Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (384)

Search Parameters:
Keywords = β-CTX

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2130 KiB  
Article
Isolation of ESBL-Producing Enterobacteriaceae in Food of Animal and Plant Origin: Genomic Analysis and Implications for Food Safety
by Rosa Fraccalvieri, Stefano Castellana, Angelica Bianco, Laura Maria Difato, Loredana Capozzi, Laura Del Sambro, Adelia Donatiello, Domenico Pugliese, Maria Tempesta, Antonio Parisi and Marta Caruso
Microorganisms 2025, 13(8), 1770; https://doi.org/10.3390/microorganisms13081770 - 29 Jul 2025
Viewed by 301
Abstract
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food [...] Read more.
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food samples, including both raw and ready-to-eat products, was analyzed for the presence of ESBL-producing Enterobacteriaceae using chromogenic selective agar. Antibiotic resistance in the isolated strains was assessed using conventional methods, while whole-genome sequencing was employed to predict antimicrobial resistance and virulence genes. Results: The overall occurrence of ESBL-PE strains was 2.8%, with the highest contamination in raw meat samples (10%). A total of 31 multidrug-resistant (MDR) strains was isolated, mainly Escherichia coli, followed by Klebsiella pneumoniae, Salmonella enterica, and Enterobacter hormaechei. All strains exhibited high levels of resistance to at least four different β-lactam antibiotics, as well as to other antimicrobial classes including sulfonamides, tetracyclines, aminoglycosides, and quinolones. Whole-genome sequencing identified 63 antimicrobial resistance genes, with blaCTX-M being the most prevalent ESBL gene. Twenty-eight (90%) isolates carried Inc plasmids, known vectors of multiple antimicrobial resistance genes, including those associated with ESBLs. Furthermore, several virulence genes were identified. Conclusions: The contamination of food with ESBL-PE represents a potential public health risk, underscoring the importance of the implementation of genomic surveillance to monitor and control the spread of antimicrobial resistance. Full article
(This article belongs to the Special Issue Food Microorganisms and Genomics, 2nd Edition)
Show Figures

Figure 1

21 pages, 12045 KiB  
Article
Combating Environmental Antimicrobial Resistance Using Bacteriophage Cocktails Targeting β-Lactam-Resistant High-Risk Clones of Klebsiella pneumoniae and Escherichia coli in Wastewater: A Strategy for Treatment and Reuse
by María D. Zapata-Montoya, Lorena Salazar-Ospina and Judy Natalia Jiménez
Water 2025, 17(15), 2236; https://doi.org/10.3390/w17152236 - 27 Jul 2025
Viewed by 443
Abstract
Wastewater is a hotspot for the spread of antimicrobial resistance (AR); therefore, bacteriophages offer a promising biocontrol alternative to overcome the limitations of conventional disinfection. This study evaluated the efficacy of bacteriophages and cocktails for the biocontrol of carbapenem-resistant Klebsiella pneumoniae (CR-Kp [...] Read more.
Wastewater is a hotspot for the spread of antimicrobial resistance (AR); therefore, bacteriophages offer a promising biocontrol alternative to overcome the limitations of conventional disinfection. This study evaluated the efficacy of bacteriophages and cocktails for the biocontrol of carbapenem-resistant Klebsiella pneumoniae (CR-Kp) (CG258 and ST307) and Escherichia coli producers of extended-spectrum β-lactamases (ESBL-Ec) (ST131) in simulated wastewater. A synthetic wastewater matrix was prepared in which bacterial viability and bacteriophage stability were assessed for 72 h. CR-Kp or ESBL-Ec strain were treated with individual bacteriophages or phage-cocktails (dosed in different ways) and bacterial loads were monitored for 54 h. The Klebsiella phages FKP3 and FKP14 eliminated 99% (−2.9 Log) of CR-Kp-CG258 at 54 h, and FKP10 reduced 99% (−2.15 Log) of the CR-Kp-ST307 strains. The Klebsiella phage-cocktail in a single dose reduced to 99.99% (−4.12 Log) of the CR-Kp-CG258 at 36 h. Coliphage FEC1 reduced to 2.12 Log (99%) of ESBL-Ec-blaCTX-M-G9, and FEC2 and FEC4 reduced approximately 1 Log (90%) of ESBL-Ec-blaCTX-M-G9 and blaCTX-M-G1. The coliphage cocktail increased the reduction up to 2.2 Logarithms. This study provides evidence supporting the use of bacteriophage cocktails for the control of resistant bacteria in wastewater, a sustainable intervention to mitigate the spread of AR and support water reuse safety. Full article
Show Figures

Graphical abstract

14 pages, 384 KiB  
Article
Outbreak Caused by VIM-1- and VIM-4-Positive Proteus mirabilis in a Hospital in Zagreb
by Branka Bedenić, Gernot Zarfel, Josefa Luxner, Andrea Grisold, Marina Nađ, Maja Anušić, Vladimira Tičić, Verena Dobretzberger, Ivan Barišić and Jasmina Vraneš
Pathogens 2025, 14(8), 737; https://doi.org/10.3390/pathogens14080737 - 26 Jul 2025
Viewed by 287
Abstract
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of [...] Read more.
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of P. mirabilis emerged due to the production of carbapenemases, mostly belonging to Ambler classes B and D. Here, we report an outbreak of infections due to carbapenem-resistant P. mirabilis that were observed in a psychiatric hospital in Zagreb, Croatia. The characteristics of ESBL and carbapenemase-producing P. mirabilis isolates, associated with an outbreak, were analyzed. Materials and methods: The antibiotic susceptibility testing was performed by the disk-diffusion and broth dilution methods. The double-disk synergy test (DDST) and inhibitor-based test with clavulanic and phenylboronic acid were applied to screen for ESBLs and p-AmpCs, respectively. Carbapenemases were screened by the modified Hodge test (MHT), while carbapenem hydrolysis was investigated by the carbapenem inactivation method (CIM) and EDTA-carbapenem-inactivation method (eCIM). The nature of the ESBLs, carbapenemases, and fluoroquinolone-resistance determinants was investigated by PCR. Plasmids were characterized by PCR-based replicon typing (PBRT). Selected isolates were subjected to molecular characterization of the resistome by an Inter-Array Genotyping Kit CarbaResisit and whole-genome sequencing (WGS). Results: In total, 20 isolates were collected and analyzed. All isolates exhibited resistance to amoxicillin alone and when combined with clavulanic acid, cefuroxime, cefotaxime, ceftriaxone, cefepime, imipenem, ceftazidime–avibactam, ceftolozane–tazobactam, gentamicin, amikacin, and ciprofloxacin. There was uniform susceptibility to ertapenem, meropenem, and cefiderocol. The DDST and combined disk test with clavulanic acid were positive, indicating the production of an ESBL. The MHT was negative in all except one isolate, while the CIM showed moderate sensitivity, but only with imipenem as the indicator disk. Furthermore, eCIM tested positive in all of the CIM-positive isolates, consistent with a metallo-β-lactamase (MBL). PCR and sequencing of the selected amplicons identified VIM-1 and VIM-4. The Inter-Array Genotyping Kit CarbaResist and WGS identified β-lactam resistance genes blaVIM, blaCTX-M-15, and blaTEM genes; aminoglycoside resistance genes aac(3)-IId, aph(6)-Id, aph(3″)-Ib, aadA1, armA, and aac(6′)-IIc; as well as resistance genes for sulphonamides sul1 and sul2, trimethoprim dfr1, chloramphenicol cat, and tetracycline tet(J). Conclusions: This study revealed an epidemic spread of carbapenemase-producing P. mirabilis in two wards in a psychiatric hospital. Due to the extensively resistant phenotype (XDR), therapeutic options were limited. This is the first report of carbapenemase-producing P. mirabilis in Croatia. Full article
(This article belongs to the Special Issue Emerging and Neglected Pathogens in the Balkans)
Show Figures

Figure 1

20 pages, 2552 KiB  
Article
Environmental Dispersion of Multiresistant Enterobacteriaceae in Aquatic Ecosystems in an Area of Spain with a High Density of Pig Farming
by Javier Díez de los Ríos, Noemí Párraga-Niño, María Navarro, Judit Serra-Pladevall, Anna Vilamala, Elisenda Arqué, María Baldà, Tamar Nerea Blanco, Luisa Pedro-Botet, Óscar Mascaró and Esteban Reynaga
Antibiotics 2025, 14(8), 753; https://doi.org/10.3390/antibiotics14080753 - 25 Jul 2025
Viewed by 298
Abstract
Background: This study aimed to (a) assess the prevalence of multidrug-resistant (MDR) Enterobacteriaceae in the waters of two rivers and wastewater treatment plants (WWTPs) in a region of Catalonia, Spain; (b) genetically characterize the MDR strains; and (c) compare extended-spectrum β-lactamase (ESBL)-producing [...] Read more.
Background: This study aimed to (a) assess the prevalence of multidrug-resistant (MDR) Enterobacteriaceae in the waters of two rivers and wastewater treatment plants (WWTPs) in a region of Catalonia, Spain; (b) genetically characterize the MDR strains; and (c) compare extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates from environmental and human sources. Methods: A total of 62 samples were collected from the influent and effluent of 31 WWTPs and 29 river water samples from 11 sites. Simultaneously, 382 hospitalized patients were screened for MDR Enterobacteriaceae using rectal swabs. All isolates underwent antibiotic susceptibility testing and whole-genome sequencing. Results: MDR Enterobacteriaceae were detected in 48.4% of WWTP samples, with 18.5% ESBL-producing E. coli and 1.5% (one sample) OXA-48-producing K. pneumoniae in influents, and 12.8% ESBL-producing E. coli in effluents. In river waters, 5.6% of samples contained ESBL-producing E. coli and 1.4% (1 sample) contained VIM-producing Enterobacter cloacae complex strains. Among patients, 10.2% (39/382) carried MDR Gram-negative bacilli, of which 66.7% were ESBL-producing E. coli. In aquatic ecosystems E. coli ST131 (13.3%) and ST162 (13.3%) were the most common strains, while in humans the common were E. coli ST131 (33.3%), ST69 (11.1%) and ST410 (7.4%) in humans. The most frequent environmental antibiotic resistance genes (ARG) were blaCTX-M-15 (24%) and blaTEM-1B (20%), while the most common ARGs were blaTEM-1B (20.4%), blaCTX-M15 (18.4%) and blaCTX-M-27 (14.3%). IncF plasmids were predominant in environmental and human strains. Conclusions: ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae are present in aquatic environments in the region. Phylogenetic similarities between environmental and clinical strains suggest a possible similar origin. Further studies are necessary to clarify transmission routes and environmental impact. Full article
(This article belongs to the Special Issue A One Health Approach to Antimicrobial Resistance, 2nd Edition)
Show Figures

Graphical abstract

23 pages, 1285 KiB  
Review
An Exploratory Review of Microplastic Pollution, Associated Microbiomes and Pathogens in Water
by Paulina Cholewińska, Konrad Wojnarowski, Hanna Moniuszko, Przemysław Pokorny and Dušan Palić
Appl. Sci. 2025, 15(15), 8128; https://doi.org/10.3390/app15158128 - 22 Jul 2025
Viewed by 357
Abstract
Microplastic particles (MPs) are an emerging global pollutant of increasing concern due to their widespread occurrence, persistence, and multifaceted impact on aquatic ecosystems. This study provides a comprehensive review of peer-reviewed literature from 2011 to 2025, analysing the presence, distribution, and microbiological associations [...] Read more.
Microplastic particles (MPs) are an emerging global pollutant of increasing concern due to their widespread occurrence, persistence, and multifaceted impact on aquatic ecosystems. This study provides a comprehensive review of peer-reviewed literature from 2011 to 2025, analysing the presence, distribution, and microbiological associations of MPs in surface waters across five continents. The findings confirm that MPs are present in both marine and freshwater systems, with concentrations varying by region, hydrology, and proximity to anthropogenic sources. Polyethylene and polypropylene were identified as the most common polymers, often enriched in river mouths, estuaries, and aquaculture zones. A key focus of this review is the plastisphere—microbial biofilms colonizing MPs—which includes both environmental and pathogenic bacteria such as Vibrio, Pseudomonas, and Acinetobacter. Notably, MPs serve as vectors for the spread of antibiotic resistance genes (ARGs), including sul1, tetA and ermF, and β-lactamase genes like blaCTX-M. This highlights their role in enhancing horizontal gene transfer and microbial dissemination. The results emphasize the need for standardized monitoring protocols and further interdisciplinary research. In light of the One Health approach, understanding the microbial dimension of MP pollution is essential for managing risks to environmental and public health. Full article
Show Figures

Figure 1

15 pages, 4132 KiB  
Article
Crotoxin-Loaded Silica Nanoparticles: A Nanovenom Approach
by Florencia Silvina Conti, Exequiel Giorgi, Laura Montaldo, Juan Pablo Rodríguez, Mauricio Cesar De Marzi and Federico Gastón Baudou
Pharmaceutics 2025, 17(7), 879; https://doi.org/10.3390/pharmaceutics17070879 - 4 Jul 2025
Viewed by 406
Abstract
Background: Ophidism is a globally neglected health problem. In Argentina, Crotalus durissus terrificus (C.d.t., South American rattlesnake) is one of the species of greatest medical importance since its venom contains mainly crotoxin (CTX), a potent enzyme–toxin with PLA2 activity, [...] Read more.
Background: Ophidism is a globally neglected health problem. In Argentina, Crotalus durissus terrificus (C.d.t., South American rattlesnake) is one of the species of greatest medical importance since its venom contains mainly crotoxin (CTX), a potent enzyme–toxin with PLA2 activity, which is responsible for its high lethality. Objective: In this work, we aimed to generate nanovenoms (NVs), complexes formed by CTX adsorbed onto 150 nm silica nanoparticles (SiNPs), and to study their physicochemical, biological, and immunomodulatory activities for potential use as adjuvants (ADJs) in antivenom (AV) production. Methods: CTX was isolated and corroborated by SDS-PAGE. Then, CTX was adsorbed on the synthetized Stöber SiNPs’ surfaces, forming a monolayer and retaining its biological activity (as observed by the MTT cell proliferation assay using the THP-1 cell line). Results: Immunomodulatory activity revealed a high pro-inflammatory (IL-1β) response induced by SiNPs followed by NVs. In the case of the anti-inflammatory response, NVs presented significant differences for TGF-β only after cell activation with LPS. No significant differences were observed in IL-10 levels. Conclusions: Thus, these results suggest that NVs together with SiNPs could increase immunogenicity and enhance immune response, turning them into potential tools for the generation of new antivenoms. Full article
(This article belongs to the Special Issue Delivery System for Biomacromolecule Drugs: Design and Application)
Show Figures

Figure 1

23 pages, 1347 KiB  
Article
Antibiotic Resistance, Virulence Genes, and Molecular Diversity of Clinical Klebsiella pneumoniae Isolates from Patients of District Hospital in Central Poland
by Barbara Kot, Małgorzata Witeska, Piotr Szweda, Małgorzata Piechota, Elżbieta Kondera, Elżbieta Horoszewicz, Izabela Balak, Ahmer Bin Hafeez and Alicja Synowiec
Pathogens 2025, 14(7), 648; https://doi.org/10.3390/pathogens14070648 - 30 Jun 2025
Viewed by 346
Abstract
In hospital environments, pathogenic bacteria spread easily and acquire virulence and antibiotic resistance genes. The aim of the study was an evaluation of the genetic diversity of 109 K. pneumoniae isolates recovered from patients of a district hospital in central Poland. The frequencies [...] Read more.
In hospital environments, pathogenic bacteria spread easily and acquire virulence and antibiotic resistance genes. The aim of the study was an evaluation of the genetic diversity of 109 K. pneumoniae isolates recovered from patients of a district hospital in central Poland. The frequencies of genes coding for β-lactamases, efflux pumps, and virulence factors were determined. Genotyping of the isolates was performed with ERIC (Enterobacterial Repetitive Intergenic Consensus) and REP (Repetitive Element Sequence Based) PCR techniques, with 21 and 19 genotypes being identified, respectively. The blaSHV-1 (92.7%), blaCTX-M group 1 (83.5%), blaTEM-1 (28.4%), blaNDM-1 (16.5%), blaVEB-1 (11.0%), blaCTX-M group 9 (3.7%), blaKPC (1.8%), blaIMP, blaOXA-48, blaCTX-M group 2, blaCTX-M groups 8, and 25/26 (0% each) and efflux pumps: AcrAB (100%), tolC (93.6%), and mdtk (60.5%), and virulence genes coding: urease subunit ureA (94.5%) endotoxins wabG (92.7%) and uge (64.2%), and siderophore iucB (3.7%) were detected. The blaSHV-1, blaCTX-M group 1, mdtk, tolC, AcrAB (16.5%); blaSHV-1, blaCTX-M group 1, tolC, AcrAB (15.6%), and blaSHV-1, blaCTX-M group 1, blaNDM-1, mdtk, tolC, AcrAB (11.9%) were the most common resistance patterns. The distribution of resistance and virulence genes varied more between hospital wards than between different clinical materials. Hospital’s antibiotic-resistant and virulent K. pneumoniae, able to spread among humans, animals, and in the environment, pose a significant threat to public health. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

18 pages, 9359 KiB  
Article
Ovalbumin Peptide–Selenium Nanoparticles Alleviate Immune Suppression in Cyclophosphamide-Induced Mice: A Combined Transcriptomic and Proteomic Approach to Reveal the Mechanism
by Yingnan Zeng, Qi Yang, Zhiyang Du, Xuanting Liu, Xiaomin Shang, Menglei Xu, Jingbo Liu, Siwen Lyu and Ting Zhang
Foods 2025, 14(13), 2295; https://doi.org/10.3390/foods14132295 - 28 Jun 2025
Viewed by 480
Abstract
Immunocompromise is a growing health concern, and food-derived immunomodulators are expected to serve as a valuable supplement to traditional drug therapies. Ovalbumin peptide (OP) was employed as a stabilizer to prepare OP–selenium nanoparticles (OP-SeNPs), which showed immunomodulatory effects in vitro; however, the effects [...] Read more.
Immunocompromise is a growing health concern, and food-derived immunomodulators are expected to serve as a valuable supplement to traditional drug therapies. Ovalbumin peptide (OP) was employed as a stabilizer to prepare OP–selenium nanoparticles (OP-SeNPs), which showed immunomodulatory effects in vitro; however, the effects and underlying mechanisms in vivo were not yet fully understood. This study investigated the immunomodulatory activity of OP-SeNPs in cyclophosphamide (CTX)-induced immunosuppressed mice on immune organs, molecules, and cells, with the underlying mechanism explored by transcriptomic and proteomic studies. The results demonstrated that OP-SeNPs alleviated tissue damage in the spleen and thymus, improved the immunosuppressive state by promoting the secretion of cytokines (IL-1β, IFN-γ, IL-4, and IL-6), immunoglobulins (IgA, IgG, IgM, and sIgA), and promoting the proliferation of splenic lymphocytes. PI3K-Akt, Rap1, p53, PPAR, and Hippo signaling pathways formed an important regulatory network that synergistically influenced immune modulation. OP-SeNPs are potential food-derived immunomodulators, setting the stage for deep exploration of the mechanisms driving their immunomodulatory effects. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

21 pages, 2764 KiB  
Article
First Report of Stenotrophomonas maltophilia from Canine Dermatological Infections: Unravelling Its Antimicrobial Resistance, Biofilm Formation, and Virulence Traits
by Ria Rajeev, Porteen Kannan, Sureshkannan Sundaram, Sandhya Bhavani Mohan, Sivachandiran Radjendirane, Chaudhary Jeetendrakumar Harnathbhai, Anbazhagan Subbaiyan, Viswanathan Naveenkumar, Nithya Quintoil Mohanadasse, Wilfred Ruban Savariraj, Charley A. Cull and Raghavendra G. Amachawadi
Antibiotics 2025, 14(7), 639; https://doi.org/10.3390/antibiotics14070639 - 23 Jun 2025
Viewed by 531
Abstract
Background/Objectives: The present study was aimed at documenting S. maltophilia occurrence in dogs with skin ailments, investigating its virulence, biofilm-forming ability, antimicrobial susceptibility, and zoonotic potential to inform preventive and therapeutic strategies against multidrug resistant S. maltophilia infections. Methods: Skin swabs [...] Read more.
Background/Objectives: The present study was aimed at documenting S. maltophilia occurrence in dogs with skin ailments, investigating its virulence, biofilm-forming ability, antimicrobial susceptibility, and zoonotic potential to inform preventive and therapeutic strategies against multidrug resistant S. maltophilia infections. Methods: Skin swabs (n = 300) were collected from dogs with dermatological ailments. Isolation was performed using selective media and confirmed with molecular methods, validated by MALDI Biotyper. Antimicrobial susceptibility testing and efflux activity assessment were conducted. Resistance genes related to sulfonamides, quinolones, and β-lactams were screened. Virulence was assessed by biofilm formation, motility, and virulence gene profiling. Results: In total, 15 S. maltophilia (5%) isolates were identified. All 15 isolates were susceptible to trimethoprim-sulfamethoxazole, enrofloxacin, gatifloxacin, levofloxacin, minocycline, and tigecycline, but resistant to cefpodoxime and aztreonam. The following resistance genes qnr (93.3%), blaOXA-48 (46.7%), blaKPC (33.3%), blaNDM (33.3%), blaCTX-M (20%), blaSHV (20%), and blaTEM (6.7%) were detected. All 15 isolates displayed high efflux activity. Overall, 9 isolates (60%) were strong biofilm producers, and 6 (40%) were moderate. Virulence genes such as virB, motA, rmlA, and fliC were present in all 15 isolates, with others varying in frequency. All isolates exhibited swimming motility. Heat map clustering showed diverse profiles, with no identical isolate patterns. Correlation analysis indicated positive associations between several antimicrobial resistance and virulence genes. Conclusions: This study underscores the zoonotic potential of S. maltophilia from dogs, advocating for a One Health approach to mitigate infection risks and limit the spread of virulent multidrug resistant pathogens. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Infections in Veterinary Settings)
Show Figures

Graphical abstract

16 pages, 2852 KiB  
Article
A Novel Hybrid Peptide VLP-Aβ Efficiently Regulates Immunity by Stimulating Myeloid Differentiation Protein and Activating the NF-κB Pathway
by Junyong Wang, Xuelian Zhao, Rijun Zhang, Jing Zhang, Yucui Tong, Zaheer Abbas, Dayong Si and Xubiao Wei
Int. J. Mol. Sci. 2025, 26(12), 5834; https://doi.org/10.3390/ijms26125834 - 18 Jun 2025
Viewed by 397
Abstract
Immunosuppression dramatically increases tissue and organ susceptibility to infection, injury, and even cancer. This poses a serious threat to human and animal health. In a previous study, we established a platform for high-throughput design and screening of multifunctional peptides. Using this platform, we [...] Read more.
Immunosuppression dramatically increases tissue and organ susceptibility to infection, injury, and even cancer. This poses a serious threat to human and animal health. In a previous study, we established a platform for high-throughput design and screening of multifunctional peptides. Using this platform, we successfully identified a novel hybrid peptide, VLP-Aβ (VA), which exhibits both immunomodulatory and antioxidant properties. This study aimed to evaluate the immunomodulatory activity of VA and investigate the underlying molecular mechanisms. In the cyclophosphamide (CTX)-induced immunodeficient mouse model, VA significantly alleviated CTX-induced weight loss. It also restored thymus and spleen indices, and increased serum immunoglobulins (IgA, IgM, IgG) and cytokines (TNF-α, IL-6, IL-1β) levels. VA also improved splenic lymphocyte proliferation, CD4+/CD8+ T cell ratios, and NK cell cytotoxicity. At the cellular level, western blot analysis showed that VA activated the TLR4-NF-κB pathway in RAW264.7 macrophages. Mechanistically, inhibition of the MD2 protein by L6H21 abolished VA’s immunomodulatory effects. This confirms MD2 as a critical mediator. Molecular docking and dynamics simulations revealed that VA binds stably to the hydrophobic pocket of MD2. These findings suggest that VA exerts immunomodulatory effects by stimulating MD2 and activating the TLR4-NF-κB pathway, which provides new ideas, techniques, and approaches for the development of novel peptide immunomodulators. Full article
(This article belongs to the Special Issue Targeted Therapy for Immune Diseases)
Show Figures

Figure 1

11 pages, 257 KiB  
Article
Antibiotic Resistance Profiles of Diarrhoeagenic Enterobacterales in Bioko Island, Equatorial Guinea
by Úrsula-Eva Eñeso Efuá, Silvia Herrera-León, Fátima Patabobe, Pascual Erasmo Owono and Agustín Benito
Acta Microbiol. Hell. 2025, 70(2), 24; https://doi.org/10.3390/amh70020024 - 10 Jun 2025
Viewed by 955
Abstract
Acute diarrhoeal disease caused by antibiotic-resistant diarrhoeagenic bacteria is a significant global public health issue, particularly in low- and middle-income countries. This study provides the first molecular characterisation of antimicrobial resistance profiles, including the detection of CTX-M-15 and CTX-M-55 extended-spectrum beta-lactamases (ESBLs), among [...] Read more.
Acute diarrhoeal disease caused by antibiotic-resistant diarrhoeagenic bacteria is a significant global public health issue, particularly in low- and middle-income countries. This study provides the first molecular characterisation of antimicrobial resistance profiles, including the detection of CTX-M-15 and CTX-M-55 extended-spectrum beta-lactamases (ESBLs), among diarrhoeagenic Enterobacterales in Bioko Island, Equatorial Guinea, offering novel epidemiological insights into an understudied region. This study investigated the antibiotic resistance profiles of pathogenic bacteria isolated from diarrhoeal samples on Bioko Island. A total of 153 clinical isolates were collected between 1 February and 30 May 2014, and antimicrobial susceptibility testing was performed at Loeri Comba Polyclinic (Malabo) using the Kirby–Bauer method. The molecular characterisation of β-lactamase-associated genes was performed on different isolates of diarrhoeagenic pathotypes—144 Escherichia coli, 7 Salmonella enterica, and 2 Shigella flexneri—at the National Centre for Microbiology (Majadahonda, Spain). High resistance rates were detected against ampicillin (98%), tetracycline (93.5%), sulfonamides (94.8%), sulfamethoxazole–trimethoprim (88.2%), and cefotaxime (78.8%), while moderate rates of resistance were noted for ciprofloxacin (26.7%), and all isolates remained susceptible to imipenem. Of the isolates, 107 (69.9%) produced either single or multiple β-lactamases. Among these, 73 (68.2%) harbored classical β-lactamases, specifically TEM and OXA-1 types, representing 47.7% of the total sample. Additionally, 34 (31.8%) of the isolates were identified as producers of extended-spectrum β-lactamases (ESBLs), specifically CTX-M enzymes. Sequencing identified CTX-M-15 and CTX-M-55 variants. The predominant ESBL-producing bacteria were enteroaggregative Escherichia coli (56.2%), followed by enteropathogenic and enterotoxigenic E. coli. These findings confirm the circulation of multidrug-resistant diarrhoeagenic Enterobacterales in Equatorial Guinea, raising concerns about limited treatment options due to widespread resistance to multiple antibiotic classes, including third-generation cephalosporins and quinolones. The most important conclusion drawn from this study is that a high percentage of diarrhoeagenic bacteria have an antibiotic resistance and multi-resistance profile, especially to beta-lactams and other groups of antibiotics such as tetracyclines and sulphonamides. There is also a moderate prevalence of isolates carrying ESBLs on Bioko Island, Equatorial Guinea, which could indicate the inappropriate use of antimicrobials. Full article
21 pages, 374 KiB  
Review
Biomarker-Guided Imaging and AI-Augmented Diagnosis of Degenerative Joint Disease
by Rahul Kumar, Kyle Sporn, Aryan Borole, Akshay Khanna, Chirag Gowda, Phani Paladugu, Alex Ngo, Ram Jagadeesan, Nasif Zaman and Alireza Tavakkoli
Diagnostics 2025, 15(11), 1418; https://doi.org/10.3390/diagnostics15111418 - 3 Jun 2025
Viewed by 995
Abstract
Degenerative joint disease remains a leading cause of global disability, with early diagnosis posing a significant clinical challenge due to its gradual onset and symptom overlap with other musculoskeletal disorders. This review focuses on emerging diagnostic strategies by synthesizing evidence specifically from studies [...] Read more.
Degenerative joint disease remains a leading cause of global disability, with early diagnosis posing a significant clinical challenge due to its gradual onset and symptom overlap with other musculoskeletal disorders. This review focuses on emerging diagnostic strategies by synthesizing evidence specifically from studies that integrate biochemical biomarkers, advanced imaging techniques, and machine learning models relevant to osteoarthritis. We evaluate the diagnostic utility of cartilage degradation markers (e.g., CTX-II, COMP), inflammatory cytokines (e.g., IL-1β, TNF-α), and synovial fluid microRNA profiles, and how they correlate with quantitative imaging readouts from T2-mapping MRI, ultrasound elastography, and dual-energy CT. Furthermore, we highlight recent developments in radiomics and AI-driven image interpretation to assess joint space narrowing, osteophyte formation, and subchondral bone changes with high fidelity. The integration of these datasets using multimodal learning approaches offers novel diagnostic phenotypes that stratify patients by disease stage and risk of progression. Finally, we explore the implementation of these tools in point-of-care diagnostics, including portable imaging devices and rapid biomarker assays, particularly in aging and underserved populations. By presenting a unified diagnostic pipeline, this article advances the future of early detection and personalized monitoring in joint degeneration. Full article
(This article belongs to the Special Issue Advances in Musculoskeletal Imaging: From Diagnosis to Treatment)
16 pages, 803 KiB  
Article
Virulence and Antibiotic Resistance of aEPEC/STEC Escherichia coli Pathotypes with Serotype Links to Shigella boydii 16 Isolated from Irrigation Water
by Yessica Enciso-Martínez, Edwin Barrios-Villa, Manuel G. Ballesteros-Monrreal, Armando Navarro-Ocaña, Dora Valencia, Gustavo A. González-Aguilar, Miguel A. Martínez-Téllez, Julián Javier Palomares-Navarro and Fernando Ayala-Zavala
Pathogens 2025, 14(6), 549; https://doi.org/10.3390/pathogens14060549 - 1 Jun 2025
Viewed by 837
Abstract
Irrigation water can serve as a reservoir and transmission route for pathogenic Escherichia coli, posing a threat to food safety and public health. This study builds upon a previous survey conducted in Hermosillo, Sonora (Mexico), where 445 samples were collected from a [...] Read more.
Irrigation water can serve as a reservoir and transmission route for pathogenic Escherichia coli, posing a threat to food safety and public health. This study builds upon a previous survey conducted in Hermosillo, Sonora (Mexico), where 445 samples were collected from a local Honeydew melon farm and associated packing facilities. Among the 32 E. coli strains recovered, two strains, A34 and A51, were isolated from irrigation water and selected for further molecular characterization by PCR, due to their high pathogenic potential. Both strains were identified as hybrid aEPEC/STEC pathotypes carrying bfpA and stx1 virulence genes. Adhesion assays in HeLa cells revealed aggregative and diffuse patterns, suggesting enhanced colonization capacity. Phylogenetic analysis classified A34 within group B2 as associated with extraintestinal pathogenicity and antimicrobial resistance, while A51 was unassigned to any known phylogroup. Serotyping revealed somatic antigens shared with Shigella boydii 16, suggesting possible horizontal gene transfer or antigenic convergence. Antibiotic susceptibility testing showed resistance to multiple β-lactam antibiotics, including cephalosporins, linked to the presence of blaCTX-M-151 and blaCTX-M-9. Although no plasmid-mediated quinolone resistance genes were detected, resistance may involve efflux pumps or mutations in gyrA and parC. These findings are consistent with previous reports of E. coli adaptability in agricultural environments, suggesting potential genetic adaptability. While our data support the presence of virulence and resistance markers, further studies would be required to demonstrate mechanisms such as horizontal gene transfer or adaptive evolution. Full article
Show Figures

Graphical abstract

13 pages, 263 KiB  
Article
Report of High-Risk Carbapenem-Resistant K. pneumoniae ST307 Clone Producing KPC-2, SHV-106, CTX-M-15, and VEB-1 in Greece
by Maria Chatzidimitriou, Pandora Tsolakidou, Maria Anna Kyriazidi, Sotiris Varlamis, Ilias S. Frydas, Maria Mavridou and Stella Mitka
Antibiotics 2025, 14(6), 567; https://doi.org/10.3390/antibiotics14060567 - 31 May 2025
Viewed by 615
Abstract
Background/Objectives: Klebsiella pneumoniae ST307 is emerging as a significant global high-risk antimicrobial-resistant (AMR) clone with a notable capacity to acquire and disseminate resistance genes. However, there is limited research on the pathogenicity, virulence, and adaptation of ST307 strains and on the clinical characteristics [...] Read more.
Background/Objectives: Klebsiella pneumoniae ST307 is emerging as a significant global high-risk antimicrobial-resistant (AMR) clone with a notable capacity to acquire and disseminate resistance genes. However, there is limited research on the pathogenicity, virulence, and adaptation of ST307 strains and on the clinical characteristics of infected patients. Methods: In this study, a carbapenem-resistant K. pneumoniae (CRKP) ST307 strain named U989 was isolated from a urine culture of a hospitalized patient in Volos, Greece, in July 2024. Whole-genome sequencing was performed to identify resistance genes to β-lactams blaKPC-2, blaCTX-M-15, blaTEM-1B, blaOXA-1, blaOXA-10, blaSHV-106, and blaVEB-1 and resistance genes to other antibiotics. Results: A genomic analysis also revealed the presence of virulence factors such as iutA, clpK1, fyuA, fimH, mrkA, Irp2, and TraT and an IncFiB(pQil)/IncFII(K) replicon, which harbors the blaKPC-2 gene. Additionally, the transposable element Tn4401 was identified as a key vehicle for the mobilization of the blaKPC-2 resistance gene. Finally, this is the report of a high-risk CRKP ST307 clone expressing KPC-2, SHV-106, CTX-M-15, and VEB-1 bla genes in Greece. Conclusions: The coexistence of these resistance genes in addition to aminoglycoside, quinolone, and other resistance genes results in difficult-to-treat infections caused by respective carrier strains, often requiring the use of last-resort antibiotics and contributing to the global challenge of antimicrobial resistance. Full article
18 pages, 546 KiB  
Article
Outbreak of NDM-5-Producing Proteus mirabilis During the COVID-19 Pandemic in an Argentine Hospital
by Barbara Ghiglione, Ana Paula Rodriguez, María Sol Haim, Laura Esther Friedman, Nilton Lincopan, María Eugenia Ochiuzzi and José Alejandro Di Conza
Antibiotics 2025, 14(6), 557; https://doi.org/10.3390/antibiotics14060557 - 29 May 2025
Viewed by 652
Abstract
Background: During the COVID-19 pandemic, the emergence of multidrug-resistant (MDR) pathogens, driven by heightened antibiotic usage and device-associated infections, has posed significant challenges to healthcare. This study reports an outbreak of Proteus mirabilis producing NDM-5 and CTX-M-15 β-lactamases in a hospital in Buenos [...] Read more.
Background: During the COVID-19 pandemic, the emergence of multidrug-resistant (MDR) pathogens, driven by heightened antibiotic usage and device-associated infections, has posed significant challenges to healthcare. This study reports an outbreak of Proteus mirabilis producing NDM-5 and CTX-M-15 β-lactamases in a hospital in Buenos Aires, Argentina, from October 2020 to April 2021. To our knowledge, this represents the first documented outbreak of NDM-5-producing P. mirabilis in the country. Methods: A total of 82 isolates were recovered from 40 patients, with 41.5% from blood cultures and 18.3% from respiratory and urinary samples, among others. Antimicrobial susceptibility testing, PCR-based methods, and MALDI-TOF MS cluster analysis were conducted. Whole genome sequencing (WGS) was performed to characterize the MLST, resistome and plasmid content. Biofilm formation assays and in vitro rifampicin susceptibility tests were also conducted. Result: Most isolates exhibited resistance to carbapenems, cephalosporins, aminoglycosides, and fluoroquinolones, while retaining susceptibility to aztreonam. Genetic analysis confirmed the co-presence of the blaNDM-5 and blaCTX-M-15 genes. Clonal relationships was supported by PCR-based typing and MALDI-TOF MS cluster analysis. WGS revealed a resistome comprising 25 resistance genes, including rmtB and both β-lactamases, as well as the presence of an incomplete IncQ1 replicon associated with multiple resistance determinants. MLST classified this clone as belonging to ST135. Despite the biofilm-forming capacity observed across strains, rifampicin demonstrated potential for disrupting established biofilms at concentrations ≥32 µg/mL in vitro. The MDR profile of the outbreak strain significantly limited therapeutic options. Conclusions: This study highlights the growing threat of NDM-producing P. mirabilis in Argentina. The absence of surveillance cultures from the index case limits insights into the outbreak’s origin. These findings underscore the importance of integrating genomic surveillance into infection control protocols to mitigate the spread of MDR pathogens. Full article
(This article belongs to the Special Issue Multidrug-Resistance Patterns in Infectious Pathogens)
Show Figures

Figure 1

Back to TopTop