Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = γ-glutamyl peptides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7447 KiB  
Article
LC-MS/MS-Based Metabolomics and Multivariate Statistical Analysis Reveal the Mechanism of Rhodotorula mucilaginosa Proteases on Myofibrillar Protein Degradation and the Evolution of Taste Compounds
by Tianmeng Zhang, Qiang Xia, Daodong Pan, Yangying Sun, Ying Wang, Jinxuan Cao, Ren-You Gan and Changyu Zhou
Foods 2025, 14(11), 1867; https://doi.org/10.3390/foods14111867 - 24 May 2025
Viewed by 462
Abstract
Rhodotorula mucilaginosa plays a key role in developing the taste of dry-cured ham, while the mechanism of Rhodotorula mucilaginosa proteases on myofibrillar protein (MP) hydrolysis and the evolution of taste substances has not been studied. The enzymatic characteristics, hydrolysis capacities for MPs, free [...] Read more.
Rhodotorula mucilaginosa plays a key role in developing the taste of dry-cured ham, while the mechanism of Rhodotorula mucilaginosa proteases on myofibrillar protein (MP) hydrolysis and the evolution of taste substances has not been studied. The enzymatic characteristics, hydrolysis capacities for MPs, free amino acid contents, metabolite compositions, and taste attributes were investigated during the interactions of MPs and proteases. The proteases of R. mucilaginosa EIODSF019 (RE) and R. mucilaginosa XZY63-3 (RX) showed high hydrolytic activities at the conditions of pH 5.0~7.0 and 30~40 °C. Compared with RX, RE showed a lower Michaelis constant (Km) value and a better affinity for protein substrates. RE showed a higher capability to degrade myosin and actin compared with RX and P. kudriavzevii XS-5 proteases (PK). The microtopography of enzyme-treated MPs in RE presented a smoother surface and lower root mean square roughness than that in RX and PK. The total content of free amino acids significantly increased from 0.34 mg/100 mL of CK to 17.10 mg/100 mL of RE after 4 h of hydrolysis of MPs. Sixty-two metabolites were identified by LC-MS/MS, and γ-glutamyl peptides were the main components of MP hydrolysates. Sensory scores of umami, richness, and aftertaste showed the largest values in RE among these groups. Partial least squares discriminant analysis and correlation network demonstrated that γ-Glu-Lys, γ-Glu-Tyr, γ-Glu-Glu, γ-Glu-His, γ-Glu-Leu, γ-Glu-Cys, γ-Glu-Ala, and γ-Glu-Gln were positively correlated with the improvements of umami, richness, and aftertaste in RE. Full article
(This article belongs to the Special Issue Green Processing Technology of Meat and Meat Products: 3rd Edition)
Show Figures

Figure 1

27 pages, 3773 KiB  
Review
The Emerging Roles of γ-Glutamyl Peptides Produced by γ-Glutamyltransferase and the Glutathione Synthesis System
by Yoshitaka Ikeda and Junichi Fujii
Cells 2023, 12(24), 2831; https://doi.org/10.3390/cells12242831 - 13 Dec 2023
Cited by 19 | Viewed by 5449
Abstract
L-γ-Glutamyl-L-cysteinyl-glycine is commonly referred to as glutathione (GSH); this ubiquitous thiol plays essential roles in animal life. Conjugation and electron donation to enzymes such as glutathione peroxidase (GPX) are prominent functions of GSH. Cellular glutathione balance is robustly maintained via regulated synthesis, which [...] Read more.
L-γ-Glutamyl-L-cysteinyl-glycine is commonly referred to as glutathione (GSH); this ubiquitous thiol plays essential roles in animal life. Conjugation and electron donation to enzymes such as glutathione peroxidase (GPX) are prominent functions of GSH. Cellular glutathione balance is robustly maintained via regulated synthesis, which is catalyzed via the coordination of γ-glutamyl-cysteine synthetase (γ-GCS) and glutathione synthetase, as well as by reductive recycling by glutathione reductase. A prevailing short supply of L-cysteine (Cys) tends to limit glutathione synthesis, which leads to the production of various other γ-glutamyl peptides due to the unique enzymatic properties of γ-GCS. Extracellular degradation of glutathione by γ-glutamyltransferase (GGT) is a dominant source of Cys for some cells. GGT catalyzes the hydrolytic removal of the γ-glutamyl group of glutathione or transfers it to amino acids or to dipeptides outside cells. Such processes depend on an abundance of acceptor substrates. However, the physiological roles of extracellularly preserved γ-glutamyl peptides have long been unclear. The identification of γ-glutamyl peptides, such as glutathione, as allosteric modulators of calcium-sensing receptors (CaSRs) could provide insights into the significance of the preservation of γ-glutamyl peptides. It is conceivable that GGT could generate a new class of intercellular messaging molecules in response to extracellular microenvironments. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

16 pages, 1814 KiB  
Article
Derivation of Kokumi γ-Glutamyl Peptides and Volatile Aroma Compounds from Fermented Cereal Processing By-Products for Reducing Bitterness of Plant-Based Ingredients
by Nabila Rodríguez Valerón, Tiffany Mak, Leonie J. Jahn, Juan Carlos Arboleya and Pia M. Sörensen
Foods 2023, 12(23), 4297; https://doi.org/10.3390/foods12234297 - 28 Nov 2023
Cited by 8 | Viewed by 3494
Abstract
Current food production methods and consumption behaviours are unsustainable and contribute to environmental harm. One example is food waste—around 38% of food produced is wasted each year. Here, we show that two common food waste products, wheat bran and brewer’s spent grain, can [...] Read more.
Current food production methods and consumption behaviours are unsustainable and contribute to environmental harm. One example is food waste—around 38% of food produced is wasted each year. Here, we show that two common food waste products, wheat bran and brewer’s spent grain, can successfully be upcycled via miso fermentation. During the fermentation process, kokumi γ-glutamyl peptides, known to increase mouthfulness, are produced; these include γ-ECG (oxidized), γ-EVG, γ-EV, γ-EE, γ-EF, and γ-EL. The profiles of kokumi peptides and volatile aroma compounds are correlated with koji substrate, pH, and enzymatic activity, offering straightforward parameters that can be manipulated to increase the abundance of kokumi peptides during the fermentation process. Correlation analysis demonstrates that some volatile aroma compounds, such as fatty acid ethyl esters, are correlated with kokumi peptide abundance and may be responsible for fatty, greasy, and buttery aromas. Consumer sensory analysis conveys that the bitter taste of vegetables, such as that in endives, can be dampened when miso extract containing kokumi peptides is added. This suggests that kokumi peptides, along with aroma volatile compounds, can enhance the overall flavour of plant-based products. This study opens new opportunities for cereal processing by-product upcycling via fermentation, ultimately having the potential to promote a plant-based diet. Full article
(This article belongs to the Special Issue Analysis of Volatile Compounds during Food Fermentation)
Show Figures

Figure 1

13 pages, 1193 KiB  
Article
Comparative Quantitation of Kokumi γ-Glutamyl Peptides in Spanish Dry-Cured Ham under Salt-Reduced Production
by Alejandro Heres, Qian Li, Fidel Toldrá, René Lametsch and Leticia Mora
Foods 2023, 12(14), 2814; https://doi.org/10.3390/foods12142814 - 24 Jul 2023
Cited by 3 | Viewed by 2083
Abstract
Salting is a crucial step during the production of dry-cured ham and it is not well known whether it has an impact on the generation of taste-active peptides. The present study focused on the quantitation of kokumi γ-glutamyl peptides in low-salted Spanish dry-cured [...] Read more.
Salting is a crucial step during the production of dry-cured ham and it is not well known whether it has an impact on the generation of taste-active peptides. The present study focused on the quantitation of kokumi γ-glutamyl peptides in low-salted Spanish dry-cured hams with 12 months of processing. By using mass spectrometry, peptides were quantitated from samples obtained after ethanolic deproteinization-based and non-ethanolic deproteinization-based extraction methods. Peptides γ-EA, γ-EE, and γ-EL registered mean values of 0.31, 2.75, and 11.35 µg/g of dry-cured ham, respectively, with no differences observed between both extraction protocols. However, γ-EF, γ-EM, γ-EV, γ-EW, γ-EY, and γ-EVG presented significantly (p < 0.05) higher concentrations in the ethanolic deproteinized samples showing values of 5.58, 4.13, 13.90, 0.77, 3.71, and 0.11 µg/g of dry-cured ham, respectively. These outcomes reflect the importance of protocols for the extraction of peptides to achieve the most feasible results. In addition, potential precursors for the formation of γ-glutamyl peptides are generated during dry-curing under salt restriction. The kokumi activity of these γ-glutamyl peptides could enhance the sensory attributes countering the taste deficiencies caused by the salt restriction. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

13 pages, 2012 KiB  
Article
Streamlined Efficient Synthesis and Antioxidant Activity of γ-[Glutamyl](n≥1)-tryptophan Peptides by Glutaminase from Bacillus amyloliquefaciens
by Wenjiang He, Xiaoling Huang, Abulimiti Kelimu, Wenzhi Li and Chun Cui
Molecules 2023, 28(13), 4944; https://doi.org/10.3390/molecules28134944 - 23 Jun 2023
Cited by 5 | Viewed by 1833
Abstract
As a group of naturally occurring peptides in various foods, γ-glutamyl peptides possess a unique Kokumi taste and health benefits. However, few studies have focused on the functionality of γ-glutamyl peptides. In this study, the γ-[glutamyl] (n=1, 2, 3)-tryptophan peptides [...] Read more.
As a group of naturally occurring peptides in various foods, γ-glutamyl peptides possess a unique Kokumi taste and health benefits. However, few studies have focused on the functionality of γ-glutamyl peptides. In this study, the γ-[glutamyl] (n=1, 2, 3)-tryptophan peptides were synthesized from a solution of glutamine (Gln) and tryptophan (Trp) employing L-glutaminase from Bacillus amyloliquefaciens. Four different γ-glutamyl peptides were identified from the reaction mixture by UPLC-Q-TOF-MS/MS. Under optimal conditions of pH 10, 37 °C, 3 h, 0.1 mol/L Gln: 0.1 mol/L Trp = 1:3, and glutaminase at 0.1% (m/v), the yields of γ-l-glutamyl-l-tryptophan (γ-EW), γ-l-glutamyl-γ-l-glutamyl-l-tryptophan (γ-EEW) and γ-l-glutamyl-γ-l-glutamyl-γ-l-glutamyl-l-tryptophan (γ-EEEW) were 51.02%, 26.12% and 1.91% respectively. The antioxidant properties of the reaction mixture and the two peptides (γ-EW, γ-EEW) identified from the reaction media were further compared. Results showed that γ-EW exhibited the highest DPPH, ABTS•+ and O2•−-scavenging activity (EC50 = 0.2999 mg/mL, 67.6597 μg/mL and 5.99 mg/mL, respectively) and reducing power (EC50 = 4.61 mg/mL), while γ-EEW demonstrated the highest iron-chelating activity (76.22%). Thus, the synthesized mixture may be used as a potential source of antioxidant peptides for food and nutraceutical applications. Full article
Show Figures

Figure 1

16 pages, 4043 KiB  
Article
New Insight into the Substrate Selectivity of Bovine Milk γ-glutamyl Transferase via Structural and Molecular Dynamics Predictions
by Lichuang Cao, Cameron J. Hunt, Anne S. Meyer and René Lametsch
Molecules 2023, 28(12), 4657; https://doi.org/10.3390/molecules28124657 - 9 Jun 2023
Viewed by 2606
Abstract
Bovine milk γ-glutamyltransferase (BoGGT) can produce γ-glutamyl peptides using L-glutamine as a donor substrate, and the transpeptidase activity is highly dependent on both γ-glutamyl donors and acceptors. To explore the molecular mechanism behind the donor and acceptor substrate preferences for BoGGT, molecular docking [...] Read more.
Bovine milk γ-glutamyltransferase (BoGGT) can produce γ-glutamyl peptides using L-glutamine as a donor substrate, and the transpeptidase activity is highly dependent on both γ-glutamyl donors and acceptors. To explore the molecular mechanism behind the donor and acceptor substrate preferences for BoGGT, molecular docking and molecular dynamic simulations were performed with L-glutamine and L-γ-glutamyl-p-nitroanilide (γ-GpNA) as donors. Ser450 is a crucial residue for the interactions between BoGGT and donors. BoGGT forms more hydrogen bonds with L-glutamine than γ-GpNA, promoting the binding affinity between BoGGT and L-glutamine. Gly379, Ile399, and Asn400 are crucial residues for the interactions between the BoGGT intermediate and acceptors. The BoGGT intermediate forms more hydrogen bonds with Val-Gly than L-methionine and L-leucine, which can promote the transfer of the γ-glutamyl group from the intermediate to Val-Gly. This study reveals the critical residues responsible for the interactions of donors and acceptors with the BoGGT and provides a new understanding of the substrate selectivity and catalytic mechanism of GGT. Full article
Show Figures

Graphical abstract

10 pages, 1012 KiB  
Article
Thermochemical Study of the Interaction of Cytosine and Uracil with Peptides in a Buffered Saline: Complex Formation with beta-Endorphin 30-31 (Human), L-Glutathion (Reduced) and α-L-Alanyl-L-Tyrosine
by Vladimir P. Barannikov, Valeriy I. Smirnov, Igor N. Mezhevoi and Damir R. Koltyshev
Int. J. Mol. Sci. 2023, 24(11), 9764; https://doi.org/10.3390/ijms24119764 - 5 Jun 2023
Cited by 5 | Viewed by 1739
Abstract
The complex formation of uracil and cytosine with glycyl-L-glutamic acid (β-endorphin 30-31), γ-L-glutamyl-L-cysteinyl-glycine (glutathione reduced), α-L-alanyl-L-tyrosine, and α-L-alanyl-α-L-alanine in a buffered saline has been studied using dissolution calorimetry. The values of the reaction constant, the change in Gibbs energy, enthalpy, and entropy were [...] Read more.
The complex formation of uracil and cytosine with glycyl-L-glutamic acid (β-endorphin 30-31), γ-L-glutamyl-L-cysteinyl-glycine (glutathione reduced), α-L-alanyl-L-tyrosine, and α-L-alanyl-α-L-alanine in a buffered saline has been studied using dissolution calorimetry. The values of the reaction constant, the change in Gibbs energy, enthalpy, and entropy were obtained. It is shown that the ratio of the enthalpy and entropy factors depends on the charge of the peptide ion, and the number of H-bond acceptors in the peptide structure. The contributions of interaction between charged groups and polar fragments, hydrogen bonding, and stacking interaction are discussed, taking into account the effect of solvent reorganization around the reactant molecules. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

32 pages, 2883 KiB  
Review
The Glutathione System: A Journey from Cyanobacteria to Higher Eukaryotes
by Corinne Cassier-Chauvat, Fanny Marceau, Sandrine Farci, Soufian Ouchane and Franck Chauvat
Antioxidants 2023, 12(6), 1199; https://doi.org/10.3390/antiox12061199 - 31 May 2023
Cited by 54 | Viewed by 10427
Abstract
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron [...] Read more.
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication. This review summarizes what is known concerning the GSH-system (GSH, GSH-derived metabolites and GSH-dependent enzymes) in selected model organisms (Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human), emphasizing cyanobacteria for the following reasons. Cyanobacteria are environmentally crucial and biotechnologically important organisms that are regarded as having evolved photosynthesis and the GSH system to protect themselves against the ROS produced by their active photoautotrophic metabolism. Furthermore, cyanobacteria synthesize the GSH-derived metabolites, ergothioneine and phytochelatin, that play crucial roles in cell detoxication in humans and plants, respectively. Cyanobacteria also synthesize the thiol-less GSH homologs ophthalmate and norophthalmate that serve as biomarkers of various diseases in humans. Hence, cyanobacteria are well-suited to thoroughly analyze the role/specificity/redundancy of the players of the GSH-system using a genetic approach (deletion/overproduction) that is hardly feasible with other model organisms (E. coli and S. cerevisiae do not synthesize ergothioneine, while plants and humans acquire it from their soil and their diet, respectively). Full article
(This article belongs to the Special Issue Redox Metabolism in Ecophysiology and Evolution)
Show Figures

Figure 1

28 pages, 8038 KiB  
Review
Critical Roles of the Cysteine–Glutathione Axis in the Production of γ-Glutamyl Peptides in the Nervous System
by Junichi Fujii, Tsukasa Osaki, Yuya Soma and Yumi Matsuda
Int. J. Mol. Sci. 2023, 24(9), 8044; https://doi.org/10.3390/ijms24098044 - 28 Apr 2023
Cited by 19 | Viewed by 4835
Abstract
γ-Glutamyl moiety that is attached to the cysteine (Cys) residue in glutathione (GSH) protects it from peptidase-mediated degradation. The sulfhydryl group of the Cys residue represents most of the functions of GSH, which include electron donation to peroxidases, protection of reactive sulfhydryl in [...] Read more.
γ-Glutamyl moiety that is attached to the cysteine (Cys) residue in glutathione (GSH) protects it from peptidase-mediated degradation. The sulfhydryl group of the Cys residue represents most of the functions of GSH, which include electron donation to peroxidases, protection of reactive sulfhydryl in proteins via glutaredoxin, and glutathione conjugation of xenobiotics, whereas Cys-derived sulfur is also a pivotal component of some redox-responsive molecules. The amount of Cys that is available tends to restrict the capacity of GSH synthesis. In in vitro systems, cystine is the major form in the extracellular milieu, and a specific cystine transporter, xCT, is essential for survival in most lines of cells and in many primary cultivated cells as well. A reduction in the supply of Cys causes GPX4 to be inhibited due to insufficient GSH synthesis, which leads to iron-dependent necrotic cell death, ferroptosis. Cells generally cannot take up GSH without the removal of γ-glutamyl moiety by γ-glutamyl transferase (GGT) on the cell surface. Meanwhile, the Cys–GSH axis is essentially common to certain types of cells; primarily, neuronal cells that contain a unique metabolic system for intercellular communication concerning γ-glutamyl peptides. After a general description of metabolic processes concerning the Cys–GSH axis, we provide an overview and discuss the significance of GSH-related compounds in the nervous system. Full article
(This article belongs to the Special Issue Neuroprotective Effect of Glutathione 2.0)
Show Figures

Figure 1

12 pages, 2097 KiB  
Article
Cellular FXIII in Human Macrophage-Derived Foam Cells
by Laura Somodi, Emőke Horváth, Helga Bárdos, Barbara Baráth, Dávid Pethő, Éva Katona, József Balla, Nicola J. Mutch and László Muszbek
Int. J. Mol. Sci. 2023, 24(5), 4802; https://doi.org/10.3390/ijms24054802 - 2 Mar 2023
Cited by 1 | Viewed by 2402
Abstract
Macrophages express the A subunit of coagulation factor XIII (FXIII-A), a transglutaminase which cross-links proteins through Nε-(γ-L-glutamyl)-L-lysyl iso-peptide bonds. Macrophages are major cellular constituents of the atherosclerotic plaque; they may stabilize the plaque by cross-linking structural proteins and they may become transformed into [...] Read more.
Macrophages express the A subunit of coagulation factor XIII (FXIII-A), a transglutaminase which cross-links proteins through Nε-(γ-L-glutamyl)-L-lysyl iso-peptide bonds. Macrophages are major cellular constituents of the atherosclerotic plaque; they may stabilize the plaque by cross-linking structural proteins and they may become transformed into foam cells by accumulating oxidized LDL (oxLDL). The combination of oxLDL staining by Oil Red O and immunofluorescent staining for FXIII-A demonstrated that FXIII-A is retained during the transformation of cultured human macrophages into foam cells. ELISA and Western blotting techniques revealed that the transformation of macrophages into foam cells elevated the intracellular FXIII-A content. This phenomenon seems specific for macrophage-derived foam cells; the transformation of vascular smooth muscle cells into foam cells fails to induce a similar effect. FXIII-A containing macrophages are abundant in the atherosclerotic plaque and FXIII-A is also present in the extracellular compartment. The protein cross-linking activity of FXIII-A in the plaque was demonstrated using an antibody labeling the iso-peptide bonds. Cells showing combined staining for FXIII-A and oxLDL in tissue sections demonstrated that FXIII-A-containing macrophages within the atherosclerotic plaque are also transformed into foam cells. Such cells may contribute to the formation of lipid core and the plaque structurization. Full article
(This article belongs to the Special Issue Fibrinogen/Fibrin, Factor XIII and Fibrinolysis in Diseases)
Show Figures

Figure 1

16 pages, 1663 KiB  
Article
Untargeted Metabolomics Combined with Sensory Analysis to Evaluate the Chemical Changes in Coppa Piacentina PDO during Different Ripening Times
by Gabriele Rocchetti, Alessandra Scansani, Giulia Leni, Samantha Sigolo, Terenzio Bertuzzi and Aldo Prandini
Molecules 2023, 28(5), 2223; https://doi.org/10.3390/molecules28052223 - 27 Feb 2023
Cited by 2 | Viewed by 2112
Abstract
Ripening time is known to drive the chemical and sensory profiles of dry meat products, thus potentially affecting the final quality of the product. Starting from these background conditions, the aim of this work was to shed light, for the first time, on [...] Read more.
Ripening time is known to drive the chemical and sensory profiles of dry meat products, thus potentially affecting the final quality of the product. Starting from these background conditions, the aim of this work was to shed light, for the first time, on the chemical modifications of a typical Italian PDO meat product—namely, Coppa Piacentina—during ripening, to find correlations between its sensory quality and the biomarker compounds related to the progress of ripening. The ripening time (from 60 to 240 days) was found to deeply modify the chemical composition of this typical meat product, providing potential biomarkers of both oxidative reactions and sensory attributes. The chemical analyses revealed that there is typically a significant decrease in the moisture content during ripening, likely due to increased dehydration. In addition, the fatty acid profile showed that the distribution of polyunsaturated fatty acids significantly (p < 0.05) decreased during ripening, because of their high susceptibility to oxidation and conversion to intermediate and secondary molecules. An untargeted metabolomics approach, coupled with unsupervised and supervised multivariate statistics, highlighted a significant impact (prediction scores > 1) of lipid oxidation during ripening time, with some metabolites (such as γ -glutamyl-peptides, hydroperoxy-fatty acids, and glutathione) being particularly discriminant in predicting the changes observed. The discriminant metabolites were coherent with the progressive increase of peroxide values determined during the entire ripening period. Finally, the sensory analysis outlined that the highest degree of ripening provided greater color intensity of the lean part, slice firmness, and chewing consistency, with glutathione and γ-glutamyl-glutamic acid establishing the highest number of significant correlations with the sensory attributes evaluated. Taken together, this work highlights the importance and validity of untargeted metabolomics coupled with sensory analysis to investigate the comprehensive chemical and sensory changes to dry meat during ripening. Full article
(This article belongs to the Special Issue Food Chemistry: Food Quality and New Analytical Approaches)
Show Figures

Figure 1

14 pages, 1689 KiB  
Article
Metabolic Profiling of Pregnant Women with Obesity: An Exploratory Study in Women at Greater Risk of Gestational Diabetes
by Ola F. Quotah, Lucilla Poston, Angela C. Flynn and Sara L. White
Metabolites 2022, 12(10), 922; https://doi.org/10.3390/metabo12100922 - 29 Sep 2022
Cited by 8 | Viewed by 2302
Abstract
Gestational diabetes mellitus (GDM) is one of the most prevalent obstetric conditions, particularly among women with obesity. Pathways to hyperglycaemia remain obscure and a better understanding of the pathophysiology would facilitate early detection and targeted intervention. Among obese women from the UK Pregnancies [...] Read more.
Gestational diabetes mellitus (GDM) is one of the most prevalent obstetric conditions, particularly among women with obesity. Pathways to hyperglycaemia remain obscure and a better understanding of the pathophysiology would facilitate early detection and targeted intervention. Among obese women from the UK Pregnancies Better Eating and Activity Trial (UPBEAT), we aimed to compare metabolic profiles early and mid-pregnancy in women identified as high-risk of developing GDM, stratified by GDM diagnosis. Using a GDM prediction model combining maternal age, mid-arm circumference, systolic blood pressure, glucose, triglycerides and HbA1c, 231 women were identified as being at higher-risk, of whom 119 women developed GDM. Analyte data (nuclear magnetic resonance and conventional) were compared between higher-risk women who developed GDM and those who did not at timepoint 1 (15+0–18+6 weeks) and at timepoint 2 (23+2–30+0 weeks). The adjusted regression analyses revealed some differences in the early second trimester between those who developed GDM and those who did not, including lower adiponectin and glutamine concentrations, and higher C-peptide concentrations (FDR-adjusted p < 0.005, < 0.05, < 0.05 respectively). More differences were evident at the time of GDM diagnosis (timepoint 2) including greater impairment in β-cell function (as assessed by HOMA2-%B), an increase in the glycolysis-intermediate pyruvate (FDR-adjusted p < 0.001, < 0.05 respectively) and differing lipid profiles. The liver function marker γ-glutamyl transferase was higher at both timepoints (FDR-adjusted p < 0.05). This exploratory study underlines the difficulty in early prediction of GDM development in high-risk women but adds to the evidence that among pregnant women with obesity, insulin secretory dysfunction may be an important discriminator for those who develop GDM. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

16 pages, 13727 KiB  
Article
GC-MS Studies on the Conversion and Derivatization of γ-Glutamyl Peptides to Pyroglutamate (5-Oxo-Proline) Methyl Ester Pentafluoropropione Amide Derivatives
by Alexander Bollenbach and Dimitrios Tsikas
Molecules 2022, 27(18), 6020; https://doi.org/10.3390/molecules27186020 - 15 Sep 2022
Cited by 7 | Viewed by 2822
Abstract
Glutathione (γ-L-glutamyl-L-cysteinyl-glycine, γ-Glu-Cys-Gly) is the most abundant intra-cellular dicarboxylic tripeptide with multiple physiological roles. In biological samples, glutathione exists in its reduced form GSH and in two stable oxidized forms, i.e., in its symmetric disulfide form GSSG and as S-glutathionyl residue in [...] Read more.
Glutathione (γ-L-glutamyl-L-cysteinyl-glycine, γ-Glu-Cys-Gly) is the most abundant intra-cellular dicarboxylic tripeptide with multiple physiological roles. In biological samples, glutathione exists in its reduced form GSH and in two stable oxidized forms, i.e., in its symmetric disulfide form GSSG and as S-glutathionyl residue in proteins. S-Glutathionylation is a post-translational modification, which is involved in several pathophysiological processes, including oxidative stress. The GSH-to-GSSG molar ratio is widely used as a measure of oxidative stress. γ-Glutamyl is the most characteristic structural moiety of GSH. We performed gas chromatography-mass spectrometry (GC-MS) studies for the development of a highly specific qualitative and quantitative method for γ-glutamyl peptides. We discovered intra-molecular conversion of GSH, GSSG, γ-Glu-Cys and of ophthalmic acid (OPH; γ-glutamyl-α-amino-n-butyryl-glycine) to pyroglutamate (pGlu; 5-oxo-proline, also known as pidolic acid) during their derivatization with 2 M HCl/CH3OH (60 min, 80 °C). For GC-MS analysis, the methyl esters (Me) were further derivatized with pentafluoropropionic (PFP) anhydride in ethyl acetate (1:4, v/v; 30 min, 65 °C) to their PFP derivatives. At longer reaction times, pGlu is hydrolyzed to Glu. Internal standards were prepared by derivatizing GSH, GSSG, γ-Glu-Cys and OPH in 2 M HCl/CD3OD. Quantification of the Me-PFP derivative of pGlu was performed in the electron-capture negative-ion chemical ionization (ECNICI) mode by selected-ion monitoring (SIM) of the mass-to-charge (m/z) ions 269 for unlabeled pGlu (d0Me-PFP-pGlu) and m/z 272 for the in situ prepared deuterium-labeled pGlu (d3Me-PFP-pGlu). Although not inherent to the analysis of small peptides, the present GC-MS method is useful to study several biochemical aspects of GSH. Using pentafluorobenzyl bromide (PFB-Br) as the derivatization reagent, we found that synthetic pGlu is converted in aqueous acetone (60 min, 50 °C) into its pentafluorobenzyl (PFB) ester (PFB-pGlu). This derivatization procedure is useful for the GC-MS analysis of free pGlu in the ECNICI mode. Quantitative analysis of PFB-pGlu by GC-MS requires the use of stable-isotope labeled analogs of pGlu as an internal standard. Full article
(This article belongs to the Special Issue Derivatization in Analytical Chemistry-II)
Show Figures

Figure 1

15 pages, 3580 KiB  
Article
Hepatoprotective Effect of Oyster Peptide on Alcohol-Induced Liver Disease in Mice
by Xueqin Wang, Huahua Yu, Ronge Xing and Pengcheng Li
Int. J. Mol. Sci. 2022, 23(15), 8081; https://doi.org/10.3390/ijms23158081 - 22 Jul 2022
Cited by 21 | Viewed by 3274
Abstract
Alcohol-induced liver disease (ALD) has become one of the major global health problems, and the aim of this study was to investigate the characterization of the structure as well as the hepatoprotective effect and mechanism of oyster peptide (OP, MW < 3500 Da) [...] Read more.
Alcohol-induced liver disease (ALD) has become one of the major global health problems, and the aim of this study was to investigate the characterization of the structure as well as the hepatoprotective effect and mechanism of oyster peptide (OP, MW < 3500 Da) on ALD in a mouse model. The results demonstrate that ethanol administration could increase the activities of aspartate aminotransferase (AST), alanine transaminase (ALT), γ-Glutamyl transferase (GGT), reactive oxygen species (ROS), malondialdehyde (MDA), and triglycerides (TG), as well as increase the interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF-α) levels (p < 0.01), and reduce the activity of superoxide dismutase (SOD) and the concentration of glutathione (GSH). Those changes were significantly reversed by the application of different doses of OP. Furthermore, the mRNA expressions of nuclear factor elythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and quinone oxidoreductase1 (NQO1) were significantly up-regulated in OP groups, and the mRNA expressions of nuclear factor kappa-light chain enhancer of B cells (NF-κB), TNF-α, and IL-6 were markedly reduced in OP groups compared to that of the model group. Thus, OP had a significant protective effect on ALD through the enhancement of the in vivo antioxidant ability and the inhibition of the inflammatory response as possible mechanisms of action, which therefore suggests that OP might be useful as a natural source to protect the liver from alcohol damage. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

12 pages, 2156 KiB  
Article
Transport of Dietary Anti-Inflammatory Peptide, γ-Glutamyl Valine (γ-EV), across the Intestinal Caco-2 Monolayer
by Snigdha Guha, Sophie Alvarez and Kaustav Majumder
Nutrients 2021, 13(5), 1448; https://doi.org/10.3390/nu13051448 - 24 Apr 2021
Cited by 34 | Viewed by 5621
Abstract
The present study analyzed the transepithelial transport of the dietary anti-inflammatory peptide, γ-glutamyl valine (γ-EV). γ-EV is naturally found in dry edible beans. Our previous study demonstrated the anti-inflammatory potency of γ-EV against vascular inflammation at a concentration of 1mM, and that it [...] Read more.
The present study analyzed the transepithelial transport of the dietary anti-inflammatory peptide, γ-glutamyl valine (γ-EV). γ-EV is naturally found in dry edible beans. Our previous study demonstrated the anti-inflammatory potency of γ-EV against vascular inflammation at a concentration of 1mM, and that it can transport with the apparent permeability coefficient (Papp) of 1.56 × 10−6 ± 0.7 × 10−6 cm/s across the intestinal Caco-2 cells. The purpose of the current study was to explore whether the permeability of the peptide could be enhanced and to elucidate the mechanism of transport of γ-EV across Caco-2 cells. The initial results indicated that γ-EV was nontoxic to the Caco-2 cells up to 5 mM concentration and could be transported across the intestinal cells intact. During apical-to-basolateral transport, a higher peptide dose (5 mM) significantly (p < 0.01) enhanced the transport rate to 2.5 × 10−6 ± 0.6 × 10−6 cm/s. Cytochalasin-D disintegrated the tight-junction proteins of the Caco-2 monolayer and increased the Papp of γ-EV to 4.36 × 10−6 ± 0.16 × 10−6 cm/s (p < 0.001), while theaflavin 3′-gallate and Gly-Sar significantly decreased the Papp (p < 0.05), with wortmannin having no effects on the peptide transport, indicating that the transport route of γ-EV could be via both PepT1-mediated and paracellular. Full article
(This article belongs to the Special Issue Bioactive Peptides)
Show Figures

Figure 1

Back to TopTop