Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (321)

Search Parameters:
Keywords = μ-FTIR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6111 KiB  
Article
Impact of Water Conductivity on the Structure and Swelling Dynamics of E-Beam Cross-Linked Hydrogels
by Elena Mănăilă, Ion Călina, Anca Scărișoreanu, Maria Demeter, Gabriela Crăciun and Marius Dumitru
Gels 2025, 11(8), 611; https://doi.org/10.3390/gels11080611 - 4 Aug 2025
Viewed by 154
Abstract
Prolonged drought and soil degradation severely affect soil fertility and limit crop productivity. Superabsorbent hydrogels offer an effective solution for improving water retention in soil and supporting plant growth. In this work, we examined the performance of superabsorbent hydrogels based on sodium alginate, [...] Read more.
Prolonged drought and soil degradation severely affect soil fertility and limit crop productivity. Superabsorbent hydrogels offer an effective solution for improving water retention in soil and supporting plant growth. In this work, we examined the performance of superabsorbent hydrogels based on sodium alginate, acrylic acid (AA), and poly (ethylene oxide) (PEO) cross-linked with 12.5 kGy using e-beam irradiation. The hydrogels were assessed in various aqueous environments by examining network characteristics, swelling capacity, and swelling kinetics to evaluate the impact of water’s electrical conductivity (which ranges from 0.05 to 321 μS/cm). Morphological and chemical structure changes were evaluated using SEM and FTIR techniques. The results demonstrated that water conductivity significantly affected the physicochemical properties of the hydrogels. Swelling behavior showed notable sensitivity to electrical conductivity variations, with swelling degrees reaching 28,400% at 5 μS/cm and 14,000% at 321 μS/cm, following first-order and second-order kinetics. FTIR analysis confirmed that structural modifications correlated with water conductivity, particularly affecting the O–H, C–H, and COOH groups sensitive to the ionic environment. SEM characterization revealed a porous morphology with an interconnected microporous network that facilitates efficient water diffusion. These hydrogels show exceptional swelling capacity and are promising candidates for sustainable agriculture applications. Full article
Show Figures

Figure 1

20 pages, 1716 KiB  
Article
Enhancing Antioxidants Performance of Ceria Nanoparticles in Biological Environment via Surface Engineering with o-Quinone Functionalities
by Pierluigi Lasala, Tiziana Latronico, Umberto Mattia, Rosa Maria Matteucci, Antonella Milella, Matteo Grattieri, Grazia Maria Liuzzi, Giuseppe Petrosillo, Annamaria Panniello, Nicoletta Depalo, Maria Lucia Curri and Elisabetta Fanizza
Antioxidants 2025, 14(8), 916; https://doi.org/10.3390/antiox14080916 - 25 Jul 2025
Viewed by 374
Abstract
The development of ceria (CeO2−x)-based nanoantioxidants requires fine-tuning of structural and surface properties for enhancing antioxidant behavior in biological environments. In this contest, here ultrasmall water-dispersible CeO2−x nanoparticles (NPs), characterized by a high Ce3+/Ce4+ ratio, were synthesized [...] Read more.
The development of ceria (CeO2−x)-based nanoantioxidants requires fine-tuning of structural and surface properties for enhancing antioxidant behavior in biological environments. In this contest, here ultrasmall water-dispersible CeO2−x nanoparticles (NPs), characterized by a high Ce3+/Ce4+ ratio, were synthesized in a non-polar solvent and phase-transfer to an aqueous environment through ligand-exchange reactions using citric acid (CeO2−x@Cit) and post-treatment with dopamine hydrochloride (CeO2−x@Dopa). The concept behind this work is to enhance via surface engineering the intrinsic antioxidant properties of CeO2−x NPs. For this purpose, thanks to electron transfer reactions between dopamine and CeO2−x, the CeO2−x@Dopa was obtained, characterized by increased surface Ce3+ sites and surface functionalized with polydopamine bearing o-quinone structures as demonstrated by complementary spectroscopic (UV–vis, FT-IR, and XPS) characterizations. To test the antioxidant properties of CeO2−x NPs, the scavenging activity before and after dopamine treatment against artificial radical 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and the ability to reduce the reactive oxygen species in Diencephalic Immortalized Type Neural Cell line 1 were evaluated. CeO2−x@Dopa demonstrated less efficiency in DPPH· scavenging (%radical scavenging activity 13% versus 42% for CeO2−x@Cit before dopamine treatment at 33 μM DPPH· and 0.13 mg/mL loading of NPs), while it markedly reduced intracellular ROS levels (ROS production 35% compared to 66% of CeO2−x@Cit before dopamine treatment with respect to control—p < 0.001 and p < 0.01, respectively). While steric hindrance from the dopamine-derived polymer layer limited direct electron transfer from CeO2−x NP surface to DPPH·, within cells the presence of o-quinone groups contributed with CeO2−x NPs to break the autoxidation chain of organic substrates, enhancing the antioxidant activity. The functionalization of NPs with o-quinone structures represents a valuable approach to increase the inherent antioxidant properties of CeO2−x NPs, enhancing their effectiveness in biological systems by promoting additional redox pathways. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

26 pages, 5873 KiB  
Article
Pyridine–Quinoline and Biquinoline-Based Ruthenium p-Cymene Complexes as Efficient Catalysts for Transfer Hydrogenation Studies: Synthesis and Structural Characterization
by Nikolaos Zacharopoulos, Gregor Schnakenburg, Eleni I. Panagopoulou, Nikolaos S. Thomaidis and Athanassios I. Philippopoulos
Molecules 2025, 30(14), 2945; https://doi.org/10.3390/molecules30142945 - 11 Jul 2025
Viewed by 487
Abstract
Searching for new and efficient transfer hydrogenation catalysts, a series of new organometallic ruthenium(II)-arene complexes of the formulae [Ru(η6-p-cymene)(L)Cl][PF6] (18) and [Ru(η6-p-cymene)(L)Cl][Ru(η6-p-cymene)Cl3] ( [...] Read more.
Searching for new and efficient transfer hydrogenation catalysts, a series of new organometallic ruthenium(II)-arene complexes of the formulae [Ru(η6-p-cymene)(L)Cl][PF6] (18) and [Ru(η6-p-cymene)(L)Cl][Ru(η6-p-cymene)Cl3] (911) were synthesized and fully characterized. These were prepared from the reaction of pyridine–quinoline and biquinoline-based ligands (L) with [Ru(η6-p-cymene)(μ-Cl)Cl]2, in 1:2 and 1:1, metal (M) to ligand (L) molar ratios. Characterization includes a combination of spectroscopic methods (FT-IR, UV-Vis, multi nuclear NMR), elemental analysis and single-crystal X-ray crystallography. The pyridine–quinoline organic entities encountered, were prepared in high yield either via the thermal decarboxylation of the carboxylic acid congeners, namely 2,2′-pyridyl-quinoline-4-carboxylic acid (pqca), 8-methyl-2,2′-pyridyl-quinoline-4-carboxylic acid (8-Mepqca), 6′-methyl-2,2′-pyridyl-quinoline-4-carboxylic acid (6′-Mepqca) and 8,6′-dimethyl-2,2′-pyridyl-quinoline-4-carboxylic acid (8,6′-Me2pqca), affording the desired ligands pq, 8-Mepq, 6′-Mepq and 8,6′-Me2pq, or by the classical Friedländer condensation, to yield 4,6′-dimethyl-2,2′-pyridyl-quinoline (4,6′-Me2pq) and 4-methyl-2,2′-pyridyl-quinoline (4-Mepq), respectively. The solid-state structures of complexes 14, 6, 8 and 9 were determined showing a distorted octahedral coordination geometry. The unit cell of 3 contains two independent molecules (Ru-3), (Ru′-3) in a 1:1 ratio, due to a slight rotation of the arene ring. All complexes catalyze the transfer hydrogenation of acetophenone, using 2-propanol as a hydrogen donor in the presence of KOiPr. Among them, complexes 1 and 5 bearing methyl groups at the 8 and 4 position of the quinoline moiety, convert acetophenone to 1-phenylethanol quantitatively, within approximately 10 min with final TOFs of 1600 h−1. The catalytic performance of complexes 111, towards the transfer hydrogenation of p-substituted acetophenone derivatives and benzophenone, ranges from moderate to excellent. An inner-sphere mechanism has been suggested based on the detection of ruthenium(II) hydride species. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Graphical abstract

18 pages, 2035 KiB  
Article
Rapid Plasma Synthesis of Gold Nanoparticles Supported on MWCNTs for Electrochemical Detection of Glucose
by Qing Yang, Yuanwen Pang, Hong Li and Lanbo Di
Materials 2025, 18(13), 3076; https://doi.org/10.3390/ma18133076 - 28 Jun 2025
Viewed by 500
Abstract
In this study, a simple, mild, and eco-friendly cold plasma-solution interaction method is employed to rapidly prepare gold colloids. Through modification with multi-walled carbon nanotubes (MWCNTs), a non-enzymatic glucose-sensing electrode material is successfully fabricated. The prepared electrode material is characterized via X-ray diffraction [...] Read more.
In this study, a simple, mild, and eco-friendly cold plasma-solution interaction method is employed to rapidly prepare gold colloids. Through modification with multi-walled carbon nanotubes (MWCNTs), a non-enzymatic glucose-sensing electrode material is successfully fabricated. The prepared electrode material is characterized via X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The results show that compared with the chemically reduced AuNPs-C-MWCNTs, the plasma-prepared AuNPs-P-MWCNTs exhibits enhanced glucose catalytic performance with a higher sensitivity of 73 μA·mM−1·cm−2 (approximately 3.2 times that of AuNPs-C-MWCNTs), lower response time of 2.1 s, and ultra-low detection limit of 0.21 μM. It also demonstrates excellent selectivity, reproducibility (RSD = 4.37%), repeatability (RSD = 3.67%), and operational stability (RSD = 4.51%). This improvement can be attributed to the smaller particle size and better dispersion of plasma-derived AuNPs on the surface of MWCNTs. Furthermore, the AuNPs-P-MWCNTs surface is enriched with oxygen-containing functional groups, which is conducive to the enhancement of the hydrophilicity of the electrode surface. These synergistic effects facilitate the AuNPs-catalyzed glucose oxidation reaction, ultimately leading to superior glucose catalytic performance. Full article
Show Figures

Figure 1

22 pages, 6795 KiB  
Article
Nonionic Fast-Penetration System for Diffusion-Driven Degradation of Liquid Plugs
by Yuexin Tian, Yintao Liu, Haifeng Dong, Xiangjun Liu and Jinjun Huang
Polymers 2025, 17(13), 1757; https://doi.org/10.3390/polym17131757 - 25 Jun 2025
Viewed by 1033
Abstract
Degradable liquid gel plugs are increasingly required for zonal isolation in high-temperature reservoirs, yet their practical deployment is limited by slow internal degradation and insufficient structural failure under diffusive conditions. In this study, a diffusion-driven degradation strategy was developed based on γ-valerolactone and [...] Read more.
Degradable liquid gel plugs are increasingly required for zonal isolation in high-temperature reservoirs, yet their practical deployment is limited by slow internal degradation and insufficient structural failure under diffusive conditions. In this study, a diffusion-driven degradation strategy was developed based on γ-valerolactone and a nonionic fast-penetration agent (Tb), aiming to construct internal pathways and enhance decomposability of a model E51 epoxy–anhydride liquid plug. A multiscale characterization framework, including swelling index evaluation, SEM–EDS, FTIR mapping, CLSM imaging, μ-CT, AFM, and nanoindentation, was applied to investigate degradation behavior under varying temperatures (120–140 °C) and solvent-to-plug ratios (1:1–5:1). The plug exhibited a swelling index of 1.81 in GVL and formed tree-like degradation channels with widths of 20–30 μm. Functional group mapping revealed preferential cleavage of ester and ether bonds at the surface, and mechanical softening (modulus reduction > 57%) was confirmed by AFM and nanoindentation. Higher temperatures and solvent ratios synergistically reduced full degradation time from 84 h to 12 h. These findings validate a “penetration-induced softening–ester bond scission–diffusion channel construction” mechanism, offering an effective design pathway for intelligent degradation control in high-temperature downhole environments. Full article
Show Figures

Figure 1

22 pages, 10281 KiB  
Article
From Flanders to Portugal: A Portuguese Painter in Pursuit of Prestigious Flemish Painting—Materials and Techniques Compared Through an Analytical Approach
by Vanessa Antunes, António Candeias, José Mirão, Sara Valadas, Ana Cardoso, Maria José Francisco, Alexandra Lauw, Marta Manso and Maria Luísa Carvalho
Heritage 2025, 8(6), 205; https://doi.org/10.3390/heritage8060205 - 3 Jun 2025
Viewed by 479
Abstract
This study offers fresh insights into the technical and stylistic exchanges between Flemish and Portuguese panel painting during the late 15th and early 16th centuries. By comparing two contemporaneous works, we trace Flemish influence in Portugal through a detailed materials and techniques analysis. [...] Read more.
This study offers fresh insights into the technical and stylistic exchanges between Flemish and Portuguese panel painting during the late 15th and early 16th centuries. By comparing two contemporaneous works, we trace Flemish influence in Portugal through a detailed materials and techniques analysis. Non-invasive, in situ methods—including energy dispersive X-ray fluorescence (XRF), macro-photography (MP), infrared reflectography (IRR), and dendrochronology—were used to examine each painting’s wooden support, ground layer, underdrawing, and pigment stratigraphy. Select micro-sampling analyses—micro-Fourier-transform infrared spectroscopy (μ-FTIR), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and micro-Raman spectroscopy (µ-Raman)—provided complementary data on binder and pigment composition. While both paintings share nearly identical pigments and layering sequences and employ comparable coating techniques, their ground compositions differ subtly. Notably, the Flemish work features extensive gold-leaf application, whereas underdrawing execution takes on principal importance in the Portuguese example. Together, these findings reveal that Jorge Afonso’s workshop developed a distinct Portuguese method—rooted in Flemish practices disseminated by Quentin Metsys—yet adapted to local materials and aesthetic priorities. Full article
Show Figures

Graphical abstract

12 pages, 9594 KiB  
Article
An Electrochemical Sensor Based on AuNPs@Cu-MOF/MWCNTs Integrated Microfluidic Device for Selective Monitoring of Hydroxychloroquine in Human Serum
by Xuanlin Feng, Jiaqi Zhao, Shiwei Wu, Ying Kan, Honemei Li and Weifei Zhang
Chemosensors 2025, 13(6), 200; https://doi.org/10.3390/chemosensors13060200 - 1 Jun 2025
Viewed by 730
Abstract
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their [...] Read more.
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their large chambers and high sample consumption hinder point-of-care use. To address these challenges, we developed a microfluidic electrochemical sensing platform based on a screen-printed carbon electrode (SPCE) modified with a hierarchical nanocomposite of gold nanoparticles (AuNPs), copper-based metal–organic frameworks (Cu-MOFs), and multi-walled carbon nanotubes (MWCNTs). The Cu-MOF provided high porosity and analyte enrichment, MWCNTs established a 3D conductive network to enhance electron transfer, and AuNPs further optimized catalytic activity through localized plasmonic effects. Structural characterization (SEM, XRD, FT-IR) confirmed the successful integration of these components via π-π stacking and metal–carboxylate coordination. Electrochemical analyses (CV, EIS, DPV) revealed exceptional performance, with a wide linear range (0.05–50 μM), a low detection limit (19 nM, S/N = 3), and a rapid response time (<5 min). The sensor exhibited outstanding selectivity against common interferents, high reproducibility (RSD = 3.15%), and long-term stability (98% signal retention after 15 days). By integrating the nanocomposite-modified SPCE into a microfluidic chip, we achieved accurate HCQ detection in 50 μL of serum, with recovery rates of 95.0–103.0%, meeting FDA validation criteria. This portable platform combines the synergistic advantages of nanomaterials with microfluidic miniaturization, offering a robust and practical tool for real-time therapeutic drug monitoring in clinical settings. Full article
(This article belongs to the Special Issue Feature Papers on Luminescent Sensing (Second Edition))
Show Figures

Figure 1

16 pages, 1781 KiB  
Article
Sensitive Hydrogen Peroxide Sensor Based on Hexacyanoferrate Nickel–Carbon Nanodots
by Emiliano Martínez-Periñán, Juan Manuel Hernández-Gómez, Encarnación Lorenzo and Cristina Gutiérrez-Sánchez
Chemosensors 2025, 13(6), 195; https://doi.org/10.3390/chemosensors13060195 - 22 May 2025
Viewed by 731
Abstract
An electrochemical sensor was developed for the detection of hydrogen peroxide (H2O2) based on the in situ formation of a nickel hexacyanoferrate complex on the electrode surface. Screen-printed carbon electrodes were modified with nickel-doped carbon nanodots (Ni-CNDs), and a [...] Read more.
An electrochemical sensor was developed for the detection of hydrogen peroxide (H2O2) based on the in situ formation of a nickel hexacyanoferrate complex on the electrode surface. Screen-printed carbon electrodes were modified with nickel-doped carbon nanodots (Ni-CNDs), and a nickel hexacyanoferrate complex was electrogenerated over the nickel carbon nanodots. Ni-CNDs were synthetized “a la carte” in one step by including nickel (II) acetate as precursor and characterized using different techniques: transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, atomic force microscopy (AFM), and infrared spectroscopy (FTIR). The electrocatalytic activity toward H2O2 reduction and the oxidation of the resulting modified electrodes was studied. The developed sensor had a strong electrocatalytic effect on the oxidation and reduction of H2O2, yielding detection limits of 3.22 and 0.49 μM, respectively. The H2O2 content of a tap water sample was determined, confirming the viability of the developed electrochemical sensor. Full article
(This article belongs to the Special Issue Electrochemical Sensor for Food Analysis)
Show Figures

Graphical abstract

15 pages, 5448 KiB  
Article
Disposable Electrochemical Serotonin Biosensor Based on the Nanocomposite of Carbon Nanotubes
by Ryang-Hyeon Kim, Won-Yong Jeon, Tae-Won Seo and Young-Bong Choi
Chemosensors 2025, 13(5), 185; https://doi.org/10.3390/chemosensors13050185 - 16 May 2025
Viewed by 786
Abstract
A PAAc-PVI(4:1)@MWCNT hybrid was synthesized for the selective electrochemical detection of serotonin. Multi-walled carbon nanotubes (MWCNT) enhanced electrode conductivity, while the hydrophilic polymer Poly(Acrylic Acid-co-Vinyl imidazole) (PAAc-PVI) facilitated serotonin recognition. At pH 7.4, the carboxyl (-COO) groups in PAAc-PVI interacted with [...] Read more.
A PAAc-PVI(4:1)@MWCNT hybrid was synthesized for the selective electrochemical detection of serotonin. Multi-walled carbon nanotubes (MWCNT) enhanced electrode conductivity, while the hydrophilic polymer Poly(Acrylic Acid-co-Vinyl imidazole) (PAAc-PVI) facilitated serotonin recognition. At pH 7.4, the carboxyl (-COO) groups in PAAc-PVI interacted with the amine (-NH3+) groups of serotonin, enabling oxidation and electron transfer for signal detection. Additionally, π-π interactions between vinylimidazole and MWCNT improved dispersion and stability. The hybrid materials enhanced electron transfer efficiency, increasing sensitivity and reliability. Structural and electrochemical properties were characterized using FT-IR, HR-TEM, TGA, Raman spectroscopy, impedance analysis, and differential pulse voltammetry (DPV). Serotonin detection using the fabricated electrode demonstrated high selectivity (LOD 0.077 μM and LOQ 0.26 μM), reproducibility (%RSD 1X PBS condition (4.63%) and human serum condition (4.81%)), and quantitative capability (dynamic range 1.2 μM to 10.07 μM) without interference (potential shift from +0.40 V to −0.15 V) from blood-based substances, confirming its potential for electrochemical biosensing applications. Full article
Show Figures

Figure 1

16 pages, 2538 KiB  
Article
Impact of pH-Responsive Cisplatin/Ribavirin-Loaded Monodispersed Magnetic Silica Nanocomposite on A549 Lung Cancer Cells
by Dana Almohazey, Vijaya Ravinayagam, Hatim Dafalla and Rabindran Jermy Balasamy
Pharmaceutics 2025, 17(5), 631; https://doi.org/10.3390/pharmaceutics17050631 - 9 May 2025
Viewed by 620
Abstract
Background/Objectives: Nanocarrier particle design for treating chronic pulmonary diseases presents several challenges, including anatomical and physiological barriers. Drug-repurposing technology using monodispersed spherical silica is one of the innovative ways to deliver drugs. In the present study, the anticancer potential of combinational cisplatin/ribavirin [...] Read more.
Background/Objectives: Nanocarrier particle design for treating chronic pulmonary diseases presents several challenges, including anatomical and physiological barriers. Drug-repurposing technology using monodispersed spherical silica is one of the innovative ways to deliver drugs. In the present study, the anticancer potential of combinational cisplatin/ribavirin was explored for targeted lung cancer therapeutics. Methods: Monodispersed spherical silica (80 nm) capable of diffusing into the tracheal mucus region was chosen and doped with 10 wt% superparamagnetic iron oxide nanoparticles (SPIONs). Subsequently, it was wrapped with chitosan (Chi, 0.6 wt/vol%), functionalized with 5% wt/wt cisplatin (Cp)/ribavarin (Rib) and angiotensin-converting enzyme 2 (ACE-2) (1.0 μL/mL). Formulations are based on monodispersed spherical silica or halloysite and are termed as (S/MSSiO2/Chi/Cp/Rib) or (S/Hal/Chi/Cp/Rib), respectively. Results: X-ray diffraction (XRD) and diffuse reflectance UV-visible spectroscopy (DRS-UV-vis) analysis of S/MSSiO2/Chi/Cp/Rib confirmed the presence of SPION nanoclusters on the silica surface (45% coverage). The wrapping of chitosan on the silica was confirmed with a Fourier transformed infrared (FTIR) stretching band at 670 cm−1 and ascribed to the amide group of the polymer. The surface charge by zetasizer and saturation magnetization by vibrating sample magnetometer (VSM) were found to be −15.3 mV and 8.4 emu/g. The dialysis membrane technique was used to study the Cp and Rib release between the tumor microenvironment and normal pH ranges from 5.5 to 7.4. S/MSSiO2/Chi formulation demonstrated pH-responsive Cp and Rib at acidic pH (5.6) and normal pH (7.4). Cp and Rib showed release of ~27% and ~17% at pH 5.6, which decreases to ~14% and ~3.2% at pH 7.4, respectively. To assess the compatibility and cytotoxic effect of our nanocomposites, the cell viability assay (MTT) was conducted on cancer lung cells A549 and normal HEK293 cells. Conclusions: The study shows that the designed nanoformulations with multifunctional capabilities are able to diffuse into the lung cells bound with dual drugs and the ACE-2 receptor. Full article
(This article belongs to the Special Issue Hybrid Nanoparticles for Cancer Therapy)
Show Figures

Figure 1

18 pages, 6394 KiB  
Article
Highly Sensitive Titanium-Based MXene-Reduced Graphene Oxide Composite for Efficient Electrochemical Detection of Cadmium and Copper Ions in Water
by Dharshini Mohanadas, Rosiah Rohani, Siti Fatimah Abdul Rahman, Ebrahim Mahmoudi and Yusran Sulaiman
J. Compos. Sci. 2025, 9(5), 232; https://doi.org/10.3390/jcs9050232 - 4 May 2025
Viewed by 964
Abstract
An electrochemically active and promising binary composite that is made up of titanium-based MXene (Ti3C2Tx) and rGO is developed to simultaneously detect the Cd2+ and Cu2+, in water. XRD, FTIR, Raman, XPS, FESEM, elemental [...] Read more.
An electrochemically active and promising binary composite that is made up of titanium-based MXene (Ti3C2Tx) and rGO is developed to simultaneously detect the Cd2+ and Cu2+, in water. XRD, FTIR, Raman, XPS, FESEM, elemental mapping, and EDX analysis affirmed the successful formation of the Ti3C2Tx-rGO composite. The produced Ti3C2Tx-rGO electrode exhibited a homogeneous rGO sheet covering the Ti3C2Tx MXene plates with all the detailed Ti2p, C1s, and O1s XPS peaks. The high-performance Ti3C2Tx-rGO composite was successfully tested for the Cd2+ and Cu2+ ions via differential pulse voltammetry (DPV), altering the pH, concentration, and the real water sample’s quality. The electrochemical performances revealed that the proposed Ti3C2Tx-rGO composite depicted excellent detection and quantification limits (LOD and LOQ) for both Cd2+ (LOD = 0.31 nM, LOQ = 1.02 nM) and Cu2+ (LOD = 0.18 nM, LOQ = 0.62 nM) ions, where the result is highly comparable with the reported literature. The Ti3C2Tx-rGO was proven highly sensitive towards Cd2+ (0.345 μMμA−1) and Cu2+ (0.575 μMμA−1) with great repeatability and reproducibility properties. The Ti3C2Tx-rGO electrode also exhibited excellent stability over four weeks with a retention of 97.86% and 98.01% for Cd2+ and Cu2+, respectively. This simple modification of Ti3C2Tx with rGO can potentially be advantageous in the development of highly sensitive electrochemical sensors for the simultaneous detection of heavy metal ions. Full article
(This article belongs to the Section Carbon Composites)
Show Figures

Graphical abstract

22 pages, 2291 KiB  
Article
Novel Crown Ether-Functionalized Fusidic Acid Butyl Ester: Synthesis, Biological Evaluation, In Silico ADMET, and Molecular Docking Studies
by Hira Sultan, Nuzhat Arshad and Mehreen Lateef
Molecules 2025, 30(9), 2033; https://doi.org/10.3390/molecules30092033 - 2 May 2025
Viewed by 650
Abstract
Crown ethers have gained importance in the field of medicine because of their resemblance to natural ionophores like valinomycin. With the goal of developing new pharmacologically important crown ethers, a novel series of crown ethers linked with Fusidic acid butyl ester 10a [...] Read more.
Crown ethers have gained importance in the field of medicine because of their resemblance to natural ionophores like valinomycin. With the goal of developing new pharmacologically important crown ethers, a novel series of crown ethers linked with Fusidic acid butyl ester 10ad were synthesized and characterized by means of their 1H NMR, 13C NMR DEPT-135, FT-IR, and mass spectrometry. In vitro antioxidant and α-glucosidase inhibition activities of all crown ethers along with the precursor Fusidic acid butyl ester were examined and compared to the standard butylated hydroxyanisole and acarbose, respectively. Compounds (FABE-16-crown-4) 10b and (FABE-19-crown-5) 10c showed high antioxidant potential with the IC50 = 22.5 ± 0.2 μM and 32.1 ± 0.3 μM, respectively, when compared to the standard BHA (IC50 = 44.2 ± 0.34 μM). To understand the binding mode of the compounds, molecular docking investigations were performed using human antioxidant protein, peroxiredoxin 5. Molecular docking studies revealed higher docking scores (−6.5 and −6.7 kcal/mol) for the highly active compounds 10c and 10b, respectively, than standard BHA (−5.3 kcal/mol). Synthesized crown ethers exhibited moderate α-glucosidase inhibition with (IC50 = 23.5 ± 0.2 to 76.5 ± 0.1 μM) when compared to acarbose as standard (IC50 = 5.2 ± 0.8 μM). The in silico ADMET predictions indicated that the prepared compounds obeyed (bRO5) and Veber’s rule for the acceptance as orally administered drugs and indicated that all the prepared crown ethers exhibited calculated values of drug likeness parameters in acceptable ranges that showed good potential of these molecules for further drug development investigations. Full article
Show Figures

Figure 1

25 pages, 6020 KiB  
Article
Preparation of a Novel Perilla Essential Oil/Grape Seed Extract–Chitosan/Gelatin Composite Edible Gel Film and Its Application in the Preservation of Grass Carp
by Shan Xue, Rui Xu and Jia Liu
Gels 2025, 11(5), 321; https://doi.org/10.3390/gels11050321 - 25 Apr 2025
Viewed by 657
Abstract
In this study, a new edible gel of Perilla essential oil (PE)/grape seed extract (GSE)–chitosan/gelatin was prepared, and it was applied to the preservation of silver carp. By establishing a fuzzy mathematical model, using a single-factor experiment and Box–Behnken response surface optimization combined [...] Read more.
In this study, a new edible gel of Perilla essential oil (PE)/grape seed extract (GSE)–chitosan/gelatin was prepared, and it was applied to the preservation of silver carp. By establishing a fuzzy mathematical model, using a single-factor experiment and Box–Behnken response surface optimization combined with matlab analysis, the optimum preparation conditions of composite gel films were determined: the addition of PE (p < 0.01) was 6.91 μL/mL, the addition of GSE (p < 0.05) was 0.45 mg/mL, and the addition of gelatin (p > 0.05) was 1.63%. Under these conditions, the composite gel films exhibited an excellent water vapor barrier and mechanical properties. Using Fourier-transform infrared spectroscopy (FTIR) analysis, it was found that the addition of PE enhanced or weakened the absorption peaks, indicating the molecular interaction between PE and the substrate. Scanning electron microscopy (SEM) observed that the surfaces of the composite gel films with added PE were smooth, but there were a few pores in the cross-section. X-ray diffraction (XRD) analysis showed that PE had good compatibility with other components. The fresh-keeping experiment showed that the composite gel films could significantly prolong the fresh-keeping period of grass carp. After 10 days of storage at 4 °C, compared with the blank group (without plastic wrap) and the control group (with composite gel film, no PE added), the experimental group (with composite gel films, PE added) showed better fresh-keeping effect in terms of sensory score, moisture content, pH value, TBARS value, and TVB-N value (p < 0.05). Correlation analysis further confirmed the positive effects of composite gel films on water content, pH value, TVB-N, and other quality indexes of silver carp, indicating that the composite gel films will have broad application prospects in the food preservation field. This study provides an innovative basis and theoretical basis for the development and application of natural polysaccharide/protein composite edible film, which is helpful to promote the development of green food-packaging materials. Full article
(This article belongs to the Special Issue Advancements in Food Gelation: Exploring Mechanisms and Applications)
Show Figures

Figure 1

25 pages, 6242 KiB  
Article
Development and Characterization of an Injectable Alginate/Chitosan Composite Hydrogel Reinforced with Cyclic-RGD Functionalized Graphene Oxide for Potential Tissue Regeneration Applications
by Mildred A. Sauce-Guevara, Sergio D. García-Schejtman, Emilio I. Alarcon, Sergio A. Bernal-Chavez and Miguel A. Mendez-Rojas
Pharmaceuticals 2025, 18(5), 616; https://doi.org/10.3390/ph18050616 - 23 Apr 2025
Cited by 1 | Viewed by 1626
Abstract
Background: In tissue engineering, developing injectable hydrogels with tailored mechanical and bioactive properties remains a challenge. This study introduces an injectable hydrogel composite for soft tissue regeneration, composed of oxidized alginate (OA) and N-succinyl chitosan (NSC) cross-linked via Schiff base reaction, reinforced with [...] Read more.
Background: In tissue engineering, developing injectable hydrogels with tailored mechanical and bioactive properties remains a challenge. This study introduces an injectable hydrogel composite for soft tissue regeneration, composed of oxidized alginate (OA) and N-succinyl chitosan (NSC) cross-linked via Schiff base reaction, reinforced with graphene oxide (GOx) and cyclic arginylglycylaspartic acid (c-RGD). The objective was to create a multifunctional platform combining injectability, bioactivity, and structural stability. Methods: The OA/NSC/GOx-cRGD hydrogel was synthesized through Schiff base cross-linking (aldehyde-amine reaction). Characterization included FTIR (C=N bond at 1650 cm⁻¹), Raman spectroscopy (D/G bands at 1338/1567 cm⁻¹), SEM (porous microstructure), and rheological analysis (shear-thinning behavior). In vitro assays assessed fibroblast viability (MTT) and macrophage TNF-α secretion (ELISA), while ex-vivo injectability and retention were evaluated using chicken cardiac tissue. Results: The hydrogel exhibited shear-thinning behavior (viscosity: 10 to <1 Pa·s) and elastic-dominated mechanics (G′ > G″), ensuring injectability. SEM revealed an interconnected porous structure mimicking native extracellular matrix. Fibroblast viability remained ≥95%, and TNF-α secretion in macrophages decreased by 80% (30 vs. 150 pg/μL in controls), demonstrating biocompatibility and anti-inflammatory effects. The hydrogel adhered stably to cardiac tissue without leakage. Conclusions: The OA/NSC/GOx-cRGD composite integrates injectability, bioactivity, and structural stability, offering a promising scaffold for tissue regeneration. Its modular design allows further functionalization with peptides or growth factors. Future work will focus on translational applications, including scalability and optimization for dynamic biological environments. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

28 pages, 10216 KiB  
Article
Stability and Degradation Issues of Manganese Violet Pigment in Polymeric Paints: Morphological and Chemical Changes Under SO2 and Humidity Exposure
by Laura Pagnin, Giulia Cardin, Valentina Pintus, Michele Back, Farkas Pintér, Katja Sterflinger and Francesca Caterina Izzo
Appl. Sci. 2025, 15(9), 4630; https://doi.org/10.3390/app15094630 - 22 Apr 2025
Viewed by 808
Abstract
This study focuses on investigating the stability of modern and contemporary paints based on manganese violet pigment PV16 (NH4MnP2O7) when exposed to atmospheric pollutants, specifically sulfur dioxide (SO2) in the presence of high relative humidity. [...] Read more.
This study focuses on investigating the stability of modern and contemporary paints based on manganese violet pigment PV16 (NH4MnP2O7) when exposed to atmospheric pollutants, specifically sulfur dioxide (SO2) in the presence of high relative humidity. In particular, this study aims to investigate the role of PV16 in increasing the degradation processes of various modern binders. Therefore, the objectives of this research can be divided into (i) evaluating the chemical modifications involving PV16, (ii) investigating the degradation processes that occur in different organic matrices (i.e., drying oil, alkyd resin, and acrylic and styrene–acrylic emulsions), and (iii) comparing the chemical stability of model and commercial paints. The paints were analyzed by 3D Optical Microscopy, Attenuated total Reflection–Fourier-Transform Infrared spectroscopy (ATR-FTIR) and μ-Raman Spectroscopy, Scanning Electron Microscope coupled with Energy Dispersive X-Ray spectroscopy (SEM-EDX), X-Ray Powder Diffraction (XRPD), Fiber Optic Reflectance Spectroscopy (FORS), Pyrolysis–Gas Chromatography–Mass Spectrometry (Py-GC/MS), and Thermally assisted Hydrolysis and Methylation (THM) of Py-GC/MS (THM-Py-GC/MS). The results show that when exposed to high relative humidity and SO2, PV16 presents a colorimetric change from violet to grey; several compounds crystallize on the surface; and, depending on the binder, various degradation reactions occur. This study highlights the susceptibility of manganese violet pigment PV16 under certain environmental conditions, which may be considered to define adequate conservation strategies for works of art containing this specific pigment. Additionally, the results obtained within this investigation point out the need to expand the chemical knowledge of this material for engineering, sensing, and industrial applications. Full article
Show Figures

Figure 1

Back to TopTop