Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = α-boron

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9213 KiB  
Article
Coating of Cubic Boron Nitride Powder with TiN in a Rotating Drum via Gas Phase Processes
by Louis Maier, Mario Krug, Mandy Höhn, Anne-Kathrin Wolfrum, Björn Matthey, Mathias Herrmann, Sören Höhn and Alexander Michaelis
Coatings 2025, 15(6), 711; https://doi.org/10.3390/coatings15060711 - 13 Jun 2025
Viewed by 550
Abstract
To improve the performance of superhard ceramic composites, this study aims to develop a dense, phase-pure, and uniform TiN coating on cubic boron nitride (cBN) particles with a target thickness of at least 150 nm. TiN coatings were applied using atomic layer deposition [...] Read more.
To improve the performance of superhard ceramic composites, this study aims to develop a dense, phase-pure, and uniform TiN coating on cubic boron nitride (cBN) particles with a target thickness of at least 150 nm. TiN coatings were applied using atomic layer deposition (ALD) alone, as well as a combined ALD/chemical vapor deposition (CVD) process. While ALD produced uniform and dense coatings, the thickness remained below 50 nm. The combined ALD/CVD approach achieved greater thicknesses up to 500 nm, though coating homogeneity remained a challenge. Optimization efforts, including increased ALD cycles and reduced CVD pressure, led to improved coating uniformity, with 25%–30% of particles coated to thicknesses ≥ 80 nm. Structural analysis confirmed dense, pore-free TiN1−x layers for all synthesized powders. In contrast, the commercial reference powder showed a non-uniform, multiphase coating (α − Ti, Ti2N, and TiN0.53) with defects. While the ALD/CVD powders exhibited better phase purity than the commercial sample, further optimization is needed to achieve consistent coatings above 150 nm. These results suggest the ALD/CVD route is promising for producing coatings suitable for use in ceramic matrix composites. Full article
Show Figures

Graphical abstract

17 pages, 1481 KiB  
Article
Radiolysis of Sub- and Supercritical Water Induced by 10B(n,α)7Li Recoil Nuclei at 300–500 °C and 25 MPa
by Md Shakhawat Hossen Bhuiyan, Jintana Meesungnoen and Jean-Paul Jay-Gerin
J. Nucl. Eng. 2025, 6(2), 17; https://doi.org/10.3390/jne6020017 - 9 Jun 2025
Viewed by 593
Abstract
(1) Background: Generation IV supercritical water-cooled reactors (SCWRs), including small modular reactor (SCW-SMR) variants, are pivotal in nuclear technology. Operating at 300–500 °C and 25 MPa, these reactors require detailed understanding of radiation chemistry and transient species to optimize water chemistry, reduce corrosion, [...] Read more.
(1) Background: Generation IV supercritical water-cooled reactors (SCWRs), including small modular reactor (SCW-SMR) variants, are pivotal in nuclear technology. Operating at 300–500 °C and 25 MPa, these reactors require detailed understanding of radiation chemistry and transient species to optimize water chemistry, reduce corrosion, and enhance safety. Boron, widely used as a neutron absorber, plays a significant role in reactor performance and safety. This study focuses on the yields of radiolytic species in subcritical and supercritical water exposed to 4He and 7Li recoil ions from the 10B(n,α)7Li fission reaction in SCWR/SCW-SMR environments. (2) Methods: We use Monte Carlo track chemistry simulations to calculate yields (G values) of primary radicals (eaq, H, and OH) and molecular species (H2 and H2O2) from water radiolysis by α-particles and Li3⁺ recoils across 1 picosecond to 0.1 millisecond timescales. (3) Results: Simulations show substantially lower radical yields, notably eaq and OH, alongside higher molecular product yields compared to low linear energy transfer (LET) radiation, underscoring the high-LET nature of 10B(n,α)7Li recoil nuclei. Key changes include elevated G(OH) and G(H2), and a decrease in G(H), primarily driven during the homogeneous chemical stage of radiolysis by the reaction H + H2O → OH + H2. This reaction significantly contributes to H2 production, potentially reducing the need for added hydrogen in coolant water to mitigate oxidizing species. In supercritical conditions, low G(H₂O₂) suggests that H2O2 is unlikely to be a major contributor to material oxidation. (4) Conclusions: The 10B(n,α)7Li reaction’s yield estimates could significantly impact coolant chemistry strategies in SCWRs and SCW-SMRs. Understanding radiolytic behavior in these conditions aids in refining reactor models and coolant chemistry to minimize corrosion and radiolytic damage. Future experiments are needed to validate these predictions. Full article
Show Figures

Figure 1

18 pages, 8696 KiB  
Article
In Situ Ceramic Phase Reinforcement via Short-Pulsed Laser Cladding for Enhanced Tribo-Mechanical Behavior of Metal Matrix Composite FeNiCr-B4C (5 and 7 wt.%) Coatings
by Artem Okulov, Olga Iusupova, Alexander Stepchenkov, Vladimir Zavalishin, Elena Marchenkova, Kun Liu, Jie Li, Tushar Sonar, Aleksey Makarov, Yury Korobov, Evgeny Kharanzhevskiy, Ivan Zhidkov, Yulia Korkh, Tatyana Kuznetsova, Pei Wang and Yuefei Jia
Technologies 2025, 13(6), 231; https://doi.org/10.3390/technologies13060231 - 4 Jun 2025
Viewed by 450
Abstract
This study elucidates the dynamic tribo-mechanical response of laser-cladded FeNiCr-B4C metal matrix composite (MMC) coatings on AISI 1040 steel substrate, unraveling the intricate interplay between microstructural features and phase transformations. A multi-faceted approach, employing high-resolution scanning electron microscopy (SEM) and advanced [...] Read more.
This study elucidates the dynamic tribo-mechanical response of laser-cladded FeNiCr-B4C metal matrix composite (MMC) coatings on AISI 1040 steel substrate, unraveling the intricate interplay between microstructural features and phase transformations. A multi-faceted approach, employing high-resolution scanning electron microscopy (SEM) and advanced X-ray diffraction/Raman spectroscopy techniques, provided a comprehensive characterization of the coatings’ behavior under mechanical and scratch testing, shedding light on the mechanisms governing their wear resistance. Specifically, microstructural analysis revealed uniform coatings with a columnar structure and controlled defect density, showcasing an average thickness of 250 ± 20 μm and a transition zone of 80 ± 10 μm. X-ray diffraction and Raman spectroscopy confirmed the presence of α-Fe (Im-3m), γ-FeNiCr (Fm-3m), Fe2B (I-42m), and B4C (R-3m) phases, highlighting the successful incorporation of B4C reinforcement. The addition of 5 and 7 wt.% B4C significantly increased microhardness, showing enhancements up to 201% compared to the B4C-free FeNiCr coating and up to 351% relative to the AISI 1040 steel substrate, respectively. Boron carbide addition promoted a synergistic strengthening effect between the in situ formed Fe2B and the retained B4C phases. Furthermore, scratch test analysis clarified improved wear resistance, excellent adhesion, and a tailored hardness gradient. These findings demonstrated that optimized short-pulsed laser cladding, combined with moderate B4C reinforcement, is a promising route for creating robust, high-strength FeNiCr-B4C MMC coatings suitable for demanding engineering applications. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

17 pages, 1997 KiB  
Article
Purification of Mogroside V from Crude Extract of Siraitia grosvenorii Using Boronic Acid-Functionalized Silica Gel and Its Hypoglycemic Activity Determination
by Yanmei Xu, Laiming Li, Pingyi Zheng, Ran Zhao, Mengqi Cheng, Yanfang Su, Jame J. Bao and Youxin Li
Separations 2025, 12(6), 135; https://doi.org/10.3390/separations12060135 - 22 May 2025
Viewed by 546
Abstract
Mogroside V crude extract from Siraitia grosvenorii has many pharmacological effects, such as anti-diabetes, antioxidant, etc. It is being used as a kind of natural sweetener in more and more countries. The improvement of Mogroside V purity can greatly promote the utilization value [...] Read more.
Mogroside V crude extract from Siraitia grosvenorii has many pharmacological effects, such as anti-diabetes, antioxidant, etc. It is being used as a kind of natural sweetener in more and more countries. The improvement of Mogroside V purity can greatly promote the utilization value of Siraitia grosvenorii and the quality of related products. For this paper, a boronic acid-functionalized silica gel adsorbent (SiO2-GP-APBA) was synthesized and applied for the first time in the purification of mogroside V from the crude extract of Siraitia grosvenorii. It was demonstrated that it was 30–100 μm with 163.1 μmol/g of boronic acid groups on the surface of silica gel and stable at below 380.20 °C. Its maximum adsorption capacity to mogroside V was up to 206.74 mg/g at room temperature. After the saturated absorption from the crude extract of Siraitia grosvenorii in a pH 3 solution, 96.36% mogroside V could be released from SiO2-GP-APBA using a pH 7 aqueous solution, which was better than ethanol. The purity of mogroside V was significantly increased from 35.67% to 76.34%. Semi-preparative HPLC could further improve the purity of mogroside V to 99.60%. Additionally, the direct inhibition effect of the mogroside V on α-glucosidase was determined for the first time. Its inhibitory constant was 46.11 μM, indicating mogroside V was beneficial for the treatment of diabetes. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Graphical abstract

16 pages, 5233 KiB  
Article
Effects of Colony Breeding System and Nest Architecture on Soil Microbiome and Fertility in the Fungus-Growing Termite Macrotermes barneyi Light
by Jiachang Zhou, Wenquan Qin, Yang Zeng, Xin Huang, Jing Yuan, Yuting Yin, Paike Xu, Xiaohong Fan, Runfeng Zhang, Ganghua Li and Yinqi Zhang
Insects 2025, 16(5), 470; https://doi.org/10.3390/insects16050470 - 29 Apr 2025
Viewed by 705
Abstract
Macrotermes barneyi is a typical fungus-growing termite that forms both monogynous (single queen) and polygynous (multiple queen) colonies in nature. This species influences the local soil fertility in part by redistributing nutrients across the landscape in its habitats. However, how the colony structure [...] Read more.
Macrotermes barneyi is a typical fungus-growing termite that forms both monogynous (single queen) and polygynous (multiple queen) colonies in nature. This species influences the local soil fertility in part by redistributing nutrients across the landscape in its habitats. However, how the colony structure of M. barneyi affects nutrient cycling and microbial communities within the nest is not well understood. In this study, we compared the physicochemical properties and microbial communities across nest parts between monogynous and polygynous colonies of M. barneyi. Our results showed that the fungus garden is the most nutrient-rich part of the nest, with higher soil moisture, organic matter, ammonium nitrogen, nitrate nitrogen, available sulfur, available potassium, available silicon, and available boron than other nest parts. Notably, the fungus garden in monogynous colonies had higher nitrate nitrogen, available sulfur, and available silicon than those in the polygynous colonies. The microbial α-diversity in the fungus garden was lower than that in other parts of the nest. β-diversity analysis revealed a clear separation of microbial communities between monogynous and polygynous colonies across nest parts. Furthermore, the relative abundance of functional genes associated with “cell cycle control, cell division, and chromosome partitioning” was higher in the fungus garden of polygynous colonies compared to monogynous colonies. Our results suggest that the fungus garden plays a crucial role in maintaining colony stability in M. barneyi colonies. The rapid depletion of nutrients in the fungus garden to sustain the larger population in polygynous colonies likely influences microbial community dynamics and nutrient cycling. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

12 pages, 1931 KiB  
Article
Voltammetric Determination of the Total Content of the Most Commonly Occurring Estrogens in Water Media
by Jaromíra Chýlková, Jan Bartáček, Natálie Měchová, Miloš Sedlák and Jiří Váňa
Molecules 2025, 30(3), 751; https://doi.org/10.3390/molecules30030751 - 6 Feb 2025
Viewed by 837
Abstract
Estrogens in aquatic environments pose significant ecological and health risks due to their cumulative effects rather than individual impacts. This study investigates the voltammetric behavior of estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethinylestradiol (EE2), presenting a cost-effective and straightforward method for their [...] Read more.
Estrogens in aquatic environments pose significant ecological and health risks due to their cumulative effects rather than individual impacts. This study investigates the voltammetric behavior of estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethinylestradiol (EE2), presenting a cost-effective and straightforward method for their simultaneous determination. Using differential pulse voltammetry (DPV) with a boron-doped diamond electrode, the method demonstrates high precision (deviations under 4%) and a linear dynamic range of 15.35–134.55 µmol·L−1. Integration of a vacuum evaporation step reduced detection limits to 10−8 mol·L−1, enabling effective analysis of real water samples. This optimized approach ensures practical applicability for monitoring total estrogen content in aquatic systems, providing an accessible and reliable alternative to conventional methods. Full article
Show Figures

Figure 1

18 pages, 4377 KiB  
Article
Deep Convolutional Framelets for Dose Reconstruction in Boron Neutron Capture Therapy with Compton Camera Detector
by Angelo Didonna, Dayron Ramos Lopez, Giuseppe Iaselli, Nicola Amoroso, Nicola Ferrara and Gabriella Maria Incoronata Pugliese
Cancers 2025, 17(1), 130; https://doi.org/10.3390/cancers17010130 - 3 Jan 2025
Cited by 1 | Viewed by 1218
Abstract
Background: Boron neutron capture therapy (BNCT) is an innovative binary form of radiation therapy with high selectivity towards cancer tissue based on the neutron capture reaction 10B(n,α)7Li, consisting in the exposition of patients to neutron beams after administration [...] Read more.
Background: Boron neutron capture therapy (BNCT) is an innovative binary form of radiation therapy with high selectivity towards cancer tissue based on the neutron capture reaction 10B(n,α)7Li, consisting in the exposition of patients to neutron beams after administration of a boron compound with preferential accumulation in cancer cells. The high linear energy transfer products of the ensuing reaction deposit their energy at the cell level, sparing normal tissue. Although progress in accelerator-based BNCT has led to renewed interest in this cancer treatment modality, in vivo dose monitoring during treatment still remains not feasible and several approaches are under investigation. While Compton imaging presents various advantages over other imaging methods, it typically requires long reconstruction times, comparable with BNCT treatment duration. Methods: This study aims to develop deep neural network models to estimate the dose distribution by using a simulated dataset of BNCT Compton camera images. The models pursue the avoidance of the iteration time associated with the maximum-likelihood expectation-maximization algorithm (MLEM), enabling a prompt dose reconstruction during the treatment. The U-Net architecture and two variants based on the deep convolutional framelets framework have been used for noise and artifact reduction in few-iteration reconstructed images. Results: This approach has led to promising results in terms of reconstruction accuracy and processing time, with a reduction by a factor of about 6 with respect to classical iterative algorithms. Conclusions: This can be considered a good reconstruction time performance, considering typical BNCT treatment times. Further enhancements may be achieved by optimizing the reconstruction of input images with different deep learning techniques. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

20 pages, 4594 KiB  
Article
Synthesis of New Promising BNCT Agents Based on Conjugates of closo-Dodecaborate Anion and Aliphatic Diamino Acids
by Margarita N. Ryabchikova, Alexey V. Nelyubin, Ilya N. Klyukin, Nikita A. Selivanov, Alexander Yu. Bykov, Alexey S. Kubasov, Vsevolod A. Skribitsky, Yulia A. Finogenova, Kristina E. Shpakova, Anton A. Kasianov, Alexey A. Lipengolts, Andrey P. Zhdanov, Elena Yu. Grigoreva, Konstantin Yu. Zhizhin and Nikolay T. Kuznetsov
Int. J. Mol. Sci. 2025, 26(1), 68; https://doi.org/10.3390/ijms26010068 - 25 Dec 2024
Cited by 1 | Viewed by 1538
Abstract
In this work, a series of boronated amidines based on the closo-dodecaborate anion and amino acids containing an amino group in the side chain of the general formula [B12H11NHC(NH(CH2)nCH(NH3)COOH)CH3], where [...] Read more.
In this work, a series of boronated amidines based on the closo-dodecaborate anion and amino acids containing an amino group in the side chain of the general formula [B12H11NHC(NH(CH2)nCH(NH3)COOH)CH3], where n = 2, 3, 4, were synthesized. These derivatives contain conserved α-amino and α-carboxyl groups recognized by the binding centers of the large neutral amino acid transporter (LAT) system, which serves as a target for the clinically applied BNCT agent para-boronophenylalanine (BPA). The paper describes several approaches to synthesizing the target compounds, their acute toxicity studies, and tumor uptake studies in vivo in two tumor models. The promising compound [B12H11NHC(NH(CH2)2CH(NH3)COOH)CH3]*3H2O demonstrates low toxicity (LD50 in a range from 150 to 300 mg/kg) and excellent solubility and also shows selective uptake in experimental melanoma in laboratory mice (T/N ratio remained >3 up to 60 min post-injection, with a maximum T/N of 6.2 ± 2.8 at 45 min). Full article
(This article belongs to the Special Issue New Advances in Radiopharmaceuticals and Radiotherapy)
Show Figures

Figure 1

12 pages, 1340 KiB  
Communication
Borylated Monosaccharide 3-Boronic-3-deoxy-d-galactose: Detailed NMR Spectroscopic Characterisation, and Method for Spectroscopic Analysis of Anomeric and Boron Equilibria
by Michela Simone
Int. J. Mol. Sci. 2024, 25(22), 12396; https://doi.org/10.3390/ijms252212396 - 19 Nov 2024
Cited by 1 | Viewed by 964
Abstract
Drug leads with a high Fsp3 index are more likely to possess desirable properties for progression in the drug development pipeline. This paper describes the first detailed NMR analysis of the borylated intermediate 3-deoxy-3-boronodiethanolamine-1,2:5,6-di-O-isopropylidene-α-d-galactofuranose and of the corresponding [...] Read more.
Drug leads with a high Fsp3 index are more likely to possess desirable properties for progression in the drug development pipeline. This paper describes the first detailed NMR analysis of the borylated intermediate 3-deoxy-3-boronodiethanolamine-1,2:5,6-di-O-isopropylidene-α-d-galactofuranose and of the corresponding free monosaccharide analogue 3-boronic-3-deoxy-d-galactose in the early stage of the concurrent equilibrium processes of mutarotation and borarotation. A discussion of all potential equilibria is also presented alongside a comparison with relevant 11B-NMR data available from the scientific literature and our own library. Full article
(This article belongs to the Special Issue Recent Advances: Heterocycles in Drugs and Drug Discovery 2.0)
Show Figures

Figure 1

24 pages, 6212 KiB  
Article
Anti-Diabetic Activities and Molecular Docking Studies of Aryl-Substituted Pyrazolo[3,4-b]pyridine Derivatives Synthesized via Suzuki Cross-Coupling Reaction
by Iqra Rafique, Tahir Maqbool, Floris P. J. T. Rutjes, Ali Irfan and Yousef A. Bin Jardan
Pharmaceuticals 2024, 17(10), 1326; https://doi.org/10.3390/ph17101326 - 4 Oct 2024
Cited by 1 | Viewed by 1918
Abstract
Pyrazolo[3,4-b]pyridine scaffolds have been heavily exploited in the development of nitrogen-containing heterocycles with numerous therapeutic applications in the field of medicinal and pharmaceutical chemistry. The present work describes the synthesis of eighteen biaryl pyrazolo[3,4-b]pyridine ester (6ai [...] Read more.
Pyrazolo[3,4-b]pyridine scaffolds have been heavily exploited in the development of nitrogen-containing heterocycles with numerous therapeutic applications in the field of medicinal and pharmaceutical chemistry. The present work describes the synthesis of eighteen biaryl pyrazolo[3,4-b]pyridine ester (6ai) and hydrazide (7ai) derivatives via the Suzuki cross-coupling reaction. These derivatives were subsequently screened for their therapeutic potential to inhibit the diabetic α-amylase enzyme, which is a key facet of the development of anti-diabetic agents. Initially, the ethyl 4-(4-bromophenyl)-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]pyridine-6-carboxylate 4 was synthesized through a modified Doebner method under solvent-free conditions, providing an intermediate for further derivatization with a 60% yield. This intermediate 4 was subjected to Suzuki cross-coupling, reacting with electronically diverse aryl boronic acids to obtain the corresponding pyrazolo[3,4-b]pyridine ester derivatives (6ai). Following this, the biaryl ester derivatives (6ai) were converted into hydrazide derivatives (7ai) through a straightforward reaction with hydrazine monohydrate and were characterized using 1H-NMR, 13C-NMR, and LC-MS spectroscopic techniques. These derivatives were screened for their α-amylase inhibitory chemotherapeutic efficacy, and most of the biaryl ester and hydrazide derivatives demonstrated promising amylase inhibition. In the (6ai) series, the compounds 6b, 6c, 6h, and 6g exhibited excellent inhibition, with almost similar IC50 values of 5.14, 5.15, 5.56, and 5.20 μM, respectively. Similarly, in the series (7ai), the derivatives 7a, 7b, 7c, 7d, 7f, 7g, and 7h displayed excellent anti-diabetic activities of 5.21, 5.18, 5.17, 5.12, 5.10, 5.16, and 5.19 μM, respectively. These in vitro results were compared with the reference drug acarbose (IC50 = 200.1 ± 0.15 μM), demonstrating better anti-diabetic inhibitory activity in comparison to the reference drug. The in silico molecular docking study results were consistent with the experimental biological findings, thereby supporting the in vitro pharmaceutical efficacy of the synthesized derivatives. Full article
(This article belongs to the Special Issue Pyrazole and Thiazole Derivatives in Medicinal Chemistry)
Show Figures

Figure 1

16 pages, 3174 KiB  
Article
Characterization and Growth Kinetics of Borides Layers on Near-Alpha Titanium Alloys
by Rongxun Piao, Wensong Wang, Biao Hu and Haixia Hu
Materials 2024, 17(19), 4815; https://doi.org/10.3390/ma17194815 - 30 Sep 2024
Cited by 3 | Viewed by 1058
Abstract
Pack boriding with CeO2 was performed on the powder metallurgical (PM) near-α type titanium alloy at a temperature of 1273–1373 K for 5–15 h followed by air cooling. The microstructure analysis showed that the boride layer on the surface of the alloy [...] Read more.
Pack boriding with CeO2 was performed on the powder metallurgical (PM) near-α type titanium alloy at a temperature of 1273–1373 K for 5–15 h followed by air cooling. The microstructure analysis showed that the boride layer on the surface of the alloy was mainly composed of a monolithic TiB2 outer layer, inner whisker TiB and sub-micron sized flake-like TiB layer. The growth kinetics of the TiB2 and TiB layers obeyed the parabolic diffusion model. The diffusion coefficient of boron in the boride layers obtained in the present study was well within the ranges reported in the literature. The activation energies of boron in the TiB2 and TiB layers during the pack boriding were estimated to be 166.4 kJ/mol and 122.8 kJ/mol, respectively. Friction tests showed that alloys borided at moderate temperatures and times had lower friction coefficients, which may have been due to the fine grain strengthening effect of TiB whiskers. The alloy borided at 1273 K for 10 h had a minimum friction coefficient of 0.73. Full article
Show Figures

Figure 1

12 pages, 7972 KiB  
Communication
Wear-Resistant Boronizing for 17-4PH Components of Fluid Pump
by Yongchao Chen, Guoming Chen, Chang Du and Kang Liu
Metals 2024, 14(9), 1072; https://doi.org/10.3390/met14091072 - 19 Sep 2024
Cited by 1 | Viewed by 985
Abstract
The fluid pump was the key component of the formation tester; the pump cylinder, piston, and piston rod of the fluid pump often suffer from wear scratches and seal failure, which greatly reduces the service reliability of the instrument. To improve the wear [...] Read more.
The fluid pump was the key component of the formation tester; the pump cylinder, piston, and piston rod of the fluid pump often suffer from wear scratches and seal failure, which greatly reduces the service reliability of the instrument. To improve the wear resistance of the fluid pump, 17-4PH steel specimens were treated by boronizing at 750 °C for 20 h. Specimens with and without boronizing were studied by OM, SEM, XRD, microhardness test, and wear resistance test. Layers of about 60 μm thickness formed during boronization contain a mixture of FeB, CrB, and α(B)-Fe phases, which leads to a significant improvement in microhardness (from 336 to 980 HV) and wear rate (from 16.4 × 10−5 mm3/Nm to 3.3 × 10−5 mm3/Nm). The pump cylinder and the fluid-pump piston rod were boronized and assembled into the pumping module, which passed the indoor durability test for 90 h and did not show obvious surface wear after 60 h of field experience. For the first time, the boronization process extends the service time of the fluid pump, improving the wear resistance of the pump cylinder and piston rod. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

16 pages, 3770 KiB  
Article
Nutritional Value, Fatty Acid and Phytochemical Composition, and Antioxidant Properties of Mysore Fig (Ficus drupacea Thunb.) Fruits
by Hosakatte Niranjana Murthy, Guggalada Govardhana Yadav, Kadanthottu Sebastian Joseph, Sabha Khan H. S., Snehalata M. Magi, Yaser Hassan Dewir and Nóra Mendler-Drienyovszki
Foods 2024, 13(17), 2845; https://doi.org/10.3390/foods13172845 - 7 Sep 2024
Cited by 2 | Viewed by 1997
Abstract
Ficus drupacea is a fruit-bearing tree that is distributed in Southeast Asia and Australia. The objective of this research was to ascertain the following with regard to ripened fruits: (i) their nutritional value, (ii) their mineral status, (iii) the fatty acid composition of [...] Read more.
Ficus drupacea is a fruit-bearing tree that is distributed in Southeast Asia and Australia. The objective of this research was to ascertain the following with regard to ripened fruits: (i) their nutritional value, (ii) their mineral status, (iii) the fatty acid composition of fruit and seed oil, (iv) their phytochemical makeup, and (v) their antioxidant properties. The ripened fruits contained 3.21%, 3.25%, 0.92%, 1.47%, and 2.20% carbohydrate, protein, fat, ash, and fiber, respectively. Fruits had an energy content of 30.18 kcal/100 g. In terms of mineral content, the fruit was rich in potassium, magnesium, calcium, and nitrogen, with values of 21.03, 13.24, 11.07, and 4.13 mg/g DW. Iron, zinc, manganese, and boron had values of 686.67, 124.33, 114.40, and 35.78 µg/g DW, respectively. The contents of oxalate and phytate were 14.44 and 2.8 mg/g FW, respectively. The fruit and seed oil content were 0.67 and 8.07%, respectively, and the oil’s physicochemical properties were comparable to those of fig fruit and seed oils. Omega-3 (α-linolenic acid), omega-6 (linoleic acid), and omega-9 (oleic acid) fatty acids were abundant in the oils. Fruit extracts in acetone, methanol, and water have greater concentrations of phenolics, flavonoids, and alkaloids. The 2,2-diphenyl-2-picrylhydrazyl, total antioxidant activity, and ferric reducing antioxidant power assays demonstrated increased antioxidant activities in close correlation with the higher concentrations of phenolics, flavonoids, and alkaloids. The results of this study demonstrate that the fruits of F. drupacea are a strong source of nutrients and phytochemicals, and they merit more investigation and thought for possible uses. Full article
Show Figures

Figure 1

29 pages, 5564 KiB  
Review
Synthesis and Properties of α-Phosphate-Modified Nucleoside Triphosphates
by Alina I. Novgorodtseva, Alexander A. Lomzov and Svetlana V. Vasilyeva
Molecules 2024, 29(17), 4121; https://doi.org/10.3390/molecules29174121 - 30 Aug 2024
Viewed by 2603
Abstract
This review article is focused on the progress made in the synthesis of 5′-α-P-modified nucleoside triphosphates (α-phosphate mimetics). A variety of α-P-modified nucleoside triphosphates (NTPαXYs, Y = O, S; X = S, Se, BH3, alkyl, amine, N-alkyl, imido, or others) have [...] Read more.
This review article is focused on the progress made in the synthesis of 5′-α-P-modified nucleoside triphosphates (α-phosphate mimetics). A variety of α-P-modified nucleoside triphosphates (NTPαXYs, Y = O, S; X = S, Se, BH3, alkyl, amine, N-alkyl, imido, or others) have been developed. There is a unique class of nucleoside triphosphate analogs with different properties. The main chemical approaches to the synthesis of NTPαXYs are analyzed and systematized here. Using the data presented here on the diversity of NTPαXYs and their synthesis protocols, it is possible to select an appropriate method for obtaining a desired α-phosphate mimetic. Triphosphates’ substrate properties toward nucleic acid metabolism enzymes are highlighted too. We reviewed some of the most prominent applications of NTPαXYs including the use of modified dNTPs in studies on mechanisms of action of polymerases or in systematic evolution of ligands by exponential enrichment (SELEX). The presence of heteroatoms such as sulfur, selenium, or boron in α-phosphate makes modified triphosphates nuclease resistant. The most distinctive feature of NTPαXYs is that they can be recognized by polymerases. As a result, S-, Se-, or BH3-modified phosphate residues can be incorporated into DNA or RNA. This property has made NTPαXYs a multifunctional tool in molecular biology. This review will be of interest to synthetic chemists, biochemists, biotechnologists, or biologists engaged in basic or applied research. Full article
(This article belongs to the Special Issue Chemistry of Nucleosides and Nucleotides and Their Analogues)
Show Figures

Scheme 1

22 pages, 4697 KiB  
Article
The Chemistry–Process–Structure Relationships of a Functionally Graded Ti-6Al-4V/Ti-1B Alloy Processed with Laser-Engineered Net Shaping Creates Borlite
by D. Seely, M. A. Bagheri, D. Dickel, H. E. Cho, H. Rhee and M. F. Horstemeyer
Materials 2024, 17(14), 3491; https://doi.org/10.3390/ma17143491 - 14 Jul 2024
Cited by 1 | Viewed by 1395
Abstract
We quantify the chemistry–process–structure–property relationships of a Ti-6Al-4V alloy in which titanium-boron alloy (Ti-B) was added in a functionally graded assembly through a laser-engineered net shaping (LENS) process. The material gradient was made by pre-alloyed powder additions to form an in situ melt [...] Read more.
We quantify the chemistry–process–structure–property relationships of a Ti-6Al-4V alloy in which titanium-boron alloy (Ti-B) was added in a functionally graded assembly through a laser-engineered net shaping (LENS) process. The material gradient was made by pre-alloyed powder additions to form an in situ melt of the prescribed alloy concentration. The complex heterogeneous structures arising from the LENS thermal history are completely discussed for the first time, and we introduce a new term called “Borlite”, a eutectic structure containing orthorhombic titanium monoboride (TiB) and titanium. The β-titanium grain size decreased nonlinearly until reaching the minimum when the boron weight fraction reached 0.25%. Similarly, the transformed α-titanium grain size decreased nonlinearly until reaching the minimum level, but the grain size was approximately 2 μm when the boron weight fraction reached 0.6%. Alternatively, the α-titanium grain size increased nonlinearly from 1 to 5 μm as a function of the aluminum concentration increasing from 0% to 6% aluminum by weight and vanadium increasing from 0% to 4% by weight. Finally, the cause–effect relationships related to the creation of unwanted porosity were quantified, which helps in further developing additively manufactured metal alloys. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys II)
Show Figures

Figure 1

Back to TopTop