Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (134)

Search Parameters:
Keywords = 1064/532 nm Q-switched laser

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3231 KB  
Article
Spectroscopic Real-Time Monitoring of Plasmonic Gold Nanoparticle Formation in ZnO Thin Films via Pulsed Laser Annealing
by Edgar B. Sousa, N. F. Cunha, Joel Borges and Michael Belsley
Micro 2026, 6(1), 1; https://doi.org/10.3390/micro6010001 - 24 Dec 2025
Viewed by 92
Abstract
We demonstrate that pulsed laser annealing induces plasmonic gold nanoparticles in ZnO thin films, monitored in real-time via pulse-by-pulse spectroscopy. Initially embedded gold nanoparticles (smaller than 5 nm) in sputtered ZnO films were annealed using 532 nm pulses from a Q-switched Nd:YAG laser [...] Read more.
We demonstrate that pulsed laser annealing induces plasmonic gold nanoparticles in ZnO thin films, monitored in real-time via pulse-by-pulse spectroscopy. Initially embedded gold nanoparticles (smaller than 5 nm) in sputtered ZnO films were annealed using 532 nm pulses from a Q-switched Nd:YAG laser while monitoring transmission spectra in situ. A plasmonic resonance dip emerged after ~100 pulses in the 530–550 nm region, progressively deepening with continued exposure. Remarkably, different incident energies converged to a thermodynamically stable optical state centered near 555 nm, indicating robust nanoparticle configurations. After several hundred laser shots, the process stabilized, producing larger nanoparticles (40–200 nm diameter) with significant surface protrusion. SEM analysis confirmed substantial gold nanoparticle growth. Theoretical modeling supports these observations, correlating spectral evolution with particle size and embedding depth. The protruding gold nanoparticles can be functionalized to detect specific biomolecules, offering significant advantages for biosensing applications. This approach offers superior spatial selectivity and real-time process monitoring compared to conventional thermal annealing, with potential for optimizing uniform nanoparticle distributions with pronounced plasmonic resonances for biosensing applications. Full article
(This article belongs to the Section Microscale Physics)
Show Figures

Figure 1

10 pages, 2899 KB  
Article
Study of a High-Power, Long-Pulse-Width Acousto-Optical Q-Switched 1064 nm Laser Based on a Multi-Pass Cavity
by Wenbo Li, Zhaochen Lv, Yu Ding, Qingxuan Li, Jiapeng Hu, Chenpeng Deng, Tian Lan, Anru Yan, Youqiang Liu, Xuesheng Liu and Zhiyong Wang
Appl. Sci. 2025, 15(23), 12536; https://doi.org/10.3390/app152312536 - 26 Nov 2025
Viewed by 312
Abstract
A high-power, long-pulse-width acousto-optical Q-switched 1064 nm laser based on a multi-pass cavity (MPC) is reported in this paper. First, a plano-concave MPC structure satisfying the Q-preserving configuration was designed and introduced into an acousto-optical Q-switched plano-plano cavity Nd:YAG laser, extending the original [...] Read more.
A high-power, long-pulse-width acousto-optical Q-switched 1064 nm laser based on a multi-pass cavity (MPC) is reported in this paper. First, a plano-concave MPC structure satisfying the Q-preserving configuration was designed and introduced into an acousto-optical Q-switched plano-plano cavity Nd:YAG laser, extending the original laser cavity length by 1200 mm. The laser achieved a maximum average output power of 123.6 W with a repetition rate of 10 kHz. At this power level, the laser pulse width was broadened to 157.5 ns, which can be compared to 82.5 ns without the MPC structure, achieving a broadening ratio of 90.9%. The beam quality factors were Mx2 = 10.75 in the horizontal direction and My2 = 11.37 in the vertical direction. The experimental results demonstrate that inserting an MPC into the cavity is an effective method for broadening the pulse width of nanosecond lasers. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

12 pages, 3323 KB  
Article
Effects of Laser Shock Processing on the Mechanical Properties of 6061-T6 Aluminium Alloy Using Nanosecond and Picosecond Laser Pulses
by Martha Guadalupe Arredondo Bravo, Gilberto Gomez-Rosas, Miguel Morales, David Munoz-Martin, Juan Jose Moreno-Labella, Jose Manuel Lopez Lopez, Jose Guadalupe Quiñones Galvan, Carlos Rubio-Gonzalez, Francisco Javier Casillas Rodriguez and Carlos Molpeceres
Materials 2025, 18(20), 4649; https://doi.org/10.3390/ma18204649 - 10 Oct 2025
Cited by 1 | Viewed by 975
Abstract
Laser shock processing (LSP) is a surface treatment technique used to enhance mechanical properties such as hardness, corrosion resistance, and wear resistance. This study investigates the effects of LSP on a 6061-T6 aluminium alloy using four treatment conditions: nanosecond (ns-LSP), picosecond (ps-LSP), and [...] Read more.
Laser shock processing (LSP) is a surface treatment technique used to enhance mechanical properties such as hardness, corrosion resistance, and wear resistance. This study investigates the effects of LSP on a 6061-T6 aluminium alloy using four treatment conditions: nanosecond (ns-LSP), picosecond (ps-LSP), and a combination of nanosecond–picosecond (nsps-LSP) and picosecond–nanosecond (psns-LSP) pulses. Two laser systems were employed: a Q-switched Nd:YAG laser (850 mJ/pulse, 6 ns, 1064 nm, 10 Hz), and an Ekspla Atlantic 355-60 laser (0.110 mJ/pulse, 13 ps, 1064 nm, 1 kHz). All treatments induced compressive residual stresses up to 1 mm in depth. Additionally, improvements in microhardness were observed, particularly at deeper layers in the combined nsps-LSP treatment. Surface roughness was measured and compared. Among all configurations, the nsps-LSP treatment produced the highest compressive residual stresses (−428 MPa) and greater microhardness at depth. These results suggest that the combined nsps-LSP treatment represents a promising approach to enhance the mechanical performance of metallic components. Full article
(This article belongs to the Special Issue Advances in Laser Processing Technology of Materials—Second Edition)
Show Figures

Figure 1

11 pages, 885 KB  
Systematic Review
Efficacy and Safety of Different Treatments for Melasma: Network Meta-Analysis of Updated Data
by John Hang Leung, Henry W. C. Leung, Shyh-Yau Wang, Yeu-Chai Jang and Agnes L. F. Chan
Diseases 2025, 13(10), 316; https://doi.org/10.3390/diseases13100316 - 25 Sep 2025
Viewed by 5837
Abstract
Background: Melasma is a chronic, relapsing pigmented skin disease with challenging and unsatisfactory treatment outcomes. This study aims to compare the efficacy and safety of different treatments for melasma. Methods: We conducted a comprehensive search of PubMed and EMBASE databases to [...] Read more.
Background: Melasma is a chronic, relapsing pigmented skin disease with challenging and unsatisfactory treatment outcomes. This study aims to compare the efficacy and safety of different treatments for melasma. Methods: We conducted a comprehensive search of PubMed and EMBASE databases to identify randomized controlled clinical trials (RCTs) for melasma treatment modalities between January 2022 and January 2025. Relative efficacy refers to the comparison of the improvement in melasma severity before and after treatment for all modalities of interest at a specific time point. The Melasma Area Severity Index (MASI) (also known as modified MASI (mMASI) or half-MASI score) was defined as the efficacy index. Safety refers to the incidence of the most common adverse events. The quality of the included trials was assessed using the GRADE method. Results: The analysis included 14 clinical trials with 15 treatment modalities involving 738 women who met the inclusion criteria. The mean difference in efficacy index showed that intradermal PRP (platelet-rich plasma) and intradermal PRP + oTXA (oral tranexamic acid) were the best treatment options compared with HQ4%, intradermal TXA, intradermal PRGF (plasma rich in growth factor) + HQ4 (hydroquinone 4%), followed by intradermal TXALaser (intradermal TXA + Q-switched fractional 1064-nmNd:YAG lasers). The efficacy indices of other modalities were comparable. Most treatment-related adverse events were mild, were well tolerated, or resolved with treatment. The quality of evidence was generally high. Conclusions: This NMA showed that intradermal PRP in combination or alone is an effective and safe treatment option for melasma. PRP may be a direction for the development of new melasma treatment options in the future, but well-designed, comprehensive, large-scale randomized controlled trials are needed to verify it. Full article
Show Figures

Figure 1

19 pages, 2022 KB  
Article
Q-Switched Nd:YAG Laser Treatment of Nocardia sp. Black Biofilm: Complete Biodeterioration Reversal in Limestone Heritage Conservation
by Shimaa Ibrahim, Rageh K. Hussein, Hesham Abdulla, Ghada Omar, Sharif Abu Alrub, Paola Grenni and Dina M. Atwa
Int. J. Mol. Sci. 2025, 26(16), 8064; https://doi.org/10.3390/ijms26168064 - 20 Aug 2025
Viewed by 1832
Abstract
Stone cleaning for cultural heritage monuments is a critical conservation intervention that must effectively eliminate harmful surface contaminants while preserving the material’s physical, chemical, and historical integrity. This study investigated the removal of tenacious black biofilms formed by Nocardia species previously isolated from [...] Read more.
Stone cleaning for cultural heritage monuments is a critical conservation intervention that must effectively eliminate harmful surface contaminants while preserving the material’s physical, chemical, and historical integrity. This study investigated the removal of tenacious black biofilms formed by Nocardia species previously isolated from deteriorated limestone from the Bastet tomb in Tell Basta, Zagazig City, Egypt, using a Q-switched 1064 nm Nd:YAG laser. Experimental limestone specimens were systematically inoculated with Nocardia sp. under controlled laboratory conditions to simulate biodeterioration processes. Comprehensive testing revealed that a laser fluence of 0.03 J/cm2 with a 5 ns pulse duration, applied under wet conditions with 500 pulses, achieved the complete elimination of the biological black film without damaging the underlying stone substrate. The cleaning efficacy was evaluated through an integrated analytical framework combining stereomicroscopy, scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDX), X-ray diffraction (XRD), and laser-induced plasma spectroscopy (LIPS). These analyses demonstrated a remarkable transformation from a compromised mineralogical composition dominated by gypsum (62%) and anhydrite (13%) to a restored state of 98% calcite, confirming the laser treatment’s effectiveness in reversing biodeterioration processes. SEM micrographs revealed the complete elimination of mycelial networks that had penetrated to depths between 984 μm and 1.66 mm, while LIPS analysis confirmed the restoration of elemental signatures to near-control levels. The successful application of LIPS for real-time monitoring during cleaning provides a valuable tool for preventing overcleaning, addressing a significant concern in laser conservation interventions. This research establishes evidence-based protocols for the non-invasive removal of Nocardia-induced black biofilms from limestone artifacts, offering conservation professionals a precise, effective, and environmentally sustainable alternative to traditional chemical treatments for preserving irreplaceable cultural heritage. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

10 pages, 946 KB  
Article
Visible Triple-Wavelength Switchable Emission Generated in Passively Q-Switched Nd:YVO4 Self-Raman Laser
by Songtao Li, Shengxi Zheng, Bowen Zheng, Yong Wei, Yongchang Zhang, Yanmin Duan and Haiyong Zhu
Photonics 2025, 12(7), 669; https://doi.org/10.3390/photonics12070669 - 2 Jul 2025
Viewed by 724
Abstract
We report a passively Q-switched self-Raman laser using a dual-end composite c-cut Nd:YVO4 crystal, which generates switchable visible emissions at 533 nm, 560 nm, and 589 nm. A Cr4+:YAG/YAG composite crystal served the role of a saturable absorber to achieve [...] Read more.
We report a passively Q-switched self-Raman laser using a dual-end composite c-cut Nd:YVO4 crystal, which generates switchable visible emissions at 533 nm, 560 nm, and 589 nm. A Cr4+:YAG/YAG composite crystal served the role of a saturable absorber to achieve passive Q-switching. An angle-tuned BBO crystal was used to achieve the frequency mixing between the first-tokes wave and the fundamental wave. At an incident pump power of 9.5 W, the maximum average output powers were 425 mW for the 589 nm yellow laser, 193 mW for the 560 nm lime laser, and 605 mW for the 533 nm green laser, with corresponding pulse widths of approximately 3.8, 3.6, and 35.1 ns, respectively. This result shows that a passive Q-switching operation with self-Raman crystals presents a promising approach for compact multi-wavelength pulse laser sources. Full article
(This article belongs to the Special Issue Advances in Solid-State Laser Technology and Applications)
Show Figures

Figure 1

14 pages, 615 KB  
Review
Treatment of Benign Pigmented Lesions Using Lasers: A Scoping Review
by Aurore D. Zhang, Janelle Clovie, Michelle Lazar and Neelam A. Vashi
J. Clin. Med. 2025, 14(11), 3985; https://doi.org/10.3390/jcm14113985 - 5 Jun 2025
Cited by 1 | Viewed by 6096
Abstract
Lasers are widely employed in the treatment of melanocytic lesions. This scoping review evaluates 77 studies on the efficacy and safety of laser treatments for café-au-lait macules (CALMs), nevus of Ota (NOA), Becker’s nevus (BN), lichen planus pigmentosus (LPP), and other pigmented lesions. [...] Read more.
Lasers are widely employed in the treatment of melanocytic lesions. This scoping review evaluates 77 studies on the efficacy and safety of laser treatments for café-au-lait macules (CALMs), nevus of Ota (NOA), Becker’s nevus (BN), lichen planus pigmentosus (LPP), and other pigmented lesions. The Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG), particularly the 1064 nm, is the most frequently utilized laser, demonstrating strong efficacy for NOA and other dermal pigmentary disorders. Medium-wavelength lasers, including the Q-switched ruby and Alexandrite lasers, also show promise, though results vary based on lesion depth, skin type, and treatment protocols. Recurrence and adverse effects, including post-inflammatory hyperpigmentation (PIH) and hypopigmentation, are common, particularly in patients with darker skin tones. Future studies should standardize and optimize laser parameters across lesion types and skin tones, improve long-term efficacy, and prioritize inclusion of patients with diverse Fitzpatrick skin types to evaluate differential outcomes and promote equitable treatment efficacy. Full article
(This article belongs to the Special Issue Facial Plastic and Cosmetic Medicine)
Show Figures

Figure 1

10 pages, 2843 KB  
Article
Passively Q-Switched Thulium-Doped Fiber Laser Employing a Glycerin-Based Saturable Absorber
by Edwin Addiel Espinosa-De-La-Cruz, Manuel Durán-Sánchez, Ulises Alcántara-Bautista, Alejandro Reyes-Mora, Adalid Ibarra-Garrido, Ivan Armas-Rivera, Luis Alberto Rodríguez-Morales, Miguel Bello-Jiménez and Baldemar Ibarra-Escamilla
Fibers 2025, 13(5), 61; https://doi.org/10.3390/fib13050061 - 8 May 2025
Viewed by 1714
Abstract
A passively Q-switched Thulium-doped fiber laser based on glycerin as the saturable absorber is experimentally demonstrated for the first time. The saturable absorber consists of two FC/PC connectors aligned within a mechanical fiber-fiber coupler, with the intervening gap filled with glycerin. Such a [...] Read more.
A passively Q-switched Thulium-doped fiber laser based on glycerin as the saturable absorber is experimentally demonstrated for the first time. The saturable absorber consists of two FC/PC connectors aligned within a mechanical fiber-fiber coupler, with the intervening gap filled with glycerin. Such a saturable absorber is integrated into a compact ring cavity, enabling passive Q-switched laser operation. Starting at a minimum pump power of 1.7 W, Q-switched pulses with a central wavelength of 1946 nm are obtained. At the maximum pump power of 2.4 W, the laser generates pulses with a duration of approximately 2 µs, a repetition rate of 26.7 kHz, and a pulse energy of 1.08 µJ. To the best of our knowledge, this is the first demonstration of passively Q-switched laser operation utilizing a glycerin-based saturable absorber for generating pulsed emission at the 2-µm wavelength region. This breakthrough represents a significant advancement in fiber laser technology, introducing a novel and efficient approach to pulse generation. Full article
Show Figures

Figure 1

25 pages, 4627 KB  
Article
Laser-Based Characterization and Classification of Functional Alloy Materials (AlCuPbSiSnZn) Using Calibration-Free Laser-Induced Breakdown Spectroscopy and a Laser Ablation Time-of-Flight Mass Spectrometer for Electrotechnical Applications
by Amir Fayyaz, Muhammad Waqas, Kiran Fatima, Kashif Naseem, Haroon Asghar, Rizwan Ahmed, Zeshan Adeel Umar and Muhammad Aslam Baig
Materials 2025, 18(9), 2092; https://doi.org/10.3390/ma18092092 - 2 May 2025
Cited by 1 | Viewed by 1316
Abstract
In this paper, we present the analysis of functional alloy samples containing metals aluminum (Al), copper (Cu), lead (Pb), silicon (Si), tin (Sn), and zinc (Zn) using a Q-switched Nd laser operating at a wavelength of 532 nm with a pulse duration of [...] Read more.
In this paper, we present the analysis of functional alloy samples containing metals aluminum (Al), copper (Cu), lead (Pb), silicon (Si), tin (Sn), and zinc (Zn) using a Q-switched Nd laser operating at a wavelength of 532 nm with a pulse duration of 5 ns. Nine pelletized alloy samples were prepared, each containing varying chemical concentrations (wt.%) of Al, Cu, Pb, Si, Sn, and Zn—elements commonly used in electrotechnical and thermal functional materials. The laser beam is focused on the target surface, and the resulting emission spectrum is captured within the temperature interval of 9.0×103 to 1.1×104 K using a set of compact Avantes spectrometers. Each spectrometer is equipped with a linear charged-coupled device (CCD) array set at a 2 μs gate delay for spectrum recording. The quantitative analysis was performed using calibration-free laser-induced breakdown spectroscopy (CF-LIBS) under the assumptions of optically thin plasma and self-absorption-free conditions, as well as local thermodynamic equilibrium (LTE). The net normalized integrated intensities of the selected emission lines were utilized for the analysis. The intensities were normalized by dividing the net integrated intensity of each line by that of the aluminum emission line (Al II) at 281.62 nm. The results obtained using CF-LIBS were compared with those from the laser ablation time-of-flight mass spectrometer (LA-TOF-MS), showing good agreement between the two techniques. Furthermore, a random forest technique (RFT) was employed using LIBS spectral data for sample classification. The RFT technique achieves the highest accuracy of ~98.89% using out-of-bag (OOB) estimation for grouping, while a 10-fold cross-validation technique, implemented for comparison, yields a mean accuracy of ~99.12%. The integrated use of LIBS, LA-TOF-MS, and machine learning (e.g., RFT) enables fast, preparation-free analysis and classification of functional metallic materials, highlighting the synergy between quantitative techniques and data-driven methods. Full article
Show Figures

Figure 1

16 pages, 3209 KB  
Article
Side-Illuminating Optical Fiber for High-Power-Density-Mediated Intraluminal Photoacoustic Imaging
by Nidhi Singh, Carlos-Felipe Roa, Emmanuel Chérin, Lothar Lilge and Christine E. M. Demore
Appl. Sci. 2025, 15(7), 3639; https://doi.org/10.3390/app15073639 - 26 Mar 2025
Viewed by 2751
Abstract
Intraluminal photoacoustic (PA) imaging has the potential for providing physiological and functional information in wide-ranging clinical applications. Along with endoluminal ultrasound transducers, these applications require compact light delivery devices which can deliver high-energy ns-pulsed laser to the target region. In this work, we [...] Read more.
Intraluminal photoacoustic (PA) imaging has the potential for providing physiological and functional information in wide-ranging clinical applications. Along with endoluminal ultrasound transducers, these applications require compact light delivery devices which can deliver high-energy ns-pulsed laser to the target region. In this work, we describe the design, method of fabrication and characterization of a new compact, side-fire optical fiber that can deliver high-energy laser pulses for PA imaging. Side-fire illuminators were fabricated using UV laser ablation to create windows on the side of a 1.5 mm diameter single core, multi-mode optical fiber with a reflective silver coating and a beveled end. Devices with 10 mm, 20 mm, and 30 mm window lengths were fabricated and their beam profiles characterized. Elongated side-fire fibers with −6 dB beam size up to 30.79 mm × 5.5 mm were developed. A side-fire to total output ratio of up to 0.69 and a side fire efficiency of up to 40%, relative to a standard front-fire fiber, were achieved. We evaluated the effects of high-energy ns-pulsed light propagation on the fiber by coupling the fiber to 18 mJ or 100 MW/cm2 (at 750 nm) beam from a Q-switched laser. The PA imaging with the fiber was demonstrated by detecting India ink targets embedded in chicken breast tissue over the full length of a 20 mm illumination window and over a 100° angle and by visualizing in vivo the rat ear vasculature. Full article
(This article belongs to the Special Issue Advanced Optical-Fiber-Related Technologies)
Show Figures

Figure 1

9 pages, 3163 KB  
Communication
Q-Switched Mode-Locking by Cascaded Second-Order Nonlinearity in a Nd:YVO4 Laser
by Jia-Yang Chen, Wei-Wei Hsiang and Shou-Tai Lin
Photonics 2025, 12(3), 251; https://doi.org/10.3390/photonics12030251 - 11 Mar 2025
Cited by 1 | Viewed by 1175
Abstract
A diode-pumped Q-switched mode-locked Nd:YVO4 laser via a positive cascaded second-order Kerr lens using periodically poled MgO:SLT at 1064 nm was reported. Q-switched mode-locking performances, including pulse duration, output power, and bandwidth, were studied under different pump conditions. Under 28 W quasi-CW [...] Read more.
A diode-pumped Q-switched mode-locked Nd:YVO4 laser via a positive cascaded second-order Kerr lens using periodically poled MgO:SLT at 1064 nm was reported. Q-switched mode-locking performances, including pulse duration, output power, and bandwidth, were studied under different pump conditions. Under 28 W quasi-CW (QCW) diode pump peak power, the measured mode-locked pulse train, Q-switched repetition rate, and Q-switched pulse duration were 18 ps, 300 kHz, and 50 ns, respectively. The highest peak power of a single pulse near the maximum of the Q-switched envelope was greater than 150 kW. Full article
Show Figures

Figure 1

23 pages, 4028 KB  
Article
Development and Testing of a Compact Remote Time-Gated Raman Spectrometer for In Situ Lunar Exploration
by Haiting Zhao, Xiangfeng Liu, Weiming Xu, Daoyuantian Wen, Jianan Xie, Zhenqiang Zhang, Ziqing Jiang, Zongcheng Ling, Zhiping He, Rong Shu and Jianyu Wang
Remote Sens. 2025, 17(5), 860; https://doi.org/10.3390/rs17050860 - 28 Feb 2025
Cited by 2 | Viewed by 3038
Abstract
Raman spectroscopy is capable of precisely identifying and analyzing the composition and properties of samples collected from the lunar surface, providing crucial data support for lunar scientific research. However, in situ Raman spectroscopy on the lunar surface faces challenges such as weak Raman [...] Read more.
Raman spectroscopy is capable of precisely identifying and analyzing the composition and properties of samples collected from the lunar surface, providing crucial data support for lunar scientific research. However, in situ Raman spectroscopy on the lunar surface faces challenges such as weak Raman scattering from targets, alongside requirements for lightweight and long-distance detection. To address these challenges, time-gated Raman spectroscopy (TG-LRS) based on a passively Q-switched pulsed laser and a linear intensified charge-coupled device (ICCD), which enable simultaneous signal amplification and background suppression, has been developed to evaluate the impact of key operational parameters on Raman signal detection and to explore miniaturization optimization. The TG-LRS system includes a 40 mm zoom telescope, a passively Q-switched 532 nm pulsed laser, a fiber optic delay line, a miniature spectrometer, and a linear ICCD detector. It achieves an electronic gating width under 20 ns. Within a detection range of 1.1–3.0 m, the optimal delay time varies linearly from 20 to 33 ns. Raman signal intensity increases with image intensifier gain, while the signal-to-noise ratio peaks at a gain range of 800–900 V before declining. Furthermore, the effects of focal depth, telescope aperture, laser energy, and integration time were studied. The Raman spectra of lunar minerals were successfully obtained in the lab, confirming the system’s ability to suppress solar background light. This demonstrates the feasibility of in situ Raman spectroscopy on the lunar surface and offers strong technical support for future missions. Full article
(This article belongs to the Special Issue Optical Remote Sensing Payloads, from Design to Flight Test)
Show Figures

Figure 1

10 pages, 2831 KB  
Article
Controllable Burst-Mode Nd3+:YAG/Cr4+:YAG Laser Pumped by 808 nm Polarization-Combined Laser Diodes
by Xincheng Dang, Nihui Zhang, Hai Wang, Di Xin, Tongtong Li, Weiqiao Zhang, Xuyan Zhou, Wanhua Zheng and Hongbo Zhang
Photonics 2025, 12(3), 202; https://doi.org/10.3390/photonics12030202 - 26 Feb 2025
Viewed by 1440
Abstract
This paper presents a time-shared pumping technology for semiconductor lasers based on polarization-combined technology, which enables a compact passively Q-switched Nd3+:YAG/Cr4+:YAG laser to generate tunable pulse sequence output. Two 808 nm laser diodes (LDs) with high polarization were integrated [...] Read more.
This paper presents a time-shared pumping technology for semiconductor lasers based on polarization-combined technology, which enables a compact passively Q-switched Nd3+:YAG/Cr4+:YAG laser to generate tunable pulse sequence output. Two 808 nm laser diodes (LDs) with high polarization were integrated into a casing system measuring 61.5 mm × 32 mm × 12.5 mm through the implementation of fast and slow axis collimation, polarization-combined, and beam-shaping techniques. The study introduces a temporal modulation function to the electrical driving signals, allowing for synchronous and delayed control of the two laser pump sources. By adjusting the pumping delays (200 μs, 240 μs, 280 μs, and 320 μs), two types of pulse sequences combined by “1 + 1” and “2 + 2” at 1064 nm were successfully generated. Experimental results demonstrated that the energy and intensity of each sub-pulse within the burst-mode remain stable throughout the entire sequence, with adjustable sub-pulse interval. Furthermore, the laser system exhibited good beam quality with near-diffraction-limited output characteristics (M2 < 1.5). In general, the tunable pulse sequence laser source offers significant potential for applications in high-precision laser processing, laser ranging and precision measurement, demonstrating its broad application potential. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

12 pages, 3094 KB  
Article
High-Pulse-Repetition-Rate Eye-Safe Raman Laser with Acousto-Optic Q-Switched Device
by Yu-Hsin Hsu, Song-Qing Lin, Dai-Jun Liu, Hsing-Chih Liang and Yung-Fu Chen
Micromachines 2025, 16(2), 222; https://doi.org/10.3390/mi16020222 - 16 Feb 2025
Viewed by 1289
Abstract
The acousto-optic Q-switch is exploited to develop a high-repetition-rate eye-safe Raman laser at 1526 nm. The Nd:YVO4 and KGW crystals are employed as the fundamental laser and Stokes Raman gain materials, respectively. The influence of the gate-open time on the performance is [...] Read more.
The acousto-optic Q-switch is exploited to develop a high-repetition-rate eye-safe Raman laser at 1526 nm. The Nd:YVO4 and KGW crystals are employed as the fundamental laser and Stokes Raman gain materials, respectively. The influence of the gate-open time on the performance is systematically explored for the repetition rate between 80 and 150 kHz. The separate configuration is used to construct the resonant cavities for the fundamental and Stokes waves to achieve a pulse width that is as short as possible. Under the optimal alignment, the average output power can exceed 5.0 W at a pump power of 30 W for a repetition rate within 100–150 kHz with a gate-open time of 0.5 μs. In addition, the output peak power can be greater than 10 kW for a pulse repetition rate between 80 and 120 kHz. The optical-to-optical conversion efficiency is up to 16.7%, which is better than that obtained by the Nd:YVO4/YVO4 system. Full article
(This article belongs to the Special Issue Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

13 pages, 4053 KB  
Article
In Situ Preparation of Thin-Film Q-Switches Based on Vanadium Dioxide for Pulsed Fiber Lasers
by Dmitriy P. Sudas, Sergei M. Popov and Petr I. Kuznetsov
Photonics 2025, 12(2), 133; https://doi.org/10.3390/photonics12020133 - 3 Feb 2025
Cited by 1 | Viewed by 1298
Abstract
In the presented work, erbium fiber lasers operating in the pulsed mode with a nonlinear element containing a vanadium oxide saturable absorber are demonstrated. The structure of the saturable absorber is based on a segment of thinned silica fiber coated with a thin-film [...] Read more.
In the presented work, erbium fiber lasers operating in the pulsed mode with a nonlinear element containing a vanadium oxide saturable absorber are demonstrated. The structure of the saturable absorber is based on a segment of thinned silica fiber coated with a thin-film vanadium oxide by the method of metalorganic chemical vapor deposition. A fiber laser scheme is demonstrated that allows controlling the transmission of the internal cavity of the resonator during laser generation and deposition of a thin film. We have demonstrated a method for obtaining and annealing nanocoatings with laser generation control. We controlled the laser output parameters directly during the synthesis of the saturable absorber material. Vanadium oxides obtained in the work demonstrated the Mott–Paierls phase transition practically at room temperature. In this work, the optical characteristics of the output radiation of a fiber laser with a saturable absorber were measured. At temperatures above 70 °C, the coatings demonstrate a passive Q-switch with a repetition rate of 38 kHz and a pulse duration of 3.8 μs. At temperatures below the phase transition, a short-term mode-locking mode occurs. The transmission jump at a wavelength of about 1350 nm during structural rearrangement was 24%. For comparison, VO2 nanopowder in a polydimethylsiloxane elastomer matrix was used as a saturable absorber material. The nanopowder modulator made it possible to obtain pulses with a frequency of 27 kHz and a duration of about 7.2 μs. Full article
(This article belongs to the Special Issue Cutting-Edge Developments in Fiber Laser)
Show Figures

Figure 1

Back to TopTop