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Abstract: γ-Glutamyl moiety that is attached to the cysteine (Cys) residue in glutathione (GSH)
protects it from peptidase-mediated degradation. The sulfhydryl group of the Cys residue represents
most of the functions of GSH, which include electron donation to peroxidases, protection of reactive
sulfhydryl in proteins via glutaredoxin, and glutathione conjugation of xenobiotics, whereas Cys-
derived sulfur is also a pivotal component of some redox-responsive molecules. The amount of Cys
that is available tends to restrict the capacity of GSH synthesis. In in vitro systems, cystine is the
major form in the extracellular milieu, and a specific cystine transporter, xCT, is essential for survival
in most lines of cells and in many primary cultivated cells as well. A reduction in the supply of Cys
causes GPX4 to be inhibited due to insufficient GSH synthesis, which leads to iron-dependent necrotic
cell death, ferroptosis. Cells generally cannot take up GSH without the removal of γ-glutamyl moiety
by γ-glutamyl transferase (GGT) on the cell surface. Meanwhile, the Cys–GSH axis is essentially
common to certain types of cells; primarily, neuronal cells that contain a unique metabolic system for
intercellular communication concerning γ-glutamyl peptides. After a general description of metabolic
processes concerning the Cys–GSH axis, we provide an overview and discuss the significance of
GSH-related compounds in the nervous system.

Keywords: xCT; glutathione peroxidase; glutaredoxin; γ-glutamyl transferase; amino acid trans-
porter; calcium-sensing receptor

1. Introduction

Methionine (Met) and cysteine (Cys) are the only sulfur-containing amino acids,
and Cys can be synthesized through the transsulfuration reaction associated with Met
metabolism. Met is metabolized to S-adenosylmethionine (SAM), which provides either
the carbon backbone for polyamines or methyl groups for some other compounds, includ-
ing DNA [1]. Meanwhile, Cys comes from extracellular sources or is the product of the
transsulfuration reaction and then becomes the precursor for sulfur-containing components
or mediators. These include glutathione (GSH), taurine, coenzyme A, hydrogen sulfide,
iron–sulfur [Fe–S] cluster, and persulfides [2,3]. Although Cys is cytotoxic at high concentra-
tions, because of the extreme demand, the cellular levels of Cys remain low, approximately
100-fold lower than that of GSH in astrocytes [4].

GSH maintains the redox state in cells by acting as a major antioxidant, and detoxifies
xenobiotics through GSH conjugation. GSH also acts as a donor substrate of a γ-glutamyl
group and a carrier for delivering Cys. The reactivity of GSH with reactive oxygen species
(ROS) is marginal and, hence, the antioxidant action is largely attributed to its ability to
donate an electron to glutathione peroxidases (GPX) [5]. GSH is also involved in protecting
proteins from oxidative insult via a glutaredoxin (GRX)-involved reaction [6]. Moreover,
glutathione S-transferase (GST) catalyzes GSH conjugation reactions of xenobiotics, result-
ing in the excretion of products as GSH conjugates [7].

Int. J. Mol. Sci. 2023, 24, 8044. https://doi.org/10.3390/ijms24098044 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24098044
https://doi.org/10.3390/ijms24098044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2267-7357
https://orcid.org/0000-0002-9487-3253
https://doi.org/10.3390/ijms24098044
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24098044?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 8044 2 of 28

In fact, the GSH system and the thioredoxin (TRX) system are two major redox sys-
tems that protect the animal body, including the central nervous system, from oxidative
damage [8,9]. GSH plays a vital role in neural physiology but also exerts a unique function
in neuroprotection [10,11]. Hence, the GSH system is a promising drug target for several
neurological disorders [12–14]. In this review article, we first reviewed the metabolic
pathways and molecular dynamics of GSH and then provided an overview of significant
actions of GSH in maintaining redox balance and modulating extracellular signaling in the
neuronal system. We also reviewed the origin and function of γ-glutamyl peptides that
occur in close association with GSH metabolism.

2. Regulation of Cellular GSH Content by Balancing Synthesis, Recycling,
and Degradation

GSH is present in the mM range in most mammalian cells. Because GSH is rapidly
consumed through oxidation, conjugation, or degradation, cellular levels are mainly main-
tained by the synthesis of GSH from constituent amino acids glutamate (Glu), Cys, and
glycine (Gly) (Figure 1). Indeed, Cys availability generally determines the GSH content in
cells [4]. Here, we provide an outline of GSH metabolism, followed by highlighting recent
advances in our knowledge of GSH homeostasis that are necessary for understanding its
role in the nervous system. For a further understanding of the systemic roles of genes
responsible for the GSH system or recycling in vivo, readers are referred to reviews on
mouse model of GSH deficiencies caused by the ablation of genes for γ-GCS, GSS, and
GGT, as well as GSR [15,16].

Figure 1. Metabolic linkage of methionine (Met), cysteine (Cys), and glutathione (GSH). Met first
reacts with ATP, resulting in the formation of S-adenosylmethionine (SAM). After donation of a
methyl group, SAM is converted to S-adenosylhomocysteine (SAH) followed by homocysteine
(Hcy) by releasing adenosine. In the transsulfuration pathway, serine (Ser) is ligated to Hcy to form
cystathionine (Cst). Cystathionine γ-lyase (CSE) then cleaves cystathionine to Cys and 2-oxobutyrate.
Cys is the precursor for not only GSH, but also taurine, cysteamine, and [Fe–S] cluster. Cysteine
dioxygenases oxidizes Cys to cysteine sulfonate, which is then converted into hypotaurine by cysteine
sulfinate decarboxylase. Hypotaurine is finally converted to taurine by hypotaurine dehydrogenase.
Glu, glutamate; Gly, glycine.

2.1. Dynamics of Cys Responsible for Cellular Redox Homeostasis

It is generally understood that GSH is not taken up by cells in the intact form, and
recent studies indicate that GSH transporters are present in certain cells, such as endothelial
cells [17,18]. GSH is enclosed in exosomes, which may act as intercellular vehicles across the
blood–brain barrier [19]. Nevertheless, it remains true that extracellular GSH does not fulfil
cellular requirements, and that most cells need to actively synthesize GSH from constituent
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amino acids in order to maintain the required levels. Cys and GSH share many chemical
properties, notably in redox reactivity to maintain cellular homeostasis. Cys is present
only in the submillimolar range due to its cytotoxicity and rapid consumption, but GSH is
a safe form and, hence, can be present in several millimolar concentrations. This makes
GSH a dominant player in cellular redox reactions compared to Cys. In the meantime, Cys
plays unique roles, as represented by its serving as a direct precursor for sulfur-containing
molecules that include taurine, cysteamine, coenzyme A, and [Fe–S] cluster. For example,
taurine is the most abundant amino acid that is present in the free form, which is ~50 mM in
hepatocytes and the brain [4,20], and the levels of coenzyme A are approximately 2.3 mM
in mitochondria [21]. Therefore, the cellular levels of Cys dynamically change upon stimuli
and often become insufficient. To meet this need, Cys is either actively taken up from the
extracellular milieu or synthesized via the transsulfuration pathway.

Met metabolism is initiated by reacting with ATP, which results in the formation of
SAM with the releases of a phosphate and pyrophosphate [2]. SAM functions as a methyl
group donor for the synthesis of creatinine and adrenalin and also for the methylation of
DNA and histones, which act as the epigenetic regulation of gene expression. The resulting
S-adenosylhomocysteine (SAH) becomes homocysteine (Hcy) by releasing adenosine. In
the transsulfuration pathway, cystathionine β-synthase (CBS) combines Hcy with serine
(Ser) to form cystathionine (Cst) [22]. Cystathionine γ-lyase (CSE) then cleaves Cst to Cys
and 2-oxobutyrate. CBS and CSE are also known to catalyze the conversion of Cys to
hydrogen sulfide [23]. The activity of the transsulfuration pathway varies depending on
the types of cells. For example, the pathway produces approximately 50% of the Cys that is
needed for the synthesis of GSH in the liver [24], so that primary cultured hepatocytes can
survive for more than one week under cultured conditions in the absence of cystine [25].
The transsulfuration pathway also actively provides Cys for GSH synthesis in the brain,
notably in astrocytes [26]. Nevertheless, depletion of Cys causes ferroptosis in many
cells in culture systems [27], which implies that the intrinsically produced Cys from the
transsulfuration pathway does not fulfil the need in such cells. Limited contribution of the
transsulfuration pathway in some organs could increase reliance on the blood-mediated
supply of Cys for GSH synthesis.

2.2. Uptake of Extracellular Cys and Cystine

Cells take up Cys via neutral amino acid transporters (NAATs), examples of which
are the alanine serine cysteine transporter (ASCT) and the L-type amino acid transporter
2 (LAT2), whereas neurons employ a neutral amino acid transporter excitatory amino
acid carrier type 1 (EAAC1, also called EAAT3) (Figure 2) [28,29]. For a more detailed
review of this, readers are referred to a report on the relationship between GSH synthesis
and EAAC1 in neurons [30]. Cystine, a Cys dimer linked by a disulfide bridge, is the
predominant form in extracellular fluid, notably under cultivation conditions. System b0,+

acts as a cystine transporter, but its main component, b0,+ AT, is expressed exclusively in
the kidney. Another cystine transporter, xCT (the protein encoded by SLC7A11), which
shows no structural similarity to b0,+ AT, is constitutively expressed in limited organs,
such as the brain and the immune system [31,32]. In situ hybridization indicates the
characteristic expression of xCT in the brain, which suggests exchanging cystine and Glu in
the central nervous system is physiologically significant [33]. The presence of xCT has been
demonstrated in blood/brain/CSF interface areas and in an astrocyte subpopulation [34].
xCT transports not only cystine but also cystathionine [35], which can be converted to Cys
via the transsulfuration pathway in competent cells. If cells do not express SLC7A11 and
hence are incapable of taking up cystine, SLC7A11 expression can be induced in response
to oxidative conditions, likely through activation of Nrf2 and ATF4 [36,37]. In fact, in
most cells that are cultivated under conventional conditions, the expression of SLC7A11 is
required for the uptake of extracellular cystine to occur. Cystine inside cells is then reduced
to Cys by TRX1 and the TRX-related protein 14 kDa (TRP14) [38].
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Figure 2. Transporters and enzymes involved in the metabolism of Cys and GSH. The degradation
of extracellular GSH is initiated by γ-glutamyl transferase (GGT)-mediated removal of γ-glutamyl
group. The resulting Cys–Gly dipeptide is either incorporated directly via the dipeptide transporter
PepT2 or degraded to amino acids by the action of extracellular dipeptidases. Cys is incorporated via
a neutral amino acid transporter, such as the alanine serine cysteine transporter (ASCT) or neutral
amino acid transporter (NAAT), or oxidized to cystine. Cystine is transported into cells via xCT and
reduced to Cys by the action of TRX1 and the TRX-related protein 14 kDa (TRP14). γ-GCS ligates Glu
to Cys via its γ-glutamyl group, and this results in γ-Glu–Cys. GSS then adds Gly after Cys, which
forms GSH. GSH donates an electron to glutathione peroxidase (GPX), which reduces peroxides.
GSH is also utilized by glutaredoxin (GRX) to regenerate proteins in reduced states. Glutathione
reductase (GSR) reduces oxidized glutathione (GSSG) back to GSH in an NADPH-dependent manner.
Degradation of intracellular GSH is initiated by γ-glutamylcyclotransferase (ChaC) that releases
5-oxoproline (5-OP). The remaining Cys–Gly is hydrolyzed to amino acids by cellular dipeptidase,
represented by carnosine dipeptidase 2 (CNDP2). Radicals released from mitochondria are major
source for peroxides. Notably, GPX4 reduces lipid peroxides in a GSH-dependent manner. CssC,
cystine; Gln, glutamine; GLS, glutaminase; PUFA, polyunsaturated fatty acid; γ-GCS, γ-glutamyl–
cysteine synthetase; MRP, multidrug resistance regulator; xCT, cysteine transporter.

The SLC7A11-knockout (KO) mouse shows a redox imbalance in blood plasma, but
otherwise a normal phenotype, probably because SLC7A11 is expressed only in limited
organs [39]. Once isolated from an SLC7A11-KO mouse, however, fibroblasts die if there
is no supplementation of reductants. This type of cell death is referred to as ferroptosis,
which is also typically induced by the inhibition of xCT or GPX4 [40]. SLC7A11 expressed
in glia has been reported to regulate hippocampal synaptic strength [41]. Whereas astro-
cytes take up cystine via xCT, neurons take up Cys only via EAAC1 [42,43]. Due to the
pivotal function of both Cys and Glu in the brain, many studies have involved the role
of xCT concerning neurodegenerative diseases, such as schizophrenia, inflammation, and
tumor [44,45]. Whereas cystine uptake is a major concern for non-neuronal cells, Glu, a
counter amino acid of cystine, is a major excitatory neurotransmitter. The concern is that
excessive activation of the N-methyl-D-aspartate (NMDA) receptor by extracellular Glu
can cause oxidative Glu toxicity [46,47]. Whereas both activated and resting microglial cells
express SLC7A11 and release Glu via xCT, neither changes in GSH content nor neuronal
dysfunctions are observed in xCT-KO mice [48]. However, Glu exported via xCT trig-
gers the removal of postsynaptic AMPA receptors and suppresses glutamatergic synapse
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strength [41]. Whereas SLC7A11 is not expressed in motor neurons, SLC7A11 expression
is induced in activated microglia in amyotrophic lateral sclerosis (ALS) mice carrying
mutant SOD1, the gene encoding cytosolic superoxide dismutase (SOD) [49]. The deletion
of SLC7A11 leads to the premature onset of ALS symptoms, but the disease phase then
progresses slowly, leading to the survival of more motor neurons in this model mouse.

Regarding tumors, the stable expression of SLC7A11 appears to promote the growth
of gastrointestinal cancer cells and enhance malignancy by increasing the redox potential
in in vivo conditions [50]. Gliomas are the most common malignant tumor in the central
nervous system. The inhibition of xCT reportedly abrogates glioma-induced neurodegener-
ation and brain edema [51]. The EGF receptor is associated with higher levels of GSH due
to the presence of xCT, and the inhibition of xCT suppresses the EGFR-dependent enhance-
ment of antioxidant capacity in glioma cells [52]. Results reported in many studies indicate
that the overexpression of SLC7A11 is associated with a glioma malignancy, thus making
xCT one of the potential targets for the treatment of gliomas [53,54]. Apoptosis-resistant
tumors tend to be sensitive to ferroptotic stimuli [55,56]. Accordingly, xCT has attracted
considerable attention in cancer biology, since the induction of ferroptosis by targeting xCT
appears to be a promising approach for the treatment of apoptosis-resistant tumors [57–59].
Contrary to these observations, however, the overexpression of SLC7A11 induces cell death
in glioblastomas under conditions of glucose deprivation caused by high-density cultiva-
tion [60]. Surviving glioblastoma cells at high density undergo inactivation of mammalian
targets of rapamycin-1 (mTOR-1) and xCT degradation by lysosomes in order to avoid
ferroptosis. The activated form of the antitumor protein p53 induces apoptosis [61], but also
ferroptosis [62]. In this case, xCT is downregulated by p53, which leads to ferroptosis due
to GSH depletion [58]. Other than genetic regulation, the activation of p53 promotes ferrop-
tosis by means of differential mechanisms [62,63]. However, a complication is that p53 may
induce the expression of SLC7A11 under certain circumstances, leading to the suppression
of ferroptosis [64]. It appears that clarification of such an inconsistency is needed.

2.3. GSH Synthesis and Consequence of Its Defect

Cellular GSH levels are maintained mainly through de novo synthesis from constituent
amino acids via the coordinated action of γ-glutamyl–cysteine synthetase (γ-GCS) and
glutathione synthetase (GSS). γ-GCS is a heterodimeric enzyme composed of a catalytic
subunit that is encoded by the GCLC gene and a modifier subunit that is encoded by
the GCLM gene. The inhibition of GCLC by a specific inhibitor buthionine sulfoximine
decreases GSH to negligible levels within one day [65]. γ-GCS ligates the carboxyl group of
the side chain of Glu to the amino group of Cys, resulting in the formation of γ-glutamyl–
cysteine (γ-Glu-Cys). GSS then adds a glycine unit to γ-Glu-Cys, which completes the
synthesis of tripeptide γ-Glu-Cys-Gly, which is referred to as GSH. Because Cys is the
preferred acceptor amino acid of the γ-GCS reaction (Km = 0.1–0.3 mM), ordinary amounts
of Cys enable the coupled reaction of γ-GCS and GSS, which results in the production of
GSH. However, under a Cys deficiency, γ-GCS catalyzes the γ-glutamylation of other amino
acids due to its low specificity toward the acceptor substrate, leading to the production
of a variety of γ-glutamyl peptides depending on amino acid status, even in in vivo
conditions [65].

Defects in genes for GSH-synthesizing enzymes are few in humans, probably due
to the pivotal roles of GSH [66]. γ-GCS and GSS deficiencies are commonly associated
with a decrease in GSH levels, hemolytic anemia, and sometimes neurological dysfunction,
although a deficiency of GSS is more frequent than that of γ-GCS [67–69]. GSS-deficient
patients show 5-oxoprolineuria, hemolytic anemia, and neurological dysfunction [70,71].
Fibroblasts from a GSS-deficient patient have been reported to show increased levels of
cysteine and γ-Glu-Cys but decreased levels of GSH [72].

Mice with the knockout of these genes have been employed to examine the function
of GSH in vivo. GLCL-null mutant mice die by embryonic day 7.5 due to accelerated cell
death [73,74]. Supplementing culture media with GSH or N-acetylcysteine (NAC), a pre-
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cursor for Cys and complement to the synthesis of GSH, rescues fetal embryonic fibroblasts
(MEF) isolated from GCLC-KO mouse embryos from this fatal nature, which demonstrates
that a decline in GSH is the cause of death. The hepatocyte-specific ablation of GCLC results
in the development of steatosis, mitochondrial injury, and elevated lipid peroxidation [75].
Mice with Treg-specific ablation show increased Ser metabolism, mTOR activation, and
proliferation [76]. Thus, GSH appears to restrict the availability of Ser, which results in
the Treg function being preserved. Myeloid-specific deletion of GCLC compromises the
activation of mTOR-1 and the expression of the c-Myc transcription factor, which abrogates
energy utilization [77]. The conditional knockout of GCLC in neuronal tissues induces
brain atrophy which is accompanied by neuronal loss and neuroinflammation and appears
to be associated with the activation of microglia [78]. On the other hand, no apparent
phenotypes have been observed in GCLM-KO mice, although the levels of GSH in some
organs are 9–16% that of wild-type mice [79]. MEF isolated from GCLM-KO mice are more
sensitive to oxidants, such as hydrogen peroxide and arsenic [80]. An acetaminophen
overdose aggravates liver damage in GCLM-KO mice but can be rescued by the admin-
istration of NAC [81]. On the contrary, a transgenic mouse overexpressing GCLM shows
an increased resistance to acetaminophen-induced liver damage [82] and the hydrogen
peroxide-induced breakage of single-strand DNA, which are consistent with the pivotal
roles of GSH in antioxidation. GCLM-KO fibroblasts show an increase in intracellular ROS
levels, and this results in diminished cellular proliferation and increased senescence [83].
Concerning the central nervous system, social isolation causes neurochemical alterations,
such as an elevation in the concentrations of N-acetylaspartate, alanine, and glutamine,
which may be attributed to decreased GSH levels [84]. Several metabolic abnormalities are
observed in the livers of alcohol-treated GCLM-KO mice [85], although its physiological
significance has not been examined any further.

2.4. Consumption of GSH and Reductive Recycling of GSSG

Cellular GSH is depleted mainly thorough the secretion of forms of oxidized glu-
tathione (GSSG), glutathione S-conjugates, and S-nitrosoglutathione (GSNO). The ATP-
binding cassette (ABC) transporter protein superfamily that contains 49 members in hu-
mans [86] is responsible for the secretion of various compounds with endogenous or
exogenous sources [87]. The multidrug resistance regulator (MRP) subfamily, which is
classified into the ABC transporter subfamily C, mediates the export of GSH-related com-
pounds [88]. Among the MRP members, the transport of GSH and glutathione conjugates
by MRP1 (gene symbol; ABCC1) has been extensively characterized [89]. Other forms of
MRPs, MRP2 to MPR8 and CFTR (ABCC7, cystic fibrosis transmembrane conductance
regulator), also transport some glutathione-related compounds.

The reductive recycling of GSSG is catalyzed by the action of glutathione reductase
(GSR), which uses NADPH as an electron donor. GSR plays a crucial role in cell survival
and is induced in an Nrf2-dependent manner under conditions of oxidative stress [90]. GSR
is inhibited by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an anticancer agent. It should
also be noted that testes express a novel enzyme, thioredoxin/glutathione reductase, that
reductively recycles both oxidized TRX and oxidized GSH as substrates [91] and is mainly
associated with sperm maturation [92,93].

A deficiency of GSR is very rare in humans, and only 18 mutations in the GSR gene
have been reported by 2022 [94]. Mutations in GSR appear to cause changes in the structure
and function of the GSR protein, which may be associated with obstructive heart defects
and hereditary anemia. Several mice with defects in the GSR gene have now been estab-
lished. The Gr1a1Neu mouse, which is generated by treating it with a mutagen, isopropyl
methanesulfonate, exhibits less than 10% GSR activity [95]. A frameshift in exon 6 results
in a premature stop codon in exon 7 and leads to the production of a dysfunctional GSR
protein [96]. Treatment with diquat, a redox cycling toxicant, causes a renal proximal tubule
injury [97], but an acute lung injury from continuous exposure to 95% oxygen is rather
alleviated in these mice [98]. GSR-KO mice have also been generated by the gene-targeting
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technique and found to be less sensitive to the effects of hyperoxia [99]. Since the upregula-
tion of TRX is observed, cytoprotective responses supported by the TRX system appear to
compensate for the GSR deficiency. Mice with a double knockout of GSR and thioredoxin
reductase-1 remain viable, but the continuous synthesis of GSH is required, probably due
to the inability to reduce GSSG [100]. Since Met fuel supports the survival of the double
knockout mice, the transsulfuration pathway coupled with Met metabolism may supply
Cys for the continuous synthesis of GSH.

2.5. GGT Responsible for γ-Glutamyl Peptide Metabolism on the Cell Surface

Hgt1p is a high-affinity GSH transporter in S. cerevisiae, but no orthologous gene
is known in mammals [17,101]. Accordingly, it is generally thought that GSH does not
enter cells in its native form. The γ-glutamyl moiety of GSH provides protection against
proteolytic degradation, and, hence, the removal of the γ-glutamyl moiety from GSH by
GGT is essential for the incorporation of the remaining Cys–Gly dipeptide or amino acids
after degradation by a dipeptidase in the extracellular milieu [102]. GGT on the cell surface
catalyzes either the hydrolysis or transfer of the γ-glutamyl moiety from GSH to amino
acids or peptides. Since the human genome contains several GGT-related genes along with
pseudogenes, a systematic nomenclature has been applied to the GGT gene family [103].
Circulating GSH in the bloodstream is rapidly degraded by GGT1 on the luminal surface
of the renal brush border membrane [104]. The increased expression of GGT is a well-
established biomarker for some malignant tumors. Whereas GGT is originally anchored
to the plasma membrane of cells, proteolytic cleavage increases the release of the active
enzyme, which enables its detection in blood by measuring the activity. Due to its clinical
significance, numerous studies have been performed on members of the GGT family from
the standpoints of genetics, protein chemistry, and enzymology [105].

GGT either removes a γ-glutamyl moiety by hydrolysis or transfers it to amino acids
or peptides, thus resulting in the formation of a variety of γ-glutamyl peptides [104]. The
brush border membrane in the kidney dominantly expresses GGT1, which is the best-
characterized form. After glomerular infiltration, GSH undergoes degradation by GGT1,
and the resulting Cys–Gly dipeptide or amino acids are largely taken up by the correspond-
ing transporters, which include the H+-coupled peptide transporter PEPT2 [106,107] and
neutral amino acid transporters (NAATs), such as ASCT1 and ASCT2 [31]. The physiologi-
cal benefit of transferring the γ-glutamyl moiety has long been a subject of debate. Given
the fact that Glu is toxic in the neuronal system, it has been speculated that transferring
a γ-glutamyl moiety rather than its release as Glu would decrease its toxic effect on neu-
rons [108]. Moreover, whereas GSH is incorporated at very low levels, there appear to be
transporters for γ-glutamyl peptides or receptors as described below.

In the brain, GGT7 is expressed by pericytes and perivascular astrocytes [109]. GGT7
is frequently downregulated in gastric cancer due to the methylation of the promoter
sequences of the gene [110]. GGT7 directly binds the mitophagy regulator RAB7, and
it is then translocated from the nucleus to the cytoplasm, which leads to mitophagy by
increasing its mediators/inducers. Consequently, the mitotic signaling of the mitogen-
activated protein kinase (MAPK) is suppressed. Thus, GGT7 appears to act as a tumor
suppressor. Consistent with this notion, glioblastoma patients with low levels of GGT7
expression show elevated levels of ROS and exhibit poor prognoses [111]. The expression
of GGT1 also appears to be involved in the determination of the sensitivity of glioblastoma
cells to cystine deprivation-induced ferroptosis in cases of high cell density [112]. Since the
results were obtained from the cell cultivation alone, an in vivo study would be required if
this regulation of ferroptosis by GGT1 is to be considered a target of cancer treatment.

Patients with a GGT deficiency show low GGT activity and develop glutathionuria
with increased plasma GSH levels as well as the presence of γ-Glu-Cys and Cys in the
urine [113]. A mutant mouse that has spontaneous dwg and dwg (Bayer) mutations in
GGT1 shows phenotypic abnormalities [114]. GGTenu1 mice with a point mutation within
the protein-coding region of GGT1 have been generated by treatment with N-ethyl-N-
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nitrosourea [115]. The phenotypes of the mutant mice are associated with glutathionemia,
glutathionuria, and growth retardation, which are partially rescued by a cysteine prodrug,
L-2-oxothiazolidine-4-carboxylate (OTZ) [116]. Genetically modified mice have been es-
tablished by the targeted disruption of GGT1 [117] or GGT5 [118]; however, no specific
abnormalities in the central neuronal system have been reported for these mice so far.

2.6. γ-Glutamylcyclotransferase Responsible for Intracellular GSH Degradation

The γ-glutamyl group is protective against the peptidase-mediated degradation of
GSH, but γ-glutamylcyclotransferase, which is now recognized as an intrinsic member
of the ChaC family of proteins, initiates its degradation by the removal of the γ-glutamyl
group [102]. ChaC1 and ChaC2 are involved in the cytosolic degradation of GSH with
a relatively high Km (~2 mM) by the hydrolytic removal of the γ-glutamyl moiety with
the production of 5-oxoproline and a Cys–Gly dipeptide [119]. Whereas the enzymatic
reaction is the same, ChaC1 shows an approximately 20-fold higher activity than that for
ChaC2 [102,120]. There are also differences in gene regulation; ChaC1 is upregulated by
stress, whereas ChaC2 is constitutively expressed.

The expression of ChaC1 is sustained at minimal levels but is induced upon amino acid
starvation and endoplasmic reticulum (ER) stress via an ATF4-CHOP cascade [121]. ChaC1
is also regarded as a potential marker for ferroptosis [122]. The induced expression of
ChaC1 is associated with the accelerated degradation of intracellular GSH, which may result
in the development of ferroptosis by suppressing the GPX4-meidated detoxification of
lipid peroxides [123]. Approximately 50 percent of early-age-at-onset cases of Parkinson’s
disease (PD) have been linked to bi-allelic mutations in genes encoding DJ-1, Parkin, and
PINK1. DJ-1 protects against the development of PD because a mutation in the gene
is the cause of autosomal recessive early-onset PD [124]. The knockout of DJ-1 results
in the upregulation in the expression of ChaC1, which indicates that DJ-1 is involved in
maintaining GSH by suppressing the expression of ChaC1 through inhibiting the activation
of the transcription factor ATF3 [125].

ChaC2 is highly enriched in undifferentiated human embryonic stem cells, and its
downregulation decreases the levels of GSH and blocks their self-renewal [126]. The knock-
down of ChaC1 restores the self-renewability of ChaC2-downregulated cells, suggesting that
ChaC2 competes with ChaC1 in the maintenance of GSH homeostasis. Thus, ChaC1 and
ChaC2 show the same enzymatic activity toward GSH, but they appear to compete in GSH
metabolism, i.e., ChaC1 depletes cellular GSH, but ChaC2 functions to maintain it. In terms
of tumors, the expression of ChaC2 is frequently downregulated in gastric and colorectal
cancers, suggesting that it is a tumor suppressor [127]. Meanwhile, breast cancer [128] and
hepatocellular carcinoma [129] patients with elevated ChaC2 show poor prognoses. It is
a rather general phenomenon that the antioxidant system suppresses tumorigenesis, but
the acquisition of the system tends to make tumors resistant to chemotherapy and become
more malignant.

2.7. Dipeptidase for Recruit of Cys from GSH Degradation Product

The removal of the γ-glutamyl moiety from GSH by GGT on the cell surface produces
a Cys–Gly dipeptide, which can be taken up by the peptide transporter PEPT2 expressed
in glia, but not in neurons of the brain [130] nor in the peripheral nervous system [131]. We
recently identified carnosine dipeptidase (CNDP) 2 as a protein that is elevated in primary
macrophages from an SLC7A11-KO mouse [132]. CNDP1 and 2 belong to a family of
dipeptidases for carnosine (β-alanyl-histidine) [133]. Whereas CNDP1 specifically degrades
carnosine, CNDP2 is more specific for the Cys–Gly dipeptide. The recycling of Cys from
Cys–Gly by CNDP2 would support GSH synthesis by supplying Cys, thereby suppressing
oxidative stress by promoting the activity of GPX. The knockout of CNDP2, however, did
not cause much change in the Cys–Gly dipeptidase activity, which suggests the dominant
presence of other enzymes with similar substrate specificities or compensation by other
enzymes that may not be specific to Cys–Gly dipeptide [132].



Int. J. Mol. Sci. 2023, 24, 8044 9 of 28

CNDP2 is upregulated in several tumors and appears to act as a tumor suppressor in
hepatocellular carcinomas [134] and in gastric cancer [135], which appears to be achieved
by stimulating MAPK, notably p38 and JNK, thereby inducing apoptosis. Meanwhile,
CNDP2 may stimulate the growth of colon cancer [136] and ovarian cancer cells [137],
suggesting tumorigenic action. When tumor cells gain the ability to overexpress CNDP2,
the elevation in GSH content would render tumor cells resistant against anticancer agents.
In this regard, the inhibition of CNDP2 activity appears to be beneficial for anticancer
therapy. For example, an inhibitor for CNDP2, ubenimex, also known as bestatin, is an
anticancer agent for adult acute nonlymphocytic leukemia. Hence, the anticancer effects of
ubenimex may be partly attributed to the inhibition of CNDP2 [138,139].

3. GSH Protects Cells against Stress through Multiple Pathways

GSH is ubiquitously present in cellular organelles and exhibits pleiotropic functions
that are largely associated with the sulfhydryl (SH) group in the Cys residue [140]. Super-
oxide radicals, which are produced by one-electron donation to molecular oxygen under
oxidative stress, are converted to hydrogen peroxide by SOD. Then, electron donation
from GSH to GPX effectively results in the reduction of cytotoxic peroxides [5]. GSH
protects proteins from oxidative damage and allows the native structure of proteins to be
maintained through the action of GRX [141]. The conjugation of xenobiotics with GSH,
which is catalyzed by the action of GST, accelerates their excretion [142].

3.1. Reductive Detoxification of Peroxides via GPX

The oxidation of GSH occurs by the direct reaction with oxidants, but this is not a very
efficient process. The reduction of peroxides to the corresponding alcohols is effectively
catalyzed by GPX, which results in GSSG [5]. Whereas certain other proteins, such as
catalase and peroxiredoxin, exhibit peroxidase activities, GPX is a dominant peroxidase
family that is made up of eight members in mammals. Because GPX is constitutively
active within cells and requires GSH other than substrate for activity, the supply of GSH
determines the GPX activity. GPX1 to GPX4 possess a selenocysteine (Sec) instead of a
Cys in their catalytic center (Figure 3). Replacing Sec with Cys decreases the catalytic
efficiency of this molecule by less than 1%. Whereas Sec-containing wild-type GPX4 is
capable of conferring resistance to irreversible overoxidation by peroxides [143], excessive
hydrogen peroxide inactivates GPX1 by oxidatively converting Sec to dehydroalanine
in human erythrocytes [144]. A diet with selenium deficiency results in a decrease in
their activity due to the impaired synthesis of Sec. Whereas GPX largely functions to
reduce hydrogen peroxides by means of the donation of an electron from GSH, GPX4
reduces phospholipid hydroperoxides to their alcohol forms and, hence, can suppress
ferroptosis [27,40]. Since ferroptosis is considered to occur under a variety of physiological
and pathological conditions, the suppression of lipid peroxidation by GPX4 has attracted
much attention [145,146]. The genetic ablation of GPX4 causes embryonic lethality in mice,
which can be overcome by vitamin E (α-tocopherol) supplementation [147], whereas this is
not the case in mice lacking other GPX genes. Peroxiredoxin (PRDX) is another large family
of proteins with peroxidase activity. PRDX family members mostly exhibit thioredoxin-
dependent peroxidase activity, whereas PRDX6 exceptionally exhibits GSH-dependent
peroxidase activity towards lipid peroxides. Thus, the enzymatic properties of PRDX6
are similar to those of GPX4, but there is essentially no similarity in their structure [148].
Since numerous studies have reported on the roles of GPX in neuronal systems, readers
are referred to other review articles for details concerning the reactions and physiological
significance of the GPX family [5,146,149]. The decline in the GPX activity increases
peroxides, which, in the presence of iron, results in the production of hydroxyl radicals
that cause oxidative DNA damage. Then, cells with DNA damage may undergo tumor
development [27]. Oxidative stress-induced tumorigenesis is a major research subject in
itself and is discussed repeatedly, so we will not discuss it further in this paper.
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Figure 3. GSH-dependent reduction of peroxides by glutathione peroxidase (GPX). Selenocysteine
(Sec) constitutes the catalytic center of GPX1 to GPX4, among GPX family members. The reaction
of GPX with peroxides converts SeH to SeOH in the Sec residue, which transiently leads to glu-
tathionylation. Reaction of another GSH regenerates SeH and releases GSSG. Excessive hydrogen
peroxide converts Sec to dehydroalanine, leading to permanent inactivation of GPX1. Accumulation
of phospholipid hydroperoxides causes ferroptosis, whereas GPX4 specifically reduces them to the
alcohol form, leading to cell survival. LOOH, lipid hydroperoxide; LOH, lipid alcohol.

3.2. Rescuing Proteins from Oxidative Modification through GRX

Whereas SH groups can exist in four oxidized states: disulfide, sulfenic acid, sulfinic
acid, and sulfonic acid, under an oxidative environment, the disulfide and sulfenic acid
forms can generally be reduced by a biological redox system [16]. Cys–SH groups of
proteins can form mixed disulfides with their own SH group or with SH groups from other
molecules under oxidizing conditions (Figure 4A). Since GSH is the most abundant thiol, a
mixed disulfide with GSH, called S-glutathionylation, occurs preferentially. This modifica-
tion either inhibits or activates the enzyme, depending on the position of the Cys residue
within the protein [6]. Approximately 1% of total glutathione is present as the mixed disul-
fide form with proteins in the normal liver, and the amount of protein-bound glutathione
reaches 20–50% upon an oxidative insult [150]. The glutathione thiyl radial and GSNO
form the S-glutathionylation of proteins in an accelerated manner. S-glutathionylation
proceeds preferentially under oxidative conditions, but is not always harmful, because the
formation of a mixed disulfide prevents further oxidation of the SH group [151]. GRX has
been identified as a GSH-dependent reductase of disulfides in ribonucleotide reductase
during its catalytic cycle [152,153] and, hence, acts as an alternate electron donor for TRX [6].
Because S-glutathionylation protects Cys–SH groups in proteins from further oxidation and
since they can be reduced back, this post-translational modification is regarded as a type
of protective mechanism for essential SH groups in proteins under oxidative stress [141].
GRX can reduce proteins with intrinsic disulfide bonds or S-glutathionylated proteins back
to the native conformation by employing GSH, which releases GSSG. Mammals produce
two GRXs, GRX1 and GRX2 [141,153]. Whereas GRX1 resides mainly in the cytoplasm, it
can be translocated into the nucleus upon certain stimuli. GRX2 is present in two forms,
namely, a mitochondrial and a nuclear GRX.
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Figure 4. Scheme for the conjugation of glutaredoxin (GRX) and GSH. (A) The upper scheme of the
reaction shows the reduction of oxidized proteins, and the lower scheme shows GRX accepting the
GSH moiety from glutathionylated proteins. When the protein with a disulfide bond reacts with
reduced GRX, the protein is reduced instead and GRX is oxidized. Upon reaction with GSH, one
cysteine (Cys) residue of the oxidized GRX becomes an SH group and that of the other Cys becomes
glutathionylated. Reaction of glutathionylated GRX with another GSH results in fully reduced
GRX and GSSG. (B) Xenobiotics and hydrophobic metabolite (X) first undergo hydroxylation by
oxygenases such as cytochrome P450 oxidases (CYP). Then, glutathione S-transferase (GST) catalyzes
GSH conjugation. Resulted glutathione conjugates are exported via multidrug resistance regulator
(MRP). ROS, reactive oxygen species.

Redox regulation by the GSH/GRX system plays a pivotal function in the central ner-
vous system [154,155]. The excitatory amino acid L-β-N-oxalylamino-L-alanine (L-BOAA)
causes corticospinal neurodegeneration in humans and the loss of GSH in mice. The
mitochondrial electron transfer complex (ETC)-I in the motor cortex is selectively lost
by L-BOAA, but GRX appears to protect ETC-I from degradation [156]. Estrogen may
be involved in preserving higher levels of GRX in certain regions of the central nervous
system and, in female mice, protects them against mitochondrial dysfunction caused by
L-BOAA [157]. GRX1 helps to maintain mitochondrial integrity and prevents the loss in
mitochondrial membrane potential caused by L-BOAA [158]. 6-Hydroxydopamine is easily
oxidized and results in the formation of the quinone form, which is a highly reactive species
and a powerful neurotoxin [159]. Both the TRX and the GRX systems directly mediate
the reductive detoxification of 6-hydroxydopamine quinone and protect neurons from
dopamine-induced cell death.

GRX1 reportedly regulates the protein levels of DJ-1 in the midbrain of mice [160]. The
mitochondrial form of GRX2 as well as TRX1 contributes to neuronal integrity during hy-
poxia [161] and protects neuronal cells against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-mediated mitochondrial dysfunction [162]. The downregulation of GRX1 leads
to dopaminergic degeneration and PD-relevant motor deficits in mice [163]. Exogenously
added cell-permeable PEP-1-GLRX1 also suppresses the dopaminergic neuronal cell death
induced by MPTP [164]. GRX2 may also be involved in the function of mammalian
dopaminergic cells and oligodendrocytes through the biogenesis of [Fe–S] clusters [165,166].
Increased levels of GRX1 are associated with the early onset of PD in patients, which
suggests that upregulated GRX1 promotes neuroinflammation and leads to the devel-
opment of PD [167]. However, other studies have reported decreased levels of GRX in



Int. J. Mol. Sci. 2023, 24, 8044 12 of 28

PD patients [168]. Given the roles of GRX in protein thiol homeostasis, the upregulation
of GRX1 is rather considered to be result of a compensatory reaction against oxidative
protein modification.

The oxidation of F-actin caused by amyloid-β (Aβ) is diminished by GRX1 in Alzheimer’s
disease (AD) model mice [169]. A decrease in GRX1 levels may lead to synaptic dysfunction
during AD pathogenesis by directly disrupting the F-actin architecture in spines. On the
contrary, Aβ may also exert neurotoxicity in AD through oxidizing GRX1 or TRX1 [170].
In familial ALS patients, the aggregation of mutant SOD1 is a proposed cause for the
degeneration of motoneurons. Whereas the overexpression of GRX1 increases the solubility
of mutant SOD1 in the cytosol, this does not alleviate mitochondrial damage in SH-SY5Y
cells. However, the overexpression of GRX2 increases the solubility of mutant SOD1
in mitochondria and preserves mitochondrial function, which results in neuronal cells
being protected from apoptosis [171]. Thus, GRX, with the help of GSH, can prevent the
development of major neurodegenerative diseases such as PD, AD, and ALS.

3.3. Glutathione Conjugation in the Detoxification of Xenobiotics and in the Production of
Bioreactive Compounds

Conjugation with GSH, glucuronate, and sulfate are catalyzed by GST, UDP-glucuronate
transferase, and sulfotransferase, respectively, and constitute three major detoxification
systems for xenobiotics and intrinsic compounds that are highly hydrophobic [172,173].
Oxygen molecules are usually introduced into hydrophobic compounds by the action of
cytochrome P450 oxidases (CYP) before glutathione conjugation by GST (Figure 4B). In
addition to GSH conjugation, GST also exhibits GSH-dependent peroxidase activity, albeit
with much less efficiency compared to GPX. The mouse has 21 GST genes, and many of
these genes are genetically knocked out, as reported in previous studies [174–176]. Many
polymorphisms are found in GST genes that are likely risk factors for PD [177]. Whereas
glucuronidation and sulfate conjugation are generally thought to have largely beneficial
effects, excessive GSH conjugation may cause redox imbalance and damage cells due to the
consumption of GSH, as is typically observed in the case of livers with an acetaminophen
overdose [82].

On the other hand, GSH is used as a building block or cysteine donor for the synthesis
of cysteinyl leukotrienes (CysLT) that include LTC4, LTD4, and LTE4 (Figure 5A). CysLT
is the active component of a slow-reacting substance that causes anaphylaxis, the contrac-
tion of smooth muscle, and an increase in vascular permeability [178]. CysLT is also an
inflammatory lipid mediator that is involved in the pathophysiology of respiratory diseases
and may also be associated with defects in the central nervous system, including cerebral
ischemia, epilepsy, and AD [179]. Regarding the synthetic pathway, 5-lipoxygenase first
catalyzes the formation of an arachidonate epoxide, and GST family members (MGST2,
3, and GSTM4), as well as LTC4 synthetase, then catalyze the conjugation of GSH to the
epoxide [180]. After their secretion from cells, GGT1 or GGT5 hydrolytically removes the
γ-glutamyl group of LTC4, which results in the formation of LTD4. Extracellular peptidases
finally catalyze the hydrolytic removal of the Gly unit from LTD4, and this results in the pro-
duction of LTE4. CysLT acts through G protein-coupled receptor subtypes that are referred
to as CysLTR-1 and CysLT-2 and are present on neurons, astrocytes, microglia, and vascular
endothelial cells in the brain [181]. Moreover, proteins, such as G protein-coupled receptor
17 (GPR17), G protein-coupled receptor 99 (GPR99), and peroxisome proliferator-activated
receptor-γ (PPARγ), may also act as receptors for CysLT. Since CysLT is also involved in
inflammatory responses, its excessive production may result in neuronal tissue damage.
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Figure 5. GSH as a building block for some bioreactive compounds. (A) GSH is conjugated to
leukotriene (LT) A4 by the catalytic action of LTC4 synthetase or some other glutathione S-transferase
(GST) isozyme. γ-Glutamyl transferase (GGT) hydrolytically removes the γ-glutamyl moiety from
LTC4, which enables access to a peptidase that removes the glycine (Gly) unit from LTC4 and results
in LTD4 formation. (B) Dopamine is oxidized to dopaquinone by oxidases such as cytochrome P450
(CYP). After conjugation with GSH, 5-S-cysteinyl dopamine is produced by the action of similar
enzymatic process to those for LTD4 synthesis.

3.4. GSNO in Nitric Oxide Signal Transduction

Nitric oxide (NO) that is produced through both enzymatic reactions and non-enzymatic
reactions exerts a variety of beneficial functions, including the relaxation of the vasculature
and the modulation of neurotransmission, whereas the presence of abundant levels may
impair the redox balance [182]. Whereas the iron ion, notably ferrous iron, is the preferred
target of NO, SH groups in amino acids and proteins are also reactive and are targets, which
results in the formation of S-nitrosothiol (SNO). Since reactive SH tends to play a primary
role in a redox reaction that includes TRX and the ubiquitin system [183], and non-protein
thiols, including coenzyme A [184], S-nitrosylation is a pivotal post-translational modifica-
tion that is involved in cellular signaling. Excessive nitrosylation of target proteins may
cause dysfunction, aberrant activation of physiological processes, and ultimately cell death.
S-Nitrosylation occurs in many different PD-related proteins, including peroxiredoxin 2,
XIAP, and PDI [185]. The balance between S-nitrosylation and denitrosylation determines
whether SNO acts as a signaling mechanism or causes nitrosative stress [186].

GSNO is dominantly produced due to the abundant presence of GSH in cells and may
act as the donor for trans-nitrosylation reactions [187]. GSNO is transported out of cells
via MRP [88]. GSNO-reducing activities, which are intrinsic to formaldehyde dehydroge-
nase (GSNOR), class III alcohol dehydrogenase (ADH5), and TRX/thioredoxin reductase,
play pivotal roles in moderating GSNO levels [188]. ADH5 appears to be a major GSNO
reductase that acts in an NADH-dependent manner [189]. Whereas carbonyl reductase 1
(CBR1) preferentially reduces GSNO [190,191], a form of aldehyde reductase AKR1A1
also exerts GSNO reductase activity with the formation of glutathione-sulfinamide deriva-
tives [187]. A GSNOR deficiency induces the S-nitrosylation of focal adhesion kinase 1
(FAK1), which results in the enhanced autophosphorylation of FAK1 and tumorigenicity
being sustained [192]. Since detailed information concerning the action of S-nitrosylation is
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not the focus of this review, readers are directed to recent review articles that are associated
with neurodegenerative diseases [193,194].

3.5. GSH Status Associated with Neuronal Diseases

We briefly revisit the relationship between major neurological diseases and GSH status
in this review. A GSH deficiency is associated with various neurological disorders, includ-
ing neurodegenerative diseases, ischemic disease, schizophrenia, and tumors [59,195–197].
Ferroptosis, which is associated with declined GSH, is assumed to be involved in neu-
rodegenerative diseases, including AD, PD, and ischemic disease [195,197,198]. Because
polyunsaturated fatty acids (PUFA) are rich in the brain and are susceptible to being perox-
idized, GPX4 is predominantly present and protects neurons from ferroptosis. Here we
outline three typical types of neurodegenerative diseases, AD, PD, and ALS, in association
with GSH metabolism.

AD is the most common neurodegenerative disease. Aggregation of the Aβ peptide
eventually causes AD by inducing neuronal cell death. The hallmarks of AD include
elevated ROS levels and the enhanced production of lipid peroxidation products, de-
creases in GSH and GPX4, and the accumulation of iron, which are also hallmarks of
ferroptosis [199,200]. The administration of desferrioxamine, an iron chelator, to AD pa-
tients reportedly leads to a significant reduction in the rate of decline of daily living skills,
suggesting that sustained iron chelation may be beneficial in slowing the progression of
this disease [201]. The administration of α-tocopherol, which suppresses ferroptosis by
inhibiting lipid peroxidation, was also reported to moderate AD in patients [202]. More-
over, treatment with NAC was reported to prevent cognitive impairment in an AD model
mouse that was induced by intracerebroventricularly administered streptozotocin [203].
The injection of Aβ oligomers into the CA3 hippocampal region of the rat brain triggers
synaptotoxic effects that are represented by abnormal Ca2+ signals and mitochondrial
dysfunction, whereas feeding NAC for 3-weeks prior to Aβ injections prevented these dele-
terious effects [204]. It is therefore considered likely that ferroptosis is related to the onset
or exacerbation of AD, and that the Cys–GSH axis exerts protective action in preventing
neuronal cell death. Using Drosophila models, a close correlation between changes in GSH
redox potential with AD disease onset caused by Aβ and progression was observed [205].

Dopamine is a pivotal neurotransmitter, and its deficiency is a cause for PD, which is
also a common neurodegenerative disease, next to AD. Progressive dopaminergic neuronal
loss in the substantia nigra pars compacta is the characteristic pathology of PD patients.
Since iron accumulation is associated with PD, ferroptosis as well as oxidative stress are
also considered to be possible causes [206–208]. Dopamine can be converted into dopamine-
o-quinone in the oxidative pathway, which is efficiently catalyzed by the presence of metal
ions such as iron, copper, and manganese, as well as by the action of ROS-producing
enzymes, such as xanthine oxidase, cytochrome P450, prostaglandin H synthase, and
lactoperoxidase [209]. The metabolism of GSH in association with dopamine is deeply
involved in this fatal disease [210,211]. Several enzymes, including GST family members
and LTC4 synthase, catalyze the nucleophilic addition of GSH to dopamine-o-quinone,
which results in the formation of 5-S-glutathionyl dopamine (Figure 5B). MRP then appears
to export 5-S-glutathionyl dopamine [86]. GGT that is present on the extracellular surface
of astrocytes then catabolizes the removal of the γ-glutamyl group from 5-S-glutathionyl
dopamine [212]. The Gly unit is finally removed by the action of an extracellular peptidase.
The resulting Cys-dopamine is toxic to neurons in the substantia nigra pars compacta and
may lead to neuronal death. In addition to the neuronal toxicity of these compounds,
Cys/GSH consumption may impair GPX4 function and predispose neurons to ferroptosis.
Similar processing occurs on glutathione-conjugated acetaminophen, and the resulting
cysteinyl-acetaminophen is reportedly a major contributor to renal toxicity [213].

Despite the fact that it is much less widespread compared to AD and PD, ALS affects
motor neurons in the cerebral cortex, brainstem and spinal cord and leads the death rate
due to respiratory failure within five years. Oxidative cell damage also appears to be
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involved in the development of ALS, and, hence, the GSH redox system is considered to
exert a beneficial action [214]. In fact, the modification of the Cys residue in either GSH or in
proteins occurs and may be involved in the pathogenesis of ALS [215]. Whereas the signifi-
cance of the Cys–GSH axis has been implied, clinical trials that include the administration
of GSH, Cys or procysteine have not been successful. Meanwhile, the administration of
edaravone, a radical scavenger, to rats was reported to alleviate spinal cord injury [216].
Edaravone is now a licensed radical-scavenging drug for the treatment of ALS as well
as strokes [217,218]. These collective results suggest that radical scavenging rather than
fueling the Cys–GSH axis might be more advantageous in slowing the progression of ALS.

3.6. Production of a Variety of γ-Glutamyl Peptides by Means of γ-GCS and GGT

A variety of peptides and amino acids, which may not always be composed of pro-
teinous amino acids, are present in blood plasma and tissues including the brain (Figure 6).
Taurine is synthesized from Cys with cysteine dioxygenase as the rate-limiting enzyme [219].
Astrocytes predominantly produce taurine, which exerts pleiotropic actions in the central
nervous system [220]. The levels of taurine and 2-hydroxybutyrate, a metabolite of the
transsulfuration pathway, are elevated in plasma and cells from sporadic ALS patients,
suggesting that the pathogenesis of ALS is associated with metabolic stress [221]. Because
taurine does not contain a carboxyl group, it presents largely in the free form and consti-
tutes the second amino acid in dipeptides. γ-Glutamyl taurine (γ-Glu-Tau) is produced
in the brain, and is reportedly mediated by GGT [222]. In fact, a variety of reactive pep-
tides that include γ-glutamyl peptides have been reported to be present in the brain. We
recently established a liquid chromatography–mass spectrometry (LC–MS)-based assay
method that can provide structural information on the products of the enzymatic reac-
tion of γ-GCS and GGT. Our results indicate that, despite the high Km of taurine for the
γ-GCS reaction, its abundant presence indeed also enables the generation of γ-Glu-Tau
by γ-GCS [223,224]. The resulting γ-Glu-Tau may interact with excitatory aminoacidergic
neurotransmission [225] and exert antiepileptic actions [226], although the nature of its
function remains ambiguous [227]. GGT and γ-GCS appear to be the enzymes that are
responsible for the production of various γ-glutamyl peptides, although the amount and
diversity of γ-glutamyl peptides are small in the normal mouse brain compared to the liver
and kidney [224]. These observations imply that the concentrations of Cys are properly
maintained in the brain under healthy conditions. Aberrant syntheses of γ-glutamyl pep-
tides other than GSH by γ-GCS and/or GGT reactions can also be a predictive marker for
the condition of the central nervous system in cases of a Cys/GSH deficiency.

Attempts to elucidate the roles of γ-glutamyl peptides in the brain have just begun,
and available information concerning them is limited. We therefore discuss this issue using
the liver as an example because it is the most extensively investigated organ. During the
production of Cys through the transsulfuration pathway, 2-oxobutyrate is produced as a
result of the CSE-catalyzed cleavage of cystathionine [228]. The resulting 2-oxobutyrate
is converted into 2-aminobutyrate (2AB) by transferring an amino group from Glu via
aminotransferases. Because 2AB is also a preferred substrate for γ-GCS next to Cys, γ-Glu-
2AB is produced under conditions of a Cys insufficiency. Whereas γ-GCS is suppressed by
physiological levels of GSH via a feedback mechanism, the consumption of GSH stimulates
γ-GCS activity [65]. When γ-GCS utilizes 2AB as the acceptor substrate, γ-Glu-2AB is
produced and is then converted to γ-Glu-2AB-Gly by the GSS reaction, which is denoted
as ophthalmic acid (OPT) [229]. The production of excess levels of OPT is observed in
the mouse liver under conditions of a Cys deficiency, typically upon an acetaminophen
overdose [230]. Starvation of mice causes an insufficient supply of amino acids, including
Cys and Met, which also leads to an increase in OPT production in the blood plasma [231].
Intriguingly, several types of γ-glutamyl peptides were reported to be elevated in the blood
plasma of patients who are suffering from liver diseases [232]. Since the liver is a central
organ for amino acid metabolism, hepatocytes may suffer oxidative stress and result in the
consumption of both GSH and Cys. It is conceivable that, under these conditions, activation
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of the transsulfuration pathway produces 2-oxobutyrate along with Cys. However, Cys
is rapidly recruited for GSH synthesis, which consequently stimulates the utilization of
2AB for the production of OPT. NAC is generally used in the treatment of an acute liver
injury caused by an acetaminophen overdose. For similar reasons, NAC or its lipophilic
derivatives increase the levels of cellular Cys and, consequently, GSH, which then may
exert therapeutic effects on neuronal diseases [233].

Figure 6. Production, metabolism, and cellular signaling of γ-glutamyl peptides. Due to the diversity
of the nervous system, the metabolic pathways shown in this diagram are only examples of a certain
central nervous system and may not be applicable to all neuronal cells. When Cys is present at suffi-
cient levels, GSH is produced. However, under a Cys insufficiency, high levels of 2-aminobutryrate
(2AB) are synthesized through the transsulfuration pathway, followed by a transaminase reaction,
and it becomes a substrate for γ-GCS, which may lead to the production of ophthalmate (OPT). When
other amino acids, including taurine, are used instead of Cys, a variety of γ-glutamyl peptides such as
γ-Glu-Tau are produced by γ-GCS reactions inside cells. γ-Glutamyl transferase (GGT) on astrocytes
either hydrolytically removes the γ-glutamyl moiety of extracellular GSH and γ-glutamyl peptides
or transfers their γ-glutamyl moiety to other amino acids (AAs) to generate new γ-glutamyl peptides.
The resultant Cys–Gly dipeptide can be hydrolyzed to its constituent amino acids by the action of a
dipeptidase. The function of the calcium-sensing receptor (CaSR) may be modulated by the binding
of these γ-glutamyl peptides. AAs, any amino acid; DA, dopamine. γ-GCS, γ-glutamyl-cysteine syn-
thetase; GSS, glutathione synthetase; ChaC, γ-glutamylcyclotransferase; MRP, multidrug resistance
regulator; CNDP2, carnosine dipeptidase 2; EAAC1, excitatory amino acid carrier 1; GPX, glutathione
peroxidase; DA, dopamine; Cys-DA, cysteinyl-dopamine; xCT, cystine transporter.

Ferroptosis is reportedly suppressed by producing not only GSH but also other γ-
glutamyl peptides by γ-GCS [108]. The anti-ferroptotic effects of the production of γ-
glutamyl peptides other than GSH cannot be explained by the reductive detoxification
of lipid peroxides via GPX4. Because the inhibition of γ-glutamyl peptide synthesis ele-
vates cellular Glu levels, the stimulation of the Glu metabolism appears to be the likely
mechanism for executing ferroptosis under a Cys insufficiency. This notion is consistent
with findings that elevations in electrochemical potential in mitochondria are associated
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with ferroptosis induced by Cys deprivation [234]. Because actively proliferating cells are
more sensitive to ferroptotic stimuli, the activation of Glu-centered carbon metabolism
likely produces more radical species, which may stimulate lipid peroxidation reactions
and consequent ferroptosis [235]. Meanwhile, the cysteine-sparing effect of taurine has
been proposed in hepatocytes [236], although taurine cannot directly compensate for a Cys
deficiency. These collective data can also be interpreted to indicate that the formation of
γ-Glu-Tau and other γ-glutamyl peptides by either intracellular γ-GCS or extracellular
GGT prevents the excitatory cytotoxicity caused by excessive levels of Glu.

3.7. Calcium-Sensing Receptor as a Target of γ-Glutamyl Peptides

In addition to GSH, many γ-glutamyl peptides have been detected, and the γ-glutamyl
moiety of N-terminal amino acids stabilizes them. The physiological significance of this
peptide-specific modification has long been debated. The pharmacological benefit of sup-
plementation of γ-Glu-Cys has recently been proposed under pathological conditions, such
as strokes [237], inflammation [238–241], ALS [242], and ischemia/reperfusion injury [243].
The pharmacological action of γ-Glu-Cys appears to be largely attributable to an increased
production of GSH [244–246]. Although the direct donation of an electron from γ-Glu-Cys
to GPX1 has been also demonstrated [247], the presence of GSS mostly converts γ-Glu-Cys
to GSH. Therefore, the use of intrinsic γ-Glu-Cys as the substrate for GPX1 may occur in
limited organs such as the kidney, which uniquely contains four times more γ-Glu-Cys
than GSH [224].

Extracellular levels pf GSH, GSSG, and mixed disulfides between Cys and GSH
(CySSG) can modulate the function of the G-protein-coupled calcium-sensing receptor
(CaSR) [248,249]. CaSR is systemically expressed, including in the brain and intestine, and
a primary function of CaSR appears to be maintaining extracellular calcium ion levels
within a physiological range, 1.1–1.3 mM, by regulating the secretion of the parathyroid
hormone [250]. CaSR is abundantly expressed in the circumventricular regions and sub-
stantially within the hippocampus, hypothalamus, and striatum. Concerning the roles of
CaSR in the neuronal regulation of nutrition, several γ-glutamyl peptides appear to bind
CaSR. The extracellular domain of this protein contains a binding pocket for GSH-related
compounds [249]. The allosteric activation of CaSR by γ-Glu-Cys was reported to suppress
inflammation in colitis model mice [238]. CaSR expressed within the gastrointestinal tract
plays roles as a mediator of “kokumi taste” modulation and is responsible for regulating
the release of dietary hormones in response to amino acids in the intestine [251,252].

The roles of CaSR in neurons reportedly include neuronal growth, migration, differen-
tiation, and neurotransmission [250]. It has been proposed that CaSR has a critical role in
the central neuronal system under pathological conditions, such as ischemia, AD, and in
neuroblastomas [253]. The expression of CaSR in inflammatory cells may extend its roles to
neuroinflammation [254]. Since soluble Aβ reportedly binds CaSR and leads to neuronal
inflammation and cell death [255,256], GSH or other related peptides may be able to exert
protective action in the neuronal system through modulating the function of CaSR. Some of
the γ-glutamyl peptides that are produced through either the GSH-synthesizing pathway
or the GGT-mediated transfer of a γ-glutamyl group may play roles in calcium homeostasis
in the neuronal system via modulating CaSR.

4. Future Perspectives

GSH exerts pleiotropic actions in the central nervous system as well as other tissues,
and its deficiency is associated with the development of various diseases, which include
neurological diseases, as discussed and listed in Table 1. In addition to the synthesis
and degradation of GSH, γ-GCS and GGT participate in the production of a variety of γ-
glutamyl peptides. Whereas their usefulness as a biomarker for disease has been suggested,
the molecular mechanism responsible for the function of γ-glutamyl peptides has remained
vague. Recent advances in this field have gradually clarified this issue, and the functional
regulation of CaSR is one of them. Thus, the usefulness of some γ-glutamyl peptides has
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actually been proposed, and the elucidation of the molecular mechanisms associated with
these peptides may extend their applications.

Table 1. A list of cited literatures on GSH in relationship with representative neuronal diseases.

Disease Description on GSH and Related Subjects Ref.

Alzheimer’s disease (AD)
Overviewing roles of glutathione function [19]
Possible involvement of ferroptosis [199–201]
Protection by glutaredoxin [169,170]
Investigation of protective roles of vitamin E [202]
Protection by N-Acetylcysteine [204]
Roles of the calcium-sensing receptor (CaSR) [255,256]

Parkinson’s disease (PD)
Reviewing roles of glutathione function [177,185,211]
Possible involvement of ferroptosis [206–208]
Toxic roles of dopamine [209,210,212]
Roles of DJ-1 in association with glutaredoxin [124,160]
MAPK and apoptosis signaling [164]
Roles of glutaredoxin [160,165,167,168]

Amyotrophic lateral
sclerosis (ALS)

Protection by glutathione [214]
Cysteine modifications in the pathogenesis [215,221]
Protection by edaravone [217,218]
Involvement of ferroptosis [49]
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