Biomarker-Guided Imaging and AI-Augmented Diagnosis of Degenerative Joint Disease
Abstract
:1. Introduction
1.1. Methods
1.1.1. Literature Search Strategy
1.1.2. Inclusion and Exclusion Criteria
1.1.3. Data Extraction and Synthesis
2. Biochemical Biomarkers in Degenerative Joint Disease
2.1. Cartilage Degradation Markers
2.2. Inflammatory Cytokines and Mediators
3. Advanced Imaging Modalities in Joint Disease Assessment
Advanced Imaging Techniques for Degenerative Joint Disease
4. Artificial Intelligence in Image Analysis and Interpretation
4.1. Machine Learning for Feature Extraction
4.2. Multi-Modal Data Integration
5. Clinical Implementation and Validation
5.1. Diagnostic Performance Metrics
5.2. Point-of-Care Applications
5.3. Clinical Workflow Integration
6. Future Directions and Emerging Technologies
6.1. Novel Biomarker Discovery
6.2. Advanced Imaging Technologies
6.3. Next-Generation AI Applications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef] [PubMed]
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A Disease of the Joint as an Organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef] [PubMed]
- Martel-Pelletier, J.; Barr, A.J.; Cicuttini, F.M.; Conaghan, P.G.; Cooper, C.; Goldring, M.B.; Goldring, S.R.; Jones, G.; Teichtahl, A.J.; Pelletier, J.P. Osteoarthritis. Nat. Rev. Dis. Primers 2016, 2, 16072. [Google Scholar] [CrossRef] [PubMed]
- Bijlsma, J.W.; Berenbaum, F.; Lafeber, F.P. Osteoarthritis: An Update with Relevance for Clinical Practice. Lancet 2011, 377, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Guermazi, A.; Hunter, D.J.; Roemer, F.W. Plain Radiography and Magnetic Resonance Imaging Diagnostics in Osteoarthritis: Validated Staging and Scoring. J. Bone Jt. Surg. Am. 2009, 91 (Suppl. 1), 54–62. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.R.; Millis, M.B.; Olson, S.A. Osteoarthritis: From Palliation to Prevention: AOA Critical Issues. J. Bone Jt. Surg. Am. 2014, 96, e130. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T. Osteoarthritis as a Disease of Mechanics. Osteoarthr. Cartil. 2013, 21, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Rayman, M.P.; Gualillo, O.; Sellam, J.; van der Kraan, P.; Fearon, U. The Role of Metabolism in the Pathogenesis of Osteoarthritis. Nat. Rev. Rheumatol. 2017, 13, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Roemer, F.W.; Crema, M.D.; Trattnig, S.; Guermazi, A. Advances in Imaging of Osteoarthritis and Cartilage. Radiology 2011, 260, 332–354. [Google Scholar] [CrossRef] [PubMed]
- Kraus, V.B.; Burnett, B.; Coindreau, J.; Cottrell, S.; Eyre, D.; Gendreau, M.; Gardiner, J.; Garnero, P.; Hardin, J.; Henrotin, Y.; et al. Application of Biomarkers in the Development of Drugs Intended for the Treatment of Osteoarthritis. Osteoarthr. Cartil. 2011, 19, 515–542. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.C.; Hunter, D.J.; Abramson, S.B.; Attur, M.; Corr, M.; Felson, D.; Heinegård, D.; Jordan, J.M.; Kepler, T.B.; Lane, N.E.; et al. Classification of Osteoarthritis Biomarkers: A Proposed Approach. Osteoarthr. Cartil. 2006, 14, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Tiulpin, A.; Thevenot, J.; Rahtu, E.; Lehenkari, P.; Saarakkala, S. Automatic Knee Osteoarthritis Diagnosis from Plain Radiographs: A Deep Learning-Based Approach. Sci. Rep. 2018, 8, 1727. [Google Scholar] [CrossRef] [PubMed]
- Bay-Jensen, A.C.; Engstrom, A.; Sharma, N.; Karsdal, M.A. Blood and Urinary Collagen Markers in Osteoarthritis: Markers of Tissue Turnover and Disease Activity. Osteoarthr. Cartil. 2020, 28, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Kolhe, R.; Hunter, M.; Liu, S.; Jadeja, R.N.; Pundkar, C.; Mondal, A.K.; Mendhe, B.; Drewry, M.; Rojiani, M.V.; Liu, Y.; et al. Gender-Specific Differential Expression of Exosomal miRNA in Synovial Fluid of Patients with Osteoarthritis. Sci. Rep. 2017, 7, 2029. [Google Scholar] [CrossRef] [PubMed]
- Demehri, S.; Hafezi-Nejad, N.; Carrino, J.A. Conventional and Novel Imaging Modalities in Osteoarthritis: Current State of the Evidence. Curr. Opin. Rheumatol. 2015, 27, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Saarakkala, S.; Waris, P.; Waris, V.; Tarkiainen, I.; Karvanen, E.; Aarnio, J.; Koski, J.M. Diagnostic Performance of Knee Ultrasonography for Detecting Degenerative Changes of Articular Cartilage. Osteoarthr. Cartil. 2012, 20, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Alizai, H.; Walter, W.; Khodarahmi, I.; Burke, C.J. Cartilage Imaging in Osteoarthritis. Semin. Musculoskelet. Radiol. 2019, 23, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Mahum, R.; Rehman, S.U.; Meraj, T.; Rauf, H.T.; Irtaza, A.; El-Sherbeeny, A.M.; El-Meligy, M.A. A Novel Hybrid Approach Based on Deep CNN to Detect Knee Osteoarthritis. Sensors 2021, 21, 6189. [Google Scholar] [CrossRef] [PubMed]
- Guida, C.; Zhang, M.; Shan, J. Improving Knee Osteoarthritis Classification Using Multimodal Intermediate Fusion of X-ray, MRI, and Clinical Information. Neural Comput. Appl. 2023, 35, 9763–9772. [Google Scholar] [CrossRef]
- Xuan, A.; Chen, H.; Chen, T.; Li, J.; Lu, S.; Fan, T.; Zeng, D.; Wen, Z.; Ma, J.; Hunter, D.; et al. The Application of Machine Learning in Early Diagnosis of Osteoarthritis: A Narrative Review. Ther. Adv. Musculoskelet. Dis. 2023, 15, 1759720X231158198. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.Q.; Zhang, J.F.; He, Q.Q.; Wang, Z. Cartilage Oligomeric Matrix Protein, C-terminal Cross-linking Telopeptide of Type II Collagen, and Matrix Metalloproteinase-3 as Biomarkers for Knee and Hip Osteoarthritis Diagnosis: A Systematic Review and Meta-analysis. Osteoarthr. Cartil. 2019, 27, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, P.; Aspberg, A.; Saxne, T.; Onnerfjord, P. Quantification of Cartilage Oligomeric Matrix Protein (COMP) and a COMP Neoepitope in Synovial Fluid of Patients with Different Joint Disorders by Novel Automated Assays. Osteoarthr. Cartil. 2017, 25, 1436–1442. [Google Scholar] [CrossRef] [PubMed]
- Styrkarsdottir, U.; Lund, S.H.; Saevarsdottir, S.; Magnusson, M.I.; Gunnarsdottir, K.; Norddahl, G.L.; Frigge, M.L.; Ivarsdottir, E.V.; Bjornsdottir, G.; Ingvarsson, T.; et al. Cartilage Acidic Protein 1 in Plasma Associates with Prevalent Osteoarthritis and Predicts Future Risk as Well as Progression to Joint Replacements:Results from the UK Biobank Resource. Arthritis Rheumatol. 2023, 75, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Szilagyi, I.; Torsney, K.M.; Karsdal, M.A.; Bay-Jensen, A.C.; Welting, T.J.M. Plasma Proteomics Identifies CRTAC1 as a Biomarker for Osteoarthritis Severity and Progression. Rheumatology 2023, 62, 1286–1295. [Google Scholar] [CrossRef]
- Joseph, G.B.; Nevitt, M.C.; McCulloch, C.E.; Neumann, J.; Lynch, J.A.; Heilmeier, U.; Lane, N.E.; Link, T.M. Associations Between Molecular Biomarkers and MR-based Cartilage Composition and Knee Joint Morphology: Data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2018, 26, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Vilím, V.; Vytášek, R.; Olejarzová, M.; Macháček, S.; Gatterová, J.; Procházka, L.; Kraus, V.B.; Pavelka, K. Serum Cartilage Oligomeric Matrix Protein Reflects the Presence of Clinically Diagnosed Synovitis in Patients with Knee Osteoarthritis. Osteoarthr. Cartil. 2001, 9, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Tseng, S.; Reddi, A.H.; Di Cesare, P.E. Cartilage Oligomeric Matrix Protein (COMP): A Biomarker of Arthritis. Biomark. Insights 2009, 4, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Garnero, P.; Piperno, M.; Gineyts, E.; Christgau, S.; Delmas, P.D.; Vignon, E. Cross Sectional Evaluation of Biochemical Markers of Bone, Cartilage, and Synovial Tissue Metabolism in Patients with Knee Osteoarthritis: Relations with Disease Activity and Joint Damage. Ann. Rheum. Dis. 2001, 60, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Henrotin, Y.; Addison, S.; Kraus, V.; Deberg, M. Type II collagen markers in osteoarthritis: What do they indicate? Curr. Opin. Rheumatol. 2007, 19, 444–450. [Google Scholar] [CrossRef]
- Rousseau, J.C.; Delmas, P.D. Biological Markers in Osteoarthritis. Nat. Clin. Pract. Rheumatol. 2007, 3, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Scanzello, C.R.; Goldring, S.R. The Role of Synovitis in Osteoarthritis Pathogenesis. Bone 2012, 51, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Attur, M.; Krasnokutsky, S.; Statnikov, A.; Samuels, J.; Li, Z.; Friese, O.; Hellio Le Graverand, M.P.; Rybak, L.; Kraus, V.B.; Jordan, J.M.; et al. Low-Grade Inflammation in Symptomatic Knee Osteoarthritis: Prognostic Value of Inflammatory Plasma Lipids and Peripheral Blood Leukocyte Biomarkers. Arthritis Rheumatol. 2015, 67, 2905–2915. [Google Scholar] [CrossRef] [PubMed]
- Berenbaum, F. Osteoarthritis as an Inflammatory Disease (Osteoarthritis Is Not Osteoarthrosis!). Osteoarthr. Cartil. 2013, 21, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Sokolove, J.; Lepus, C.M. Role of Inflammation in the Pathogenesis of Osteoarthritis: Latest Findings and Interpretations. Ther. Adv. Musculoskelet. Dis. 2013, 5, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Robinson, W.H.; Lindstrom, T.M.; Cheung, R.K.; Sokolove, J. Mechanistic Biomarkers for Clinical Decision Making in Rheumatic Diseases. Nat. Rev. Rheumatol. 2013, 9, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Ortona, E.; Pagano, M.T.; Capossela, L.; Malorni, W.; Gagliardi, M.C. The Role of Sex in Osteoarthritis and Biomechanical Factors. Int. J. Mol. Sci. 2024, 25, 11092. [Google Scholar] [CrossRef] [PubMed]
- Geyer, M.; Schönfeld, C. Novel Insights into the Pathogenesis of Osteoarthritis. Curr. Rheumatol. Rev. 2018, 14, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Ding, W.; Fang, Y.; Yang, J.; Zhang, Y.; Ding, C.; Huang, B.; Wang, K. Inflammatory Molecular Cluster in Knee Osteoarthritis Derived from Transcriptome and Machine Learning Analysis. Int. J. Mol. Sci. 2024, 25, 10306. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Anderson, J.J.; Naimark, A.; Walker, A.M.; Meenan, R.F. Obesity and Knee Osteoarthritis. The Framingham Study. Ann. Intern. Med. 1988, 109, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Sellam, J.; Berenbaum, F. The Role of Synovitis in Pathophysiology and Clinical Symptoms of Osteoarthritis. Nat. Rev. Rheumatol. 2010, 6, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Wojdasiewicz, P.; Poniatowski, Ł.A.; Szukiewicz, D. The Role of Inflammatory and Anti-inflammatory Cytokines in the Pathogenesis of Osteoarthritis. Mediat. Inflamm. 2014, 2014, 561459. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.P.; Fahmi, H. Role of Proinflammatory Cytokines in the Pathophysiology of Osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Goldring, M.B.; Otero, M. Inflammation in Osteoarthritis. Curr. Opin. Rheumatol. 2011, 23, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Stannus, O.; Jones, G.; Cicuttini, F.; Parameswaran, V.; Quinn, S.; Burgess, J.; Ding, C. Circulating Levels of IL-6 and TNF-α Are Associated with Knee Radiographic Osteoarthritis and Knee Cartilage Loss in Older Adults. Osteoarthr. Cartil. 2010, 18, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Livshits, G.; Zhai, G.; Hart, D.J.; Kato, B.S.; Wang, H.; Williams, F.M.; Spector, T.D. Interleukin-6 Is a Significant Predictor of Radiographic Knee Osteoarthritis: The Chingford Study. Arthritis Rheum. 2009, 60, 2037–2045. [Google Scholar] [CrossRef] [PubMed]
- Schett, G.; Elewaut, D.; McInnes, I.B.; Dayer, J.M.; Neurath, M.F. How Cytokine Networks Fuel Inflammation: Toward a Cytokine-Based Disease Taxonomy. Nat. Med. 2013, 19, 822–824. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Felson, D.T. Osteoarthritis. BMJ 2006, 332, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Pearle, A.D.; Scanzello, C.R.; George, S.; Mandl, L.A.; DiCarlo, E.F.; Peterson, M.; Sculco, T.P.; Crow, M.K. Elevated High-Sensitivity C-Reactive Protein Levels Are Associated with Local Inflammatory Findings in Patients with Osteoarthritis. Osteoarthr. Cartil. 2007, 15, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Spector, T.D.; Hart, D.J.; Nandra, D.; Doyle, D.V.; Mackillop, N.; Gallimore, J.R.; Pepys, M.B. Low-Level Increases in Serum C-Reactive Protein Are Present in Early Osteoarthritis and Increase with Disease Progression. Arthritis Rheum. 1997, 40, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Punzi, L.; Ramonda, R.; Sfriso, P. Erosive Osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2004, 18, 739–758. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.R.; Wu, X.; Liu, B.; Chen, Y.; Armitage, C.W.; Kress, H.; Wang, Z.; Tian, P.; Crawford, R.; Prasadam, I. Associations Among Inflammatory Biomarkers in the Circulating, Plasmatic, Salivary and Intraluminal Anatomical Compartments in Apparently Healthy Young Adults. PLoS ONE 2015, 10, e0132709. [Google Scholar] [CrossRef] [PubMed]
- Brzustewicz, E.; Bryl, E. The role of cytokines in the pathogenesis of rheumatoid arthritis—Practical and potential application of cytokines as biomarkers and targets of personalized therapy. Cytokine 2015, 76, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Boffa, A.; Merli, G.; Andriolo, L.; Lattermann, C.; Salzmann, G.M.; Filardo, G. Synovial Fluid Biomarkers in Knee Osteoarthritis: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 5915. [Google Scholar] [CrossRef] [PubMed]
- Struglics, A.; Larsson, S.; Pramhed, J.; Frobell, R.; Sward, P.; Roemer, F.; Lohmander, S.; Kraus, V. Osteoarthritis Biomarkers: Year in Review. Osteoarthr. Cartil. 2024, 32, 360–377. [Google Scholar] [CrossRef] [PubMed]
- Jayadev, C.; Hulme, C.; Snelling, S.; Mohan, R.; Taylor, P.; Price, A.; Garrett, A.; Glyn-Jones, S.; Carr, A.; Arden, N.K. The Influence of Preanalytical Variables on Soluble CD40 Ligand Levels in Patients with Knee Osteoarthritis. Int. J. Rheum. Dis. 2012, 15, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.M.; Meulenbelt, I.; Gardiner, J.; Bay-Jensen, A.C.; Karsdal, M.; Spector, T.D.; Slagboom, P.E.; Menni, C.; Christiansen, C.; van Meurs, J.B.; et al. Large Scale Meta-Analysis of Urinary C-Telopeptide of Type II Collagen (uCTX-II) as a Biomarker of Osteoarthritis and Joint Diseases. Osteoarthr. Cartil. 2014, 22 (Suppl. S152), S218. [Google Scholar] [CrossRef]
- Eckstein, F.; Le Graverand, M.P. Plain radiography or magnetic resonance imaging (MRI): Which is better in assessing outcome in clinical trials of disease-modifying osteoarthritis drugs? Summary of a debate held at the World Congress of Osteoarthritis 2014. Semin. Arthritis Rheum. 2015, 45, 251–256. [Google Scholar] [CrossRef]
- Mosher, T.J.; Walker, E.A.; Petscavage-Thomas, J.; Guermazi, A. Osteoarthritis Year 2013: Imaging. Osteoarthr. Cartil. 2013, 21, 1239–1244. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, T.R.; Campos, D.F.; Hafezi-Nejad, N.; Demehri, S. Advanced Imaging of Osteoarthritis: Radiography, CT, and Dual Energy CT. Radiol. Clin. N. Am. 2022, 60, 613–628. [Google Scholar] [CrossRef] [PubMed]
- Wirth, W.; Maschek, S.; Roemer, F.W.; Eckstein, F. Layer-Specific Analysis of Femorotibial Cartilage T2 Relaxation Time in Knees with and without Early Osteoarthritis. Osteoarthr. Cartil. 2017, 25, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Liebl, H.; Joseph, G.; Nevitt, M.C.; Singh, N.; Heilmeier, U.; Subburaj, K.; Jungmann, P.M.; Sharma, L.; Liu, F.; Wolski, K.; et al. Early T2 Changes Predict Onset of Radiographic Knee Osteoarthritis: Data from the Osteoarthritis Initiative. Ann. Rheum. Dis. 2015, 74, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- MacKay, J.W.; Low, S.B.; Smith, T.O.; Toms, A.P.; McCaskie, A.W.; Gilbert, F.J. Systematic Review and Meta-Analysis of the Reliability and Discriminative Validity of Cartilage Compositional MRI in Knee Osteoarthritis. Osteoarthr. Cartil. 2018, 26, 1140–1152. [Google Scholar] [CrossRef] [PubMed]
- van Tiel, J.; Bron, E.E.; Tiderius, C.J.; Bos, P.K.; Reijman, M.; Klein, S.; Verhaar, J.A.; Krestin, G.P.; Weinans, H.; Kotek, G.; et al. Reproducibility of 3D Delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) of the Knee at 3T in Patients with Early Stage Osteoarthritis. Osteoarthr. Cartil. 2013, 21, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Horga, L.M.; Hirschmann, A.C.; Henckel, J.; Fotiadou, A.; Di Laura, A.; Torlasco, C.; D’Silva, A.; Sharma, S.; Moon, J.C.; Hart, A.J. Prevalence of Abnormal Findings in 230 Knees of Asymptomatic Adults Using 3.0 T MRI. Skelet. Radiol. 2020, 49, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Kijowski, R.; Blankenbaker, D.G.; Klaers, J.L.; Shinki, K.; De Smet, A.A.; Block, W.F. Vastly undersampled isotropic projection steady-state free precession imaging of the knee: Diagnostic performance compared with conventional MR. Radiology 2009, 251, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Wu, Y.; Liang, Y.; Tang, J.; Wang, Y.; Wu, Y.; Liu, X.; Wang, J.; Wu, J.; Wu, Y.; et al. Ultrasound Imaging in the Diagnosis and Assessment of Knee Osteoarthritis: A Systematic Review and Meta-Analysis. J. Ultrasound Med. 2024, 43, 1599–1616. [Google Scholar] [CrossRef] [PubMed]
- Okano, T.; Filippucci, E.; Di Carlo, M.; Draghessi, A.; Carotti, M.; Salaffi, F.; Smerilli, G.; Di Matteo, A.; Cipolletta, E.; Terslev, L.; et al. Ultrasonographic Evaluation of Joint Damage in Knee Osteoarthritis: Feature-Specific Comparisons with Conventional Radiography. Rheumatology 2021, 60, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, K.; Sasaki, E.; Ota, S.; Chiba, D.; Yamamoto, Y.; Tsuda, E.; Yoshikuni, S.; Ihara, K.; Ishibashi, Y. Detection of synovitis in early knee osteoarthritis by MRI and serum biomarkers in Japanese general population. Sci. Rep. 2020, 10, 12310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thoenen, J.; MacKay, J.W.; Sandford, H.J.C.; Gold, G.E.; Kogan, F. Imaging of Synovial Inflammation in Osteoarthritis, From the AJR Special Series on Inflammation. AJR Am. J. Roentgenol. 2022, 218, 405–417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peuna, A.; Hekkala, J.; Haapea, M.; Podlipská, J.; Guermazi, A.; Saarakkala, S.; Nieminen, M.T.; Lammentausta, E. Complexity of Knee Osteoarthritis Pathogenesis: A Comprehensive Review of Clinical, Molecular, and Imaging Insights with a Call for Interdisciplinary Research. Arthritis Res. Ther. 2024, 26, 155. [Google Scholar] [CrossRef] [PubMed]
- Riecke, B.F.; Christensen, R.; Torp-Pedersen, S.; Boesen, M.; Gudbergsen, H.; Bliddal, H. An Ultrasound Score for Knee Osteoarthritis: A Cross-Sectional and Longitudinal Study. Osteoarthr. Cartil. 2014, 22, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Doherty, S.; Courtney, P.; Latief, K.; Zhang, W.; Doherty, M. Synovial Pathology Detected on Ultrasound Correlates with the Severity of Radiographic Knee Osteoarthritis More Than with Symptoms. Osteoarthr. Cartil. 2014, 22, 1627–1633. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.T.; Shao, C.J.; Wu, K.C.; Wu, T.T.; Chern, T.C.; Kuo, L.C.; Jou, I.M. Pain in Patients with Equal Radiographic Grades of Osteoarthritis in Both Knees: The Value of Gray Scale Ultrasound. Osteoarthr. Cartil. 2012, 20, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Omoumi, P.; Babel, H.; Jolles, B.M.; Favre, J. Imaging of Lower Limb Cartilage. Diagn. Interv. Imaging 2022, 103, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Mallinson, P.I.; Coupal, T.M.; McLaughlin, P.D.; Nicolaou, S.; Munk, P.L.; Ouellette, H.A. Dual-Energy CT for the Musculoskeletal System. Radiology 2016, 281, 690–707. [Google Scholar] [CrossRef] [PubMed]
- Heim, B.; Krismer, F.; De Marzi, R.; Seppi, K. Magnetic resonance imaging for the diagnosis of Parkinson’s disease. J. Neural Transm. 2017, 124, 915–964. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fritz, J.; Guggenberger, R.; Del Grande, F. Rapid Musculoskeletal MRI in 2021: Clinical Application of Advanced Accelerated Techniques. AJR Am. J. Roentgenol. 2021, 216, 718–733. [Google Scholar] [CrossRef] [PubMed]
- Bowes, M.A.; Lohmander, L.S.; Wolstenholme, C.B.; Vincent, G.R.; Conaghan, P.G.; Frobell, R.B. Marked and Rapid Change of Bone Shape in Acutely ACL Injured Knees: An Exploratory Analysis of the Kanon Study. Osteoarthr. Cartil. 2019, 27, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Hirvasniemi, J.; Klein, S.; Niessen, W.J.; Oei, E.H.; Bierma-Zeinstra, S.M.; Weinans, H.; Zadpoor, A.A. MRI-Based Radiomic Features of the Tibial Bone Can Discriminate Between Knees Without and With Osteoarthritis: Data from the Osteoarthritis Initiative. J. Orthop. Res. 2022, 40, 2257–2265. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.; Rajaraman, A.; Antani, S.; Thoma, G.; Folio, L.; Burks, G.; Folio, L. Radiomics-Based Detection of Osteoarthritis-Associated Changes in Trabecular Bone Texture Using Machine Learning. Diagnostics 2024, 14, 1561. [Google Scholar] [CrossRef] [PubMed]
- Halilaj, E.; Le, Y.; Hicks, J.L.; Hastie, T.J.; Delp, S.L. Modeling and Predicting Osteoarthritis Progression: Data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2018, 26, 1643–1650. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, A.; Pelletier, J.P.; Martel-Pelletier, J. Machine-Learning-Based Patient-Specific Prediction Models for Knee Osteoarthritis. Nat. Rev. Rheumatol. 2019, 15, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Lau, S.H.; Zhang, J.; Chan, L.C.; Wang, W.; Chan, P.K.; Cai, J.; Wen, C. Radiomics signature of osteoarthritis: Current status and perspective. J. Orthop. Translat. 2024, 45, 100–106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. Ann. Intern. Med. 2015, 162, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Golla, T.; Dreher, M.; Krois, J. Convolutional Neural Networks for Dental Image Diagnostics: A Scoping Review. J. Dent. 2019, 91, 103226. [Google Scholar] [CrossRef] [PubMed]
- Paderno, A.; Holsinger, F.C.; Piazza, C. Videomics: Bringing Deep Learning to Diagnostic Endoscopy. Curr. Opin. Otolaryngol. Head Neck Surg. 2021, 29, 143–148. [Google Scholar] [CrossRef] [PubMed]
- van der Haar, P.; Oei, E.H.; Runhaar, J.; Bierma-Zeinstra, S.M.; Klein, S.; Weinans, H. Multimodal Machine Learning-Based Knee Osteoarthritis Progression Prediction: Results from the OAI Study. J. Orthop. Res. 2024, 42, 1108–1117. [Google Scholar] [CrossRef] [PubMed]
- Pedoia, V.; Lee, J.; Norman, B.; Link, T.M.; Majumdar, S. Diagnosing osteoarthritis from T2 maps using deep learning: An analysis of the entire Osteoarthritis Initiative baseline cohort. Osteoarthr. Cartil. 2019, 27, 1002–1010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roemer, F.W.; Eckstein, F.; Hayashi, D.; Guermazi, A. The Role of Imaging in Osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2014, 28, 31–60. [Google Scholar] [CrossRef] [PubMed]
- Krustev, E.; Rioux, D.; McDougall, J.J. A Protocol for the Use of DMM/PTX-Induced Mouse Models of Osteoarthritis and Rheumatoid Arthritis. Curr. Protoc. 2021, 1, e288. [Google Scholar] [CrossRef] [PubMed]
- Haubruck, P.; Pinto, M.; Moradi, B.; Little, C.B.; Camus, T. Monocyte Recruitment and Activated Macrophage Functions in a Murine Model of Knee Osteoarthritis. Int. J. Mol. Sci. 2024, 25, 10281. [Google Scholar] [CrossRef] [PubMed]
- Almhdie-Imjabbar, A.; Toumi, H.; Harrar, K.; Mokrani, K.; Lespessailles, E. Machine Learning Approaches for Osteoporosis Screening Using Vertebral Bone Quality and Bone Mineral Density from CT Images. Diagnostics 2024, 14, 1809. [Google Scholar] [CrossRef] [PubMed]
- Rastegar, S.; Sepehri, M.M.; Baradaran Mahdavi, S.; Javadi, S.; Kan, F.; Ghaffari, A.; Ershadi, S.; Ghorbani, M.; Hosseinzadeh, M.; Jamshidi, A.; et al. Multimodal Machine Learning for Modeling Knee Osteoarthritis Progression Using Radiographic, Metabolic, and Clinical Data. Arthritis Res. Ther. 2024, 26, 103. [Google Scholar] [CrossRef] [PubMed]
- Li, M.D.; Chang, K.; Bearce, B.; Chang, C.Y.; Huang, A.J.; Campbell, J.P.; Brown, J.M.; Singh, P.; Hoebel, K.V.; Erdoğmuş, D.; et al. Siamese Neural Networks for Continuous Disease Severity Evaluation and Change Detection in Medical Imaging. NPJ Digit. Med. 2020, 3, 48. [Google Scholar] [CrossRef] [PubMed]
- Guermazi, A.; Roemer, F.W.; Hayashi, D.; Crema, M.D.; Niu, J.; Zhang, Y.; Marra, M.D.; Katur, A.; Lynch, J.A.; El-Khoury, G.Y.; et al. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: The MOST study. Ann. Rheum. Dis. 2011, 70, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.H.; Felson, D.T.; Qiu, S.; Guermazi, A.; Capellini, T.D.; Kolachalama, V.B. Combining Multimodal Imaging to Improve Diagnosis and Prognosis in Knee Osteoarthritis. Osteoarthr. Cartil. 2024, 32, 1388–1397. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ding, K.; Wang, Y.; Zhang, Y.; Yang, J.; Li, Y.; Wang, K.; Ding, C.; Huang, B. Multimodal Machine Learning Model Based on FLAG and 3D-CNN for Diagnosis and Prognosis Prediction in Knee Osteoarthritis. Arthritis Res. Ther. 2024, 26, 138. [Google Scholar] [CrossRef] [PubMed]
- Deveza, L.A.; Nelson, A.E.; Loeser, R.F. Phenotypes and Biomarkers in Osteoarthritis: Where Are We Now? Curr. Opin. Rheumatol. 2019, 31, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, N.; Runhaar, J.; Bay-Jensen, A.C.; Thudium, C.S.; Bierma-Zeinstra, S.M.; Henrotin, Y.; Mobasheri, A. A Machine Learning Approach for the Identification of New Biomarkers for Knee Osteoarthritis Development in Overweight and Obese Women. Osteoarthr. Cartil. 2017, 25, 2014–2021. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, Y.; Li, Y.; Wang, Q.; Han, Y.; Wang, Y.; Wang, Y.; Zhang, Y.; Ding, C.; Huang, B. Correlation Analysis of Serum Biomarkers with Imaging Features and Knee Osteoarthritis Phenotypes: Data from the Osteoarthritis Initiative. J. Clin. Med. 2024, 13, 4744. [Google Scholar] [CrossRef] [PubMed]
- Conaghan, P.G.; Katz, N.; Hunter, D.J.; Guermazi, A.; Hochberg, M.C.; Somberg, K.; Clive, J.; Knight, C.; Johnson, M.; Zhao, L.; et al. Exploring a novel outcome measure of symptom progression in knee osteoarthritis utilizing a large randomized trial. Osteoarthr. Cartil. 2024, 33, 383–390. [Google Scholar] [CrossRef]
- Huang, C.; Song, P.; Huang, M.; Lin, Z.; Liu, B.; Huang, Y.; Wang, Y.; Ding, C.; Wang, K. Machine Learning Uncovers Novel Markers from Single-Cell RNA-Seq Data for Knee Osteoarthritis. Int. J. Mol. Sci. 2024, 25, 10435. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Lin, Z.; Huang, M.; Huang, C.; Song, P.; Wang, Y.; Ding, C.; Huang, Y.; Wang, K. Clustering Analysis of Knee Osteoarthritis Patients Based on Synovial Fluid Multi-Omics Data. Arthritis Res. Ther. 2024, 26, 160. [Google Scholar] [CrossRef] [PubMed]
- Thudium, C.S.; Karsdal, M.A.; Bay-Jensen, A.C. Prediction of Knee Osteoarthritis Progression Using Epidemiological and Molecular Profiles: A Machine Learning Approach. Arthritis Res. Ther. 2024, 26, 59. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, Y.; Wang, Y.; Liu, J.; Ding, C.; Huang, B.; Wang, K. Integration of Multi-Omics and Clinical Data for Prediction of Knee Osteoarthritis Progression. J. Clin. Med. 2024, 13, 3899. [Google Scholar] [CrossRef] [PubMed]
- Bihlet, A.R.; Byrjalsen, I.; Bay-Jensen, A.C.; Andersen, J.R.; Christiansen, C.; Riis, B.J.; Karsdal, M.A. Associations Between Biomarkers of Bone and Cartilage Turnover, Gender, Pain Categories and Radiographic Severity in Knee Osteoarthritis. Arthritis Res. Ther. 2019, 21, 203. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.E.; Fang, F.; Arbeeva, L.; Cleveland, R.J.; Schwartz, T.A.; Callahan, L.F.; Marron, J.S.; Loeser, R.F. A Machine Learning Approach to Knee Osteoarthritis Phenotyping: Data from the FNIH Biomarkers Consortium. Osteoarthr. Cartil. 2019, 27, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Driban, J.B.; Sitler, M.R.; Barbe, M.F.; Balasubramanian, E. Is Pain in One Knee Associated with Isometric Muscle Strength in the Contralateral Limb? Data from the Osteoarthritis Initiative. Am. J. Phys. Med. Rehabil. 2014, 93, 792–803. [Google Scholar] [CrossRef] [PubMed]
- Øiestad, B.E.; Juhl, C.B.; Eitzen, I.; Thorlund, J.B. Knee Extensor Muscle Weakness Is a Risk Factor for Development of Knee Osteoarthritis. A Systematic Review and Meta-Analysis. Osteoarthr. Cartil. 2015, 23, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Bastick, A.N.; Runhaar, J.; Belo, J.N.; Bierma-Zeinstra, S.M. Prognostic Factors for Progression of Clinical Osteoarthritis of the Knee: A Systematic Review of Observational Studies. Arthritis Res. Ther. 2015, 17, 152. [Google Scholar] [CrossRef] [PubMed]
- Mehta, B.; Goodman, S.; DiCarlo, E.; Jannat-Khah, D.; Gibbons, J.A.B.; Otero, M.; Donlin, L.; Pannellini, T.; Robinson, W.H.; Sculco, P.; et al. Machine learning identification of thresholds to discriminate osteoarthritis and rheumatoid arthritis synovial inflammation. Arthritis Res. Ther. 2023, 25, 31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schiratti, J.B.; Allassonnière, S.; Colliot, O.; Durrleman, S. A Bayesian Mixed-Effects Model to Learn Trajectories of Changes from Repeated Manifold-Valued Observations. J. Mach. Learn. Res. 2017, 18, 1–33. [Google Scholar]
- Joseph, G.B.; McCulloch, C.E.; Nevitt, M.C.; Neumann, J.; Gersing, A.S.; Kretzschmar, M.; Schwaiger, B.J.; Lynch, J.A.; Heilmeier, U.; Lane, N.E.; et al. Tool for Osteoarthritis Risk Prediction (TOARP) Over 8 Years Using Baseline Clinical Data, X-Ray, and MRI: Data from the Osteoarthritis Initiative. J. Magn. Reson. Imaging 2018, 47, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yan, X.; Wei, J.; Wang, Y.; Zhang, Y.; Ding, C.; Huang, B.; Wang, K. Multi-View Learning for Knee Osteoarthritis Severity Classification Using Radiomic Features. J. Clin. Med. 2024, 13, 4548. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Cohon, A.; Rose, J.; Majerczyk, N.; Cozzi, B.; Crenshaw, D.; Myers, G. Interpretable Machine Learning Models for Clinical Decision-Making in a High-Need, Value-Based Primary Care Setting. NEJM Catal. 2021, 2. [Google Scholar] [CrossRef]
- Tiulpin, A.; Klein, S.; Bierma-Zeinstra, S.M.A.; Thevenot, J.; Rahtu, E.; van Meurs, J.; Oei, E.H.G.; Saarakkala, S. Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain Radiographs and Clinical Data. Sci. Rep. 2019, 9, 20038. [Google Scholar] [CrossRef]
- Almhdie-Imjabbar, A.; Toumi, H.; Lespessailles, E. Machine Learning-Based Classification of Osteoporotic Vertebral Fractures Using Radiomics Features from CT Images. Diagnostics 2024, 14, 1667. [Google Scholar] [CrossRef] [PubMed]
- D’Antoni, F.; Russo, F.; Ambrosio, L.; Borthakur, A.; Scafoglieri, A.; Beckwée, D.; Cattrysse, E. The Diagnostic Accuracy of Conventional MRI and MRI-Based GSI Quantitative Histogram Analysis in Distinguishing Low-Grade from High-Grade Chondrosarcoma. Diagnostics 2024, 14, 1619. [Google Scholar] [CrossRef] [PubMed]
- Perry, D.C.; Arch, B.; Appelbe, D.; Francis, P.; Craven, J.; Monsell, F.P.; Williamson, P.; Knight, M. The British Orthopaedic Surgery Surveillance Study: Slipped Capital Femoral Epiphysis: The Epidemiology and Two-Year Outcomes from a Prospective UK Cohort. Bone Jt. J. 2022, 104-B, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Konin, G.P.; Walz, D.M. Lumbosacral Transitional Vertebrae: Classification, Imaging Findings, and Clinical Relevance. AJNR Am. J. Neuroradiol. 2010, 31, 1778–1786. [Google Scholar] [CrossRef] [PubMed]
- Knol, M.J.; Le Cessie, S.; Algra, A.; Vandenbroucke, J.P.; Groenwold, R.H. Overestimation of Risk Ratios by Odds Ratios in Trials and Cohort Studies: Alternatives to Logistic Regression. CMAJ 2012, 184, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Hosmer, D.W.; Lemeshow, S.; May, S. Applied Survival Analysis: Regression Modeling of Time-to-Event Data, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 28, pp. 1406–1407. [Google Scholar]
- Altman, D.G.; Bland, J.M. Diagnostic Tests 2: Predictive Values. BMJ 1994, 309, 102. [Google Scholar] [CrossRef] [PubMed]
- Sackett, D.L.; Haynes, R.B. The Architecture of Diagnostic Research. BMJ 2002, 324, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Rembold, C.M. Number Needed to Screen: Development of a Statistic for Disease Screening. BMJ 1998, 317, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Schünemann, H.J.; Oxman, A.D.; Brożek, J.; Glasziou, P.; Jaeschke, R.; Vist, G.E.; Williams, J.W.; Kunz, R.; Craig, J.; Montori, V.M.; et al. Grading Quality of Evidence and Strength of Recommendations for Diagnostic Tests and Strategies. BMJ 2008, 336, 1106–1110. [Google Scholar] [CrossRef] [PubMed]
- Deeks, J.J.; Altman, D.G. Diagnostic Tests 4: Likelihood Ratios. BMJ 2004, 329, 168–169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Doherty, M.; Leeb, B.F.; Alekseeva, L.; Arden, N.K.; Bijlsma, J.W.; Dinçer, F.; Dziedzic, K.; Häuselmann, H.J.; Herrero-Beaumont, G.; et al. EULAR evidence based recommendations for the management of hand osteoarthritis: Report of a Task Force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann. Rheum. Dis. 2007, 66, 377–388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zikria, B.; Rinaldi, J.; Guermazi, A.; Roemer, F.W.; Demehri, S.; Murakami, A.M. The Role of Imaging in Osteoarthritis Diagnosis and Management. Life 2024, 14, 376. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, D.; Roemer, F.W.; Guermazi, A. Imaging of osteoarthritis-recent research developments and future perspective. Br. J. Radiol. 2018, 91, 20170349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, R.; Gowda, C.; Sekhar, T.C.; Vaja, S.; Hage, T.; Sporn, K.; Waisberg, E.; Ong, J.; Zaman, N.; Tavakkoli, A. Advancements in Machine Learning for Precision Diagnostics and Surgical Interventions in Interconnected Musculoskeletal and Visual Systems. J. Clin. Med. 2025, 14, 3669. [Google Scholar] [CrossRef]
- Kwolek, Ł.; Kruczyński, J.; Fryzowicz, A.; Jurkiewicz, A.; Czernicki, K.; Czwojdziński, A.; Gregori, M.; Błażkiewicz, M.; Szulc, A.; Klebaniuk, J.; et al. Radiographic Parameters of Knee Osteoarthritis and Patient-Reported Outcome Measures: A Cross-Sectional Study of a Polish Population. J. Clin. Med. 2024, 13, 4326. [Google Scholar] [CrossRef] [PubMed]
- Waszczykowski, M.; Fabiś-Strobin, A.; Bednarski, I.; Lesiak, A.; Narbutt, J.; Fabiś, J. Serum Biomarkers of Inflammation and Turnover of Joint Cartilage Can Help Differentiate Psoriatic Arthritis (PsA) Patients from Osteoarthritis (OA) Patients. Diagnostics 2020, 11, 52. [Google Scholar] [CrossRef] [PubMed]
- Puts, S.; Njemini, R.; Bilterys, T.; Lefeber, N.; Scheerlinck, T.; Nijs, J.; Beckwée, D.; Bautmans, I. Linking Intra-Articular Inflammatory Biomarkers with Peripheral and Central Sensitization in Late-Stage Knee Osteoarthritis Pain: A Pilot Study. J. Clin. Med. 2024, 13, 5212. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.P.; Deveza, L.A.; Kraus, V.B.; Karsdal, M.; Bay-Jensen, A.C.; Collins, J.E.; Guermazi, A.; Roemer, F.W.; Ladel, C.; Bhagavath, V.; et al. Association of Biochemical Markers with Bone Marrow Lesion Changes on Imaging—Data from the Foundation for the National Institutes of Health Osteoarthritis Biomarkers Consortium. Arthritis Res. Ther. 2024, 26, 30. [Google Scholar] [CrossRef] [PubMed]
- Panizzi, L.; Vignes, M.; Dittmer, K.E.; Waterland, M.R.; Rogers, C.W.; Sano, H.; McIlwraith, C.W.; Riley, C.B. Infrared Spectroscopy of Synovial Fluid Shows Accuracy as an Early Biomarker in an Equine Model of Traumatic Osteoarthritis. Animals 2024, 14, 986. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, O.; Ladlow, P.; Steiner, K.; Kuyser, D.; Ali, O.; Stocks, J.; Valdes, A.M.; Bennett, A.N.; Kluzek, S. Knee MRI Biomarkers Associated with Structural, Functional and Symptomatic Changes at Least a Year from ACL Injury—A Systematic Review. Osteoarthr. Cartil. Open 2023, 5, 100385. [Google Scholar] [CrossRef] [PubMed]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Han, J.; Han, Y.; Song, Y.; Kim, J.; Lee, H.; Lee, S.; Kim, S.J.; Nam, Y.; Park, S.; Lee, J.; et al. Deep Learning-Based Outcome Prediction Using Pre- and Post-Treatment MRI in Patients with Lumbar Disc Herniation. Diagnostics 2024, 14, 1788. [Google Scholar] [CrossRef] [PubMed]
- Zoad, R.; Farooq, M.; Khera, O.; Tahir, M.; Malik, S.; Adhikari, A.; Osman, H.; Mostafa, J.A.; Elkafrawy, P.; Azad, A.; et al. Transforming Healthcare Cybersecurity: A Prescription for Resilience. Cureus 2024, 16, e67249. [Google Scholar] [CrossRef] [PubMed]
- Aarons, G.A.; Hurlburt, M.; Horwitz, S.M. Advancing a Conceptual Model of Evidence-Based Practice Implementation in Public Service Sectors. Adm. Policy Ment. Health 2011, 38, 4–23. [Google Scholar] [CrossRef] [PubMed]
- Damschroder, L.J.; Aron, D.C.; Keith, R.E.; Kirsh, S.R.; Alexander, J.A.; Lowery, J.C. Fostering Implementation of Health Services Research Findings into Practice: A Consolidated Framework for Advancing Implementation Science. Implement. Sci. 2009, 4, 50. [Google Scholar] [CrossRef] [PubMed]
- Feldstein, A.C.; Glasgow, R.E. A Practical, Robust Implementation and Sustainability Model (PRISM) for Integrating Research Findings into Practice. Jt. Comm. J. Qual. Patient Saf. 2008, 34, 228–243. [Google Scholar] [CrossRef] [PubMed]
- Glasgow, R.E.; Vogt, T.M.; Boles, S.M. Evaluating the Public Health Impact of Health Promotion Interventions: The RE-AIM Framework. Am. J. Public Health 1999, 89, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Ericsson, K.A. Deliberate Practice and the Acquisition and Maintenance of Expert Performance in Medicine and Related Domains. Acad. Med. 2004, 79, S70–S81. [Google Scholar] [CrossRef] [PubMed]
- Kneeland, P.P.; Fang, M.C. Improving Diagnostic Reasoning to Improve Patient Safety. Med. Clin. North Am. 2024, 108, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Ericsson, K.A.; Prietula, M.J.; Cokely, E.T. The Making of an Expert. Harv. Bus. Rev. 2007, 85, 114–121, 193. [Google Scholar] [PubMed]
- Kumar, R.; Sporn, K.; Khanna, A.; Paladugu, P.; Gowda, C.; Ngo, A.; Jagadeesan, R.; Zaman, N.; Tavakkoli, A. Integrating Radiogenomics and Machine Learning in Musculoskeletal Oncology Care. Diagnostics 2025, 15, 1377. [Google Scholar] [CrossRef]
- Neumann, P.J.; Sanders, G.D.; Russell, L.B.; Siegel, J.E.; Ganiats, T.G. Cost-Effectiveness in Health and Medicine, 2nd ed.; Oxford University Press: Oxford, UK, 2017; Volume 20, pp. 103–104. [Google Scholar]
- ISO 13485; Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes. International Organization for Standardization: Geneva, Switzerland, 2016.
- Van Calster, B.; Wynants, L.; Verbeke, G.; Van Huffel, S.; Valentin, L.; Timmerman, D. Reporting and Interpreting Decision Curve Analysis: A Guide for Investigators. Eur. Urol. 2018, 74, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Obuchowski, N.A.; Bullen, J.A. Receiver operating characteristic (ROC) curves: Review of methods with applications in diagnostic medicine. Phys. Med. Biol. 2018, 63, 07TR01. [Google Scholar] [CrossRef]
- Moons, K.G.; Altman, D.G.; Reitsma, J.B.; Ioannidis, J.P.; Macaskill, P.; Steyerberg, E.W.; Vickers, A.J.; Ransohoff, D.F.; Collins, G.S. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and Elaboration. Ann. Intern. Med. 2015, 162, W1–W73. [Google Scholar] [CrossRef] [PubMed]
- Welhaven, H.D.; Welfley, A.H.; June, R.K. Osteoarthritis Year in Review 2024: Molecular Biomarkers of Osteoarthritis. Osteoarthr. Cartil. 2025, 33, 67–87. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Song, P.; Guan, Z.; Liu, B.; Huang, Y.; Wang, Y.; Ding, C.; Wang, K. Single-Cell Transcriptomics Reveals Molecular Characteristics of Synovial Tissue in Knee Osteoarthritis. Int. J. Mol. Sci. 2024, 25, 10392. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Huang, C.; Liu, B.; Guan, Z.; Wang, Y.; Ding, C.; Huang, Y.; Wang, K. Proteomic Analysis Identifies Potential Biomarkers for Knee Osteoarthritis Progression. J. Clin. Med. 2024, 13, 4628. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Huang, M.; Song, P.; Guan, Z.; Liu, B.; Huang, Y.; Wang, Y.; Ding, C.; Wang, K. Metabolomic Profiling of Synovial Fluid in Knee Osteoarthritis: Identification of Potential Biomarkers. Metabolites 2024, 14, 432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Song, P.; Huang, C.; Liu, B.; Guan, Z.; Huang, Y.; Ding, C.; Wang, K. Spatial Transcriptomics Reveals Cellular Heterogeneity in Osteoarthritic Synovial Tissue. Arthritis Rheumatol. 2024, 76, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Hu, Y.; Zhang, H.; Wang, S.; Xu, K.; Su, J. Single-cell RNA sequencing in osteoarthritis. Cell Prolif. 2023, 56, e13517. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bay-Jensen, A.C.; Thudium, C.S.; Mobasheri, A. Development and use of biochemical markers in osteoarthritis: Current update. Curr. Opin. Rheumatol. 2018, 30, 121–128. [Google Scholar] [CrossRef]
- Lotz, M.; Martel-Pelletier, J.; Christiansen, C.; Brandi, M.L.; Bruyère, O.; Chapurlat, R.; Collette, J.; Cooper, C.; Giacovelli, G.; Kanis, J.A.; et al. Value of Biomarkers in Osteoarthritis: Current Status and Perspectives. Ann. Rheum. Dis. 2013, 72, 1756–1763. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, Y.; Zhao, X.; Zhang, Y.; Ding, C.; Huang, B.; Wang, K. Radiomics Analysis of Cartilage and Subchondral Bone to Differentiate Knees Predisposed to Posttraumatic Osteoarthritis. Osteoarthr. Cartil. 2023, 31, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Ying, J.; Zhao, T.; Lei, L.; Zhong, L.; Hu, J.; Zhou, J.W.; Huang, C.; Zhang, X. Prediction model for knee osteoarthritis using magnetic resonance-based radiomic features from the infrapatellar fat pad: Data from the osteoarthritis initiative. Quant. Imaging Med Surg. 2023, 13, 352–369. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Wang, Y.; Zhao, X.; Zhang, Y.; Ding, C.; Huang, B.; Wang, K. Automatic Grading Model for Knee Osteoarthritis Using Plain Radiograph Radiomics. J. Clin. Med. 2023, 12, 5134. [Google Scholar] [CrossRef] [PubMed]
- Teoh, Y.J.; Lai, K.W.; Usman, J.; Goh, S.L.; Mohafez, H.; Hasikin, K.; Su, K.; Chu, H.C.; Wu, X.; Dhanalakshmi, S. Exploring the Biomechanical and Biochemical Signatures of Knee Osteoarthritis: Towards Personalized Diagnostics and Targeted Interventions. Diagnostics 2024, 14, 1868. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Yu, C.; Mehrotra, D.R.; Ersland, E.E.; Zbyn, S.; Korna, F.; Staffa, S.J.; Engiles, J.B.; Li, X.; Schaer, T.P.; et al. Raman Spectroscopic Probe Provides Optical Biomarkers of Cartilage Composition Predictive of Tissue Function. Osteoarthr. Cartil. 2025, 33, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Aicher, W.K.; Rolauffs, B. The Spatial Organisation of Joint Surface Chondrocytes: Review of Its Potential Roles in Tissue Functioning, Disease and Early, Preclinical Diagnosis of Osteoarthritis. Ann. Rheum. Dis. 2014, 73, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Caravan, P.; Das, B.; Dumas, S.; Epstein, F.H.; Helm, P.A.; Jacques, V.; Koerner, S.; Kolodziej, A.; Shen, L.; Sun, W.C.; et al. Collagen-Targeted MRI Contrast Agent for Molecular Imaging of Fibrosis. Angew. Chem. Int. Ed. Engl. 2007, 46, 8171–8173. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Park, W.; Lee, J.; Park, J.; Kim, S.; Park, S.; Lee, J.; Kim, J.; Han, Y.; Song, Y.; et al. Photoacoustic Imaging for Non-Invasive Assessment of Knee Osteoarthritis: A Preliminary Study. Photoacoustics 2022, 26, 100346. [Google Scholar] [CrossRef] [PubMed]
- Juras, V.; Szomolanyi, P.; Serfaty, J.M.; Chang, G.; Regatte, R.R.; Trattnig, S. Sodium Imaging at Ultra-High Field MRI: A New Frontier in Musculoskeletal Imaging. NMR Biomed. 2019, 32, e4112. [Google Scholar] [CrossRef] [PubMed]
- Menendez, M.I.; Hettlich, B.; Wei, L.; Knopp, M.V. Dynamic Contrast-Enhanced MRI in Murine Arthritis Models: Evaluation of Perfusion and Inflammation. J. Magn. Reson. Imaging 2018, 47, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Subburaj, K.; Valentinitsch, A.; Dillon, A.B.; Pandit, P.; Li, X.; Link, T.M.; Vail, T.P.; Majumdar, S. Quantitative Evaluation of Bone and Cartilage Changes Using Multispectral MR Imaging Following Bone Marrow Stimulation in a Porcine Model. J. Magn. Reson. Imaging 2015, 41, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- de Vries, B.M.; Zwezerijnen, G.J.C.; Burchell, G.L.; van Velden, F.H.P.; Menke-van der Houven van Oordt, C.W.; Boellaard, R. Explainable artificial intelligence (XAI) in radiology and nuclear medicine: A literature review. Front. Med. 2023, 10, 1180773. [Google Scholar] [CrossRef] [PubMed]
- Reyes, M.; Meier, R.; Pereira, S.; Silva, C.A.; Dahl, A.L.; Brox, T.; Maier-Hein, L.; Handels, H.; Reyes, M.; Shimizu, A.; et al. On the Interpretability of Artificial Intelligence in Radiology: Challenges and Opportunities. Radiol. Artif. Intell. 2020, 2, e190043. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Weng, Y.; Lund, J. Applications of Explainable Artificial Intelligence in Diagnosis and Surgery. Diagnostics 2022, 12, 237. [Google Scholar] [CrossRef] [PubMed]
- Koh, P.W.; Nguyen, T.; Tang, Y.S.; Mussmann, S.; Pierson, E.; Kim, B.; Liang, P. Concept Bottleneck Models. Proc. Mach. Learn. Res. 2020, 119, 5338–5348. [Google Scholar]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I.; Precise4Q Consortium. Explainability for Artificial Intelligence in Healthcare: A Multidisciplinary Perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef] [PubMed]
- Rieke, N.; Hancox, J.; Li, W.; Milletari, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K.; et al. The Future of Digital Health with Federated Learning. NPJ Digit. Med. 2020, 3, 119. [Google Scholar] [CrossRef] [PubMed]
- Dayan, I.; Roth, H.R.; Zhong, A.; Harouni, A.; Gentili, A.; Abidin, A.Z.; Liu, A.; Costa, A.B.; Wood, B.J.; Tsai, C.S.; et al. Federated Learning for Predicting Clinical Outcomes in Patients with COVID-19. Nat. Med. 2021, 27, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
- Kaissis, G.A.; Makowski, M.R.; Rückert, D.; Braren, R.F. Secure, Privacy-Preserving and Federated Machine Learning in Medical Imaging. Nat. Mach. Intell. 2020, 2, 305–311. [Google Scholar] [CrossRef]
- Sheller, M.J.; Edwards, B.; Reina, G.A.; Martin, J.; Pati, S.; Kotrotsou, A.; Milchenko, M.; Xu, W.; Marcus, D.; Colen, R.R.; et al. Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 2020, 10, 12598. [Google Scholar] [CrossRef] [PubMed]
- Pfitzner, B.; Steckhan, N.; Arnrich, B. Federated Learning in a Medical Context: A Systematic Literature Review. ACM Trans. Internet Technol. 2021, 21, 1–31. [Google Scholar] [CrossRef]
- Ng, D.; Lan, X.; Yao, M.M.; Chan, W.P.; Feng, M. Federated Learning: A Collaborative Effort to Achieve Better Medical Imaging Models for Individual Sites That Have Small Labelled Datasets. Quant. Imaging Med. Surg. 2021, 11, 852–857. [Google Scholar] [CrossRef] [PubMed]
Biological Level | Representative Processes | Example Diagnostic Approaches |
---|---|---|
Molecular | Inflammatory signaling, matrix degradation | Biochemical biomarkers, synovial fluid analysis |
Cellular | Chondrocyte apoptosis, immune infiltration | Single-cell analytics, histological methods |
Tissue | Cartilage thinning, bone remodeling | Radiography, MRI, Ultrasound |
Functional/Clinical | Pain, stiffness, mobility limitations | Clinical scoring systems, patient-reported outcomes |
Computational/Integrative | Multimodal data fusion, risk modeling | AI-assisted interpretation, data integration tools |
Category | Key Technologies | Clinical Impact |
---|---|---|
High-Throughput Biomarker Discovery | NGS, Mass Spectrometry, NMR | Accelerates discovery of molecular signatures |
Single-Cell and Spatial Analytics | scRNA-seq, ATAC-seq, Proteomics, Spatial Transcriptomics | Reveals cellular heterogeneity in joint tissues |
Longitudinal Biomarker Studies | Mixed-effects modeling, Trajectory analysis | Tracks biomarker dynamics for prognosis |
Biomarker Standardization | FNIH, OARSI protocols, Reference standards | Ensures reproducibility and clinical adoption |
Molecular Imaging (PET, SPECT, Optical) | 18F-FDG PET, 18F-NaF PET, SPECT | Visualizes inflammation and bone remodeling |
Advanced MRI Techniques | 7T MRI, BOLD-MRI, DCE-MRI, DWI | Quantifies disease activity at high resolution |
Hybrid Imaging Systems | PET/CT, PET/MRI | Improves diagnostic precision via multimodal data |
Explainable AI (XAI) | SHAP, LIME, Grad-CAM, TCAV | Enables transparent AI-driven decision making |
Federated Learning | Federated training, Differential Privacy | Improves generalizability and data privacy |
Edge Computing and Model Compression | Edge AI, GPU/FPGAs, Model compression | Supports real-time, low-latency diagnostics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Sporn, K.; Borole, A.; Khanna, A.; Gowda, C.; Paladugu, P.; Ngo, A.; Jagadeesan, R.; Zaman, N.; Tavakkoli, A. Biomarker-Guided Imaging and AI-Augmented Diagnosis of Degenerative Joint Disease. Diagnostics 2025, 15, 1418. https://doi.org/10.3390/diagnostics15111418
Kumar R, Sporn K, Borole A, Khanna A, Gowda C, Paladugu P, Ngo A, Jagadeesan R, Zaman N, Tavakkoli A. Biomarker-Guided Imaging and AI-Augmented Diagnosis of Degenerative Joint Disease. Diagnostics. 2025; 15(11):1418. https://doi.org/10.3390/diagnostics15111418
Chicago/Turabian StyleKumar, Rahul, Kyle Sporn, Aryan Borole, Akshay Khanna, Chirag Gowda, Phani Paladugu, Alex Ngo, Ram Jagadeesan, Nasif Zaman, and Alireza Tavakkoli. 2025. "Biomarker-Guided Imaging and AI-Augmented Diagnosis of Degenerative Joint Disease" Diagnostics 15, no. 11: 1418. https://doi.org/10.3390/diagnostics15111418
APA StyleKumar, R., Sporn, K., Borole, A., Khanna, A., Gowda, C., Paladugu, P., Ngo, A., Jagadeesan, R., Zaman, N., & Tavakkoli, A. (2025). Biomarker-Guided Imaging and AI-Augmented Diagnosis of Degenerative Joint Disease. Diagnostics, 15(11), 1418. https://doi.org/10.3390/diagnostics15111418