 539
Abstract
The Kesikköprü iron deposit, located in the Central Anatolian Crystalline Complex, occurs in the triple contact of Kesikköprü granitoid, mafic–ultramafic rocks, and marble. The causative Kesikköprü granitoid, consisting of diorite, granodiorite, and granite, is classified as sub-alkaline, calc-alkaline, and shoshonitic, displaying metaluminous to [...] Read more.
The Kesikköprü iron deposit, located in the Central Anatolian Crystalline Complex, occurs in the triple contact of Kesikköprü granitoid, mafic–ultramafic rocks, and marble. The causative Kesikköprü granitoid, consisting of diorite, granodiorite, and granite, is classified as sub-alkaline, calc-alkaline, and shoshonitic, displaying metaluminous to partially peraluminous properties. Sr-Nd isotope data and the geochemical characteristics of the Kesikköprü granitoid indicate a metasomatized mantle origin, with its ultimate composition arising from crustal contamination and magma mixing along with fractional crystallization in a post-collisional setting. The 40Ar/39Ar geochronology reveals a total fusion age of 73.41 ± 0.32 Ma for the biotite of the Kesikköprü granitoid. The alteration pattern in the deposit is characterized by an endoskarn zone comprising garnet–pyroxene (±phlogopite ± epidote) and an exoskarn zone displaying a zoning of garnet (±pyroxene ± phlogopite), pyroxene (±garnet ± phlogopite ± epidote), epidote–garnet, and epidote-rich subzones. Magnetite is extracted from massive lenses within the exoskarn zones and shows vein, disseminated, banded, massive, and brecciated textures. The low potassium content of phlogopites which are associated with magnetite mineralization prevents the determination of a reliable alteration age. δ18O thermometry reveals a temperature range between 462 and 528 °C for the magnetite mineralization. According to geochemical (trace and rare earth elements), stable (δ18O, δ2H, δ34S, and δ13C), and radiogenic (87Sr/86Sr and 143Nd/144Nd) isotope data, the hydrothermal fluid responsible for the alteration and mineralization is related to the Kesikköprü granitoid, from which a significant magmatic component originates initially, followed by meteoric fluids at lower temperatures (123 °C) during the late-stage formation of calcite–quartz veins. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

23 pages, 3859 KiB  
Article
Deciphering Colorectal Cancer–Hepatocyte Interactions: A Multiomics Platform for Interrogation of Metabolic Crosstalk in the Liver–Tumor Microenvironment
by Alisa B. Nelson, Lyndsay E. Reese, Elizabeth Rono, Eric D. Queathem, Yinjie Qiu, Braedan M. McCluskey, Alexandra Crampton, Eric Conniff, Katherine Cummins, Ella Boytim, Senali Dansou, Justin Hwang, Sandra E. Safo, Patrycja Puchalska, David K. Wood, Kathryn L. Schwertfeger and Peter A. Crawford
Int. J. Mol. Sci. 2025, 26(5), 1976; https://doi.org/10.3390/ijms26051976 - 25 Feb 2025
Cited by 1 | Viewed by 1018
Abstract
Metabolic reprogramming is a hallmark of cancer, enabling tumor cells to adapt to and exploit their microenvironment for sustained growth. The liver is a common site of metastasis, but the interactions between tumor cells and hepatocytes remain poorly understood. In the context of [...] Read more.
Metabolic reprogramming is a hallmark of cancer, enabling tumor cells to adapt to and exploit their microenvironment for sustained growth. The liver is a common site of metastasis, but the interactions between tumor cells and hepatocytes remain poorly understood. In the context of liver metastasis, these interactions play a crucial role in promoting tumor survival and progression. This study leverages multiomics coverage of the microenvironment via liquid chromatography and high-resolution, high-mass-accuracy mass spectrometry-based untargeted metabolomics, 13C-stable isotope tracing, and RNA sequencing to uncover the metabolic impact of co-localized primary hepatocytes and a colon adenocarcinoma cell line, SW480, using a 2D co-culture model. Metabolic profiling revealed disrupted Warburg metabolism with an 80% decrease in glucose consumption and 94% decrease in lactate production by hepatocyte–SW480 co-cultures relative to SW480 control cultures. Decreased glucose consumption was coupled with alterations in glutamine and ketone body metabolism, suggesting a possible fuel switch upon co-culturing. Further, integrated multiomics analysis indicates that disruptions in metabolic pathways, including nucleoside biosynthesis, amino acids, and TCA cycle, correlate with altered SW480 transcriptional profiles and highlight the importance of redox homeostasis in tumor adaptation. Finally, these findings were replicated in three-dimensional microtissue organoids. Taken together, these studies support a bioinformatic approach to study metabolic crosstalk and discovery of potential therapeutic targets in preclinical models of the tumor microenvironment. Full article
(This article belongs to the Special Issue Research Progress of Metabolomics in Health and Disease)
Show Figures

Figure 1

16 pages, 3429 KiB  
Article
Beef Traceability Between China and Argentina Based on Various Machine Learning Models
by Xiaomeng Xiang, Chaomin Zhao, Runhe Zhang, Jing Zeng, Liangzi Wang, Shuran Zhang, Diego Cristos, Bing Liu, Siyan Xu and Xionghai Yi
Molecules 2025, 30(4), 880; https://doi.org/10.3390/molecules30040880 - 14 Feb 2025
Viewed by 936
Abstract
Beef, as a nutrient-rich food, is widely favored by consumers. The production region significantly influences the nutritional value and quality of beef. However, current methods for tracing the origin of beef are still under development, necessitating effective approaches to ensure food safety and [...] Read more.
Beef, as a nutrient-rich food, is widely favored by consumers. The production region significantly influences the nutritional value and quality of beef. However, current methods for tracing the origin of beef are still under development, necessitating effective approaches to ensure food safety and meet consumer demand for high-quality beef. This study aims to establish a classification model for beef origin prediction by analyzing elemental content and stable isotopes in beef samples from two countries. The concentrations of elements in beef were analyzed using ICP-MS and ICP-OES, while the stable carbon isotope ratio was determined using EA-IRMS. Machine learning algorithms were employed to construct classification prediction models. A total of 83 beef samples were analyzed for the concentrations of 52 elements and the stable carbon isotope ratio. The classification accuracy of the PLS-DA model built on these results was 98.8%, while the prediction accuracy was 94.12% for the convolutional neural network (CNN) and 82.35% for the Random Forest algorithm. The PLS-DA model demonstrated higher classification accuracy compared to CNN and Random Forest, with an explanatory power (R2) of 0.924 and predictive ability (Q2) of 0.787. Combining the analysis of 52 elements and the stable carbon isotope ratio with machine learning algorithms enables effective tracing and origin prediction of beef from different regions. Key factors influencing beef origin were identified as Fe, Cs, As, δ13C, Co, V, Sc, Rb, and Ru. Full article
(This article belongs to the Special Issue Applications of Spectroscopic Techniques in Food Sample Analysis)
Show Figures

Graphical abstract

18 pages, 2383 KiB  
Article
Authentic Aroma and Compound-Specific Isotope Ratios (δ13C, δ2H) Profiles of Vanilla Pods (V. planifolia and V. tahitensis)
by Long Chen, Purna Kumar Khatri, Mauro Paolini, Tiziana Nardin, Alberto Roncone, Roberto Larcher, Luca Ziller and Luana Bontempo
Molecules 2025, 30(4), 825; https://doi.org/10.3390/molecules30040825 - 11 Feb 2025
Cited by 1 | Viewed by 1161
Abstract
Stable isotope ratio analysis of carbon (δ13C) and hydrogen (δ2H) in vanillin has become a valuable tool for differentiating natural vanilla from synthetic or biosynthetic alternatives and for tracing its geographical origins. However, increasingly sophisticated fraud techniques [...] Read more.
Stable isotope ratio analysis of carbon (δ13C) and hydrogen (δ2H) in vanillin has become a valuable tool for differentiating natural vanilla from synthetic or biosynthetic alternatives and for tracing its geographical origins. However, increasingly sophisticated fraud techniques necessitate ongoing refinement of analytical methods to ensure accurate detection. This study advanced the field by investigating minor volatile organic compounds as potential biomarkers for identifying botanical and geographical origins of vanilla products. Vanilla pods from the two main vanilla species, V. planifolia and V. tahitensis, were investigated using GC-MS/MS to analyze their aromatic profile and GC-C/Py-IRMS to determine compound-specific isotope ratios, providing, for the first time, detailed and authentic isotopic and aromatic profiles. Additionally, the potential natural presence of ethyl vanillin and its corresponding glucoside precursors—molecules commonly used as synthetic vanilla-scented fragrance agents in various foods and industrial products—was explored using UHPLC-HRMS. These findings contribute to robust methods for verifying vanilla authenticity, addressing flavor complexity and isotopic composition, and enhancing the detection of adulteration in vanilla-flavored products. Full article
Show Figures

Figure 1

15 pages, 4598 KiB  
Article
Trace Element Geochemistry and Stable Isotopic (δ13C and δ15N) Characterisation of Nevşehir Coals, Türkiye
by Hatice Kara, Leyla Kalender and Mehmet Çağay Yumutgan
Minerals 2025, 15(2), 151; https://doi.org/10.3390/min15020151 - 4 Feb 2025
Viewed by 757
Abstract
The Nevşehir coals are located in the Central Anatolian Crystalline Complex (CACC), Türkiye, and no reports exist on trace element, nitrogen, and carbon isotope composition data of the Nevşehir coals. The present study aims to geochemically characterise the Nevşehir coals to determine their [...] Read more.
The Nevşehir coals are located in the Central Anatolian Crystalline Complex (CACC), Türkiye, and no reports exist on trace element, nitrogen, and carbon isotope composition data of the Nevşehir coals. The present study aims to geochemically characterise the Nevşehir coals to determine their trace elemental enrichment patterns and possible sources. Nevşehir coals are found within Late Miocene Kızılöz Formation (Arafa Member) rocks. These coals are part of the huminite maceral group; the dominant maceral group is ulminites. The minerals in coals are inorganic, such as oxidised framboidal pyrite, iron oxide minerals, quartz, clay, and carbonate minerals. Coals have great potential regarding trace elements. Benefits might arise from mining and using some of the critical elements derived from coal. Compared with the world coal average, the coal samples in this study are enriched in As (149.25 μg/g), V (245 μg/g), Cr (159 μg/g), Ga (18 μg/g), Ni (216 μg/g), Th (17 μg/g), Zn (143 μg/g), and U (54 μg/g). The arsenic content in this study is associated with inorganic components such as oxidised framboidal pyrite. Vanadium in coal is mainly associated with aluminosilicates and organic matter. Chromium originates from the clay minerals within coals. Uranium in coal is mainly associated with organic matter. Nickel and zinc in coal are predominantly associated with sulphides. The δ15N contents of the samples are comparable to those of several references, including plants, terrestrial creatures, and organic nitrogen. The δ13C–δ15N isotopic range and average values for four coal samples ranged from −25.66‰ to −25.91‰ (−25.80‰) and 3.6‰ to 4.3‰ (3.9‰), respectively, demonstrating that C3 type modern terrestrial vegetation was common in the palaeomires of the studied coal seams. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

22 pages, 9430 KiB  
Article
Pyrite Textures, Trace Element Geochemistry and Galena Pb Isotopes of the Yanzhupo Gold Deposit in the Jiangnan Orogen, South China: Implications for Gold Mineralization Genesis
by Jia Liao, Xu Wang, Biao Chen, Buqing Wang, Zhenhua Zhu, Wentao Wang, Ding Peng, Qian Zhang, Zhuang Liu and Qiangqiang Xu
Minerals 2025, 15(1), 94; https://doi.org/10.3390/min15010094 - 20 Jan 2025
Cited by 1 | Viewed by 1324
Abstract
The northeastern Hunan district in the Jiangnan Orogen (South China) holds significant gold resources, whose genesis remains perplexing, especially in terms of the gold source and mineralization process. Yanzhupo (2.50 t @ 2.52 g/t) is a newly discovered gold deposit in the northeastern [...] Read more.
The northeastern Hunan district in the Jiangnan Orogen (South China) holds significant gold resources, whose genesis remains perplexing, especially in terms of the gold source and mineralization process. Yanzhupo (2.50 t @ 2.52 g/t) is a newly discovered gold deposit in the northeastern Hunan district and is characterized by multiple generations of pyrite. Its alteration/mineralization can be divided into three stages: (I) quartz-ankerite-pyrite; (II) quartz-ankerite-chlorite-pyrite-gold; (III) quartz-ankerite-calcite-pyrite. Petrographic observations and back-scattered electron (BSE) imaging revealed six generations of pyrite: Cu-Au rich bright rims (Py1a) and porous cores (Py1b) in Stage I, Py2a with homogenous textures, Py2b with oscillatory zoning and Py2c with homogenous textures in Stage II and Py3 with homogenous textures in Stage III. Galena Pb isotopes, similar to the Wangu deposit, and pyrite chemical compositions show that the ore-forming materials of Yanzhupo came from deep magma, and some metal elements may be extracted from deep basement by fluid-mineral interactions during the upward migration of hydrothermal-magmatic fluid. The positive correlation between Cu and Au in pyrite reflects the oxidized ore-forming fluids. The enrichment of Cu and Au in Py1a reflects the precipitation of pyrite under high temperature fluid, forming the primary enrichment of Au. Porous Py1b is characterized by lower trace elements than Py1a, sharp reaction front and rich chalcopyrite and galena inclusions, indicating Py1b formed via coupled dissolution-reprecipitation (CDR) reactions of Py1a. The CDR reactions promoted by the oxidizing fluid itself re-release Au into the fluid. From Py2a to Py2c, the contents of As, Sb and Pb first increased and then decreased, which may reflect the increase of fluid pH caused by sulfidation of the wall rocks and the impoverishment of ore-forming fluids caused by the precipitation of a large number of elements. The sulfidation of the wall rocks in Stage II destroyed the stability of the Au(HS)2 and Au (HS)S3 complexes and led to the deposition of native gold. The barren ore-forming fluids precipitated homogenous Py3 in a stable environment. Therefore, we think that the Yanzhupo gold deposit may have been associated with magmatic-hydrothermal activity, and the mineralization mechanism may be CDR reactions and sulfidation of the wall rocks. Full article
Show Figures

Figure 1

13 pages, 1625 KiB  
Article
MetaboLabPy—An Open-Source Software Package for Metabolomics NMR Data Processing and Metabolic Tracer Data Analysis
by Christian Ludwig
Metabolites 2025, 15(1), 48; https://doi.org/10.3390/metabo15010048 - 14 Jan 2025
Cited by 1 | Viewed by 1472
Abstract
Introduction: NMR spectroscopy is a powerful technique for studying metabolism, either in metabolomics settings or through tracing with stable isotope-enriched metabolic precursors. MetaboLabPy (version 0.9.66) is a free and open-source software package used to process 1D- and 2D-NMR spectra. The software implements a [...] Read more.
Introduction: NMR spectroscopy is a powerful technique for studying metabolism, either in metabolomics settings or through tracing with stable isotope-enriched metabolic precursors. MetaboLabPy (version 0.9.66) is a free and open-source software package used to process 1D- and 2D-NMR spectra. The software implements a complete workflow for NMR data pre-processing to prepare a series of 1D-NMR spectra for multi-variate statistical data analysis. This includes a choice of algorithms for automated phase correction, segmental alignment, spectral scaling, variance stabilisation, export to various software platforms, and analysis of metabolic tracing data. The software has an integrated help system with tutorials that demonstrate standard workflows and explain the capabilities of MetaboLabPy. Materials and Methods: The software is implemented in Python and uses numerous Python toolboxes, such as numpy, scipy, pandas, etc. The software is implemented in three different packages: metabolabpy, qtmetabolabpy, and metabolabpytools. The metabolabpy package contains classes to handle NMR data and all the numerical routines necessary to process and pre-process 1D NMR data and perform multiplet analysis on 2D-1H, 13C HSQC NMR data. The qtmetabolabpy package contains routines related to the graphical user interface. Results: PySide6 is used to produce a modern and user-friendly graphical user interface. The metabolabpytools package contains routines which are not specific to just handling NMR data, for example, routines to derive isotopomer distributions from the combination of NMR multiplet and GC-MS data. A deep-learning approach for the latter is currently under development. MetaboLabPy is available via the Python Package Index or via GitHub. Full article
(This article belongs to the Special Issue Open-Source Software in Metabolomics)
Show Figures

Figure 1

16 pages, 8666 KiB  
Article
Sedimentological and Geochemical Evaluation of the Lower Cretaceous Yamama Formation, Riyadh, Saudi Arabia: An Integrated Tool for Paleoenvironmental Interpretation
by Rayan Khalil
Minerals 2024, 14(12), 1275; https://doi.org/10.3390/min14121275 - 16 Dec 2024
Viewed by 1020
Abstract
Geochemical proxies are a reliable tool in deciphering the paleoenvironment and diagenetic alteration in carbonate rock units. The Lower Cretaceous Yamama Formation (LCYF) is an important carbonate unit of the Saudi Arabia region which has been studied in detail to evaluate the paleoenvironment [...] Read more.
Geochemical proxies are a reliable tool in deciphering the paleoenvironment and diagenetic alteration in carbonate rock units. The Lower Cretaceous Yamama Formation (LCYF) is an important carbonate unit of the Saudi Arabia region which has been studied in detail to evaluate the paleoenvironment and diagenetic alteration through geochemical studies. This study presents new data on petrography, stable isotopes, and trace and rare-earth elements to enhance our understanding on paleoenvironments, redox conditions, and paleosalinity during the deposition of these carbonate units. Field studies show that the formation is composed of thick-to-thin-bedded limestone. Petrographic studies show that the formation is mostly composed of mudstone, wackestone, packstone, and grainstone facies. The stable isotopic values of carbon (δ13C V-PDB = +0.58‰ to +2.23‰) and oxygen (δ18O V-PDB = −6.38‰ to −4.48‰) are directly within the range of marine signatures. CaCO3’s dominance over SiO2 and Al2O3 indicates minimal detrital contribution during the LCYF precipitation. The REE pattern suggests coeval marine signatures which include (i) a slight LREE depletion compared to HREEs (av. Nd/YbN = 0.70), (ii) negative Ce anomalies (av. Ce/Ce* = 0.5), and (iii) a positive La anomaly (av. La/La* = 1.70). Micritic limestone has low Hf (bdl to 0.4 µg/g), Sc (bdl to 2.5 µg/g), and Th (bdl to 0.8 µg/g) content, which suggests negligible detrital influence. The Ce content of different facies (Ce = 1u.80 to 12.85 µg/g) suggests that their deposition took place under oxic to dysoxic conditions. However, there is moderate variation during the deposition of MF-I, with higher Ce values as compared to MF-II, MF-III, and MF-IV, which suggests that the deposition of MF-I mostly took place in anoxic to dysoxic conditions. Full article
(This article belongs to the Special Issue Carbonate Petrology and Geochemistry, 2nd Edition)
Show Figures

Figure 1

18 pages, 2785 KiB  
Article
Characterization of Phytoplankton-Derived Amino Acids and Tracing the Source of Organic Carbon Using Stable Isotopes in the Amundsen Sea
by Jun-Oh Min, Min-Seob Kim, Boyeon Lee, Jong-Ku Gal, Jinyoung Jung, Tae-Wan Kim, Jisoo Park and Sun-Yong Ha
Mar. Drugs 2024, 22(10), 476; https://doi.org/10.3390/md22100476 - 18 Oct 2024
Viewed by 3089
Abstract
We utilized amino acid (AA) and carbon stable isotope analyses to characterize phytoplankton-derived organic matter (OM) and trace the sources of organic carbon in the Amundsen Sea. Carbon isotope ratios of particulate organic carbon (δ13C-POC) range from −28.7‰ to −23.1‰, indicating [...] Read more.
We utilized amino acid (AA) and carbon stable isotope analyses to characterize phytoplankton-derived organic matter (OM) and trace the sources of organic carbon in the Amundsen Sea. Carbon isotope ratios of particulate organic carbon (δ13C-POC) range from −28.7‰ to −23.1‰, indicating that particulate organic matter originated primarily from phytoplankton. The dissolved organic carbon isotope (δ13C-DOC) signature (−27.1 to −21.0‰) observed in the sea-ice melting system suggests that meltwater contributes to the DOC supply of the Amundsen Sea together with OM produced by phytoplankton. A negative correlation between the degradation index and δ13C-POC indicates that the quality of OM significantly influences isotopic fractionation (r2 = 0.59, p < 0.001). The AA distribution in the Amundsen Sea (5.43 ± 3.19 µM) was significantly larger than previously reported in the Southern Ocean and was associated with phytoplankton biomass (r2 = 0.49, p < 0.01). Under conditions dominated by P. antarctica (DI = 2.29 ± 2.30), OM exhibited greater lability compared to conditions co-dominated by diatoms and D. speculum (DI = 0.04 ± 3.64). These results highlight the important role of P. antarctica in influencing the properties of OM, suggesting potential impacts on carbon cycling and microbial metabolic activity in the Amundsen Sea. Full article
(This article belongs to the Special Issue Marine Algal Chemical Ecology 2024)
Show Figures

Figure 1

15 pages, 12464 KiB  
Article
Acid-Extracted Hydrocarbon Anomalies and Significance in the Chaoshan Depression of the Northern South China Sea
by Guangjian Zhong, Jing Zhao, Zhongquan Zhao, Kangshou Zhang, Junhui Yu, Chunjiang Shang, Guanghong Tu and Changmao Feng
J. Mar. Sci. Eng. 2024, 12(6), 909; https://doi.org/10.3390/jmse12060909 - 29 May 2024
Viewed by 956
Abstract
To predict the favorable zones and the types of reservoirs, acid extraction has been used in the Chaoshan depression to detect trace amounts of light hydrocarbons, heavy hydrocarbons, and the δ 13C (‰) of methane. As a result, two integration anomalous zones [...] Read more.
To predict the favorable zones and the types of reservoirs, acid extraction has been used in the Chaoshan depression to detect trace amounts of light hydrocarbons, heavy hydrocarbons, and the δ 13C (‰) of methane. As a result, two integration anomalous zones for exploration activity were blocked out in the northeastern and southwestern parts of the Chaoshan Depression, respectively. By analyzing the differentiation law and structural characteristics of hydrocarbon gases, as well as the stable carbon isotope ratio of methane, the underlying reservoirs were predicted to be gas reservoirs, and the seismically interpreted Dongsha-A (DS-A) structure was predicted to be a gas-rich structure. By correlating the seismic profile and geochemical anomalies, it was determined that fault planes and micro-fractures are the main controlling factors for the occurrence of the seabed’s geochemical anomalies. A composite formation mechanism of “lower generation, upper accumulation and micro fractures leaking” is proposed for the control of the underlying petroleum reservoirs, as well as for the micro-fracture control of permeability and surface adsorption control. Acid-extracted hydrocarbon anomalies have favorable indicating significance for exploration activity. Full article
(This article belongs to the Special Issue Advances in Marine Gas Hydrate Exploration and Discovery)
Show Figures

Figure 1

3 pages, 388 KiB  
Abstract
Isotope-Selective Gas Sensing Using Photoacoustic Non-Dispersive Spectroscopy
by Gabriel Rodriguez Gutierrez, Loay Marouani, Alvaro Ortiz Perez, Peter Kreuzaler and Stefan Palzer
Proceedings 2024, 97(1), 207; https://doi.org/10.3390/proceedings2024097207 - 24 Apr 2024
Viewed by 2459
Abstract
The flow of carbons into the citric acid cycle can be readily traced by supplementation with 13C stable isotope labelled nutrients. However, the quantification of the amount of fully oxidised nutrients to carbon dioxide is a challenging task. This contribution presents an [...] Read more.
The flow of carbons into the citric acid cycle can be readily traced by supplementation with 13C stable isotope labelled nutrients. However, the quantification of the amount of fully oxidised nutrients to carbon dioxide is a challenging task. This contribution presents an isotope-selective, miniaturized gas detection scheme based on indirect photoacoustic spectroscopy. The results show that low-cost, continuous, in situ monitoring of the isotope ratio in gaseous samples is feasible. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

Back to TopTop