Purification of Mogroside V from Crude Extract of Siraitia grosvenorii Using Boronic Acid-Functionalized Silica Gel and Its Hypoglycemic Activity Determination
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Reagents
2.2. Instruments
2.3. Preparation of Boronic Acid-Functionalized Affinity Silica Gel
2.3.1. Preparation of Epoxy Groups-Functionalized Silica Gel (SiO2-GP)
2.3.2. Preparation of Phenylboronic Acid-Functionalized Silica Gel
2.4. Determination of Mogroside V
2.5. Adsorption of SiO2-GP-APBA to Mogroside V
2.6. Desorption of Mogroside V from SiO2-GP-APBA
2.7. Semi-Preparation and Further Purification of Mogroside V
3. Results and Discussion
3.1. Preparation of Absorbent with Boronic Acid Group
3.2. Characterization of SiO2-GP-APBA
3.3. The Adsorption of SiO2-GP-APBA to Mogroside V
3.3.1. Effect of Time on Adsorption to Mogroside V
3.3.2. Effect of pH on Adsorption to Mogroside V
3.3.3. Effect of Temperature on Adsorption to Mogroside V
3.3.4. Adsorption Isotherm
3.4. Desorption of Mogroside V from SiO2-GP-APBA
3.5. Further Purification of Mogroside V
3.6. Inhibition of Mogroside V on α-Glucosidase
3.7. The Advantages of SiO2-GP-APBA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Zhang, W.; Zhao, R.; Zhang, X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact. Mater. 2022, 15, 392–408. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Yang, F.Q.; Tang, P.; Gao, T.H.; Yang, C.X.; Tan, L.; Yue, P.; Hua, Y.N.; Liu, S.J.; Guo, J.L. Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomed. Pharmacother. 2022, 151, 113091–113105. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119–109132. [Google Scholar] [CrossRef]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Woo, S.L. Hepatic insulin production for type 1 diabetes. Trends Inendocrinology Metab. 2001, 12, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Heise, T.; Meneghini, L.F. Insulin stacking versus therapeutic accumulation: Understanding the differences. Endocr. Pract. 2014, 20, 75–83. [Google Scholar] [CrossRef]
- Shapiro, A.M.; Lakey, J.R.; Ryan, E.A.; Korbutt, G.S.; Toth, E.; Warnock, G.L.; Kneteman, N.M.; Rajotte, R.V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 2000, 343, 230–238. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, F. Advances in anti-type 2 diabetes drug research. Chin. Remedies Clin. 2017, 17, 833–834. [Google Scholar]
- Gonzalez-Saldivar, G.; Millan-Alanis, J.M.; Gonzalez-Gonzalez, J.G.; Sanchez-Gomez, R.A.; Obeso-Fernandez, J.; McCoy, R.G.; Maraka, S.; Brito, J.P.; Ospina, N.S.; Oyervides-Fuentes, S.; et al. Treatment burden and perceptions of glucose-lowering therapy among people living with diabetes. Prim. Care Diabetes 2022, 16, 568–573. [Google Scholar] [CrossRef]
- Zhou, G.; Yang, N.; Zhang, Y.; Li, X.; Cao, G. Characteristics of sugar substitutes and evaluation of their advantages and disadvantages to human health. Sugarcane Canesugar 2022, 51, 74–81. [Google Scholar]
- Castro-Munoz, R.; Correa-Delgado, M.; Cordova-Almeida, R.; Castro-Munoz, R.; Correa-Delgado, M.; Córdova-Almeida, R.; Lara-Nava, D.; Chávez-Muñoz, M.; Velásquez-Chávez, V.F.; Hernández-Torres, C.E.; et al. Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chem. 2022, 370, 130991–131008. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.A.; Akkermans, S.; Nimmegeers, P.; Van Impe, J.F. Bioproduction of the recombinant sweet protein thaumatin: Current state of the art and perspectives. Front. Microbiol. 2019, 10, 695–713. [Google Scholar] [CrossRef]
- Whitehouse, C.R.; Boullata, J.; Mccauley, L.A. The potential toxicity of artificial sweeteners. Aaohn J. 2008, 56, 251–259. [Google Scholar] [CrossRef]
- Liu, J.H.; Wang, J.X.; Hu, J.J.; Feng, M.; Jiang, H.M.; Li, M.Q.; Lu, K.H.; Yang, X.G.; Liang, X.W. Mogroside V attenuates constant light exposure-induced accumulation of body fat mass in mice. J. South. Agric. 2022, 53, 2624–2633. [Google Scholar]
- Shen, Y.; Lin, S.; Han, C.; Zhu, Z.; Hou, X.; Long, Z.; Xu, K. Rapid identification and quantification of five major mogrosides in Siraitia grosvenorii (Luo-Han-Guo) by high performance liquid chromatography-triple quadrupole linear ion trap tandem mass spectrometry combined with microwave-assisted extraction. Microchem. J. 2014, 116, 142–150. [Google Scholar] [CrossRef]
- Tan, J.Z.; Liao, N.; Zhang, B.; Fan, B. Research on development and application of natural sweeteners. China Food Addit. 2022, 33, 32–39. [Google Scholar]
- Yan, H.; Li, L.; Qin, J.; Lan, J.Y.; Jiang, S.Y.; Li, F. Research advances on Siraitia grosvenorii. J. South. Argiculture 2011, 42, 1387–1391. [Google Scholar]
- Luo, Z.; Shi, H.; Zhang, K.; Qin, X.; Guo, Y.; Ma, X. Liquid chromatography with tandem mass spectrometry method for the simultaneous determination of multiple sweet mogrosides in the fruits of Siraitia grosvenorii and its marketed sweeteners. J. Sep. Sci. 2016, 39, 4124–4135. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.A.; Tomoda, M.; Murata, Y.; Inui, H.; Sugiura, M.; Nakano, Y. Antidiabetic effect of long-term supplementation with Siraitia grosvenori on the spontaneously diabetic Goto-Kakizaki rat. Br. J. Nutr. 2007, 97, 770–775. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Li, Y.; Sun, L.; Xiao, Y.; Gao, W.; Zhang, Z. Mogroside derivatives exert hypoglycemics effects by decreasing blood glucose level in HepG2 cells and alleviates insulin resistance in T2DM rats. J. Funct. Foods 2019, 63, 103566. [Google Scholar] [CrossRef]
- Qi, X.; Chen, W.; Song, Y.; Xie, B.J. Efficacy study on Siraitia Grosvenori powder and its extracts on reducing blood glucose in diabetic rabbits. Food Sci. 2003, 24, 124–127. [Google Scholar]
- Zhou, G.; Zhang, Y.; Li, Y.; Wang, M.; Li, X. The metabolism of a natural product mogroside V, in healthy and type 2 diabetic rats. J. Chromatogr. B 2018, 1079, 25–33. [Google Scholar] [CrossRef]
- Chen, W.J.; Wang, J.; Qi, X.Y.; Xie, B.J. The antioxidant activities of natural sweeteners, mogrosides, from fruits of Siraitia grosvenori. Int. J. Food Sci. Nutr. 2007, 58, 548–556. [Google Scholar] [CrossRef]
- Kai, W.; Zhiren, Z.H.U.; Yingming, P.A.N.; Wang, H.; Meizhen, H.O.U.; Lei, Y. Study on antioxidant activity of different solvents extracts of the stem of Siraitia grosvenori. Sci. Technol. Food Ind. 2008, 29, 57–58,62. [Google Scholar]
- Liqin, Z.; Qi, X.; Chen, W.; Song, Y. Study on in vitro antioxidant activity of extracts from Siraitia grosvenori. Fruits. Food Sci. 2006, 27, 213–216. [Google Scholar]
- Lu, K.; Song, X.; Zhang, P.; Zhao, W.; Zhang, N.; Yang, F.; Guan, W.; Liu, J.; Huang, H.; Ho, C.-T.; et al. Effects of Siraitia grosvenorii extracts on high fat diet-induced obese mice: A comparison with artificial sweetener aspartame. Food Sci. Hum. Wellness 2022, 11, 865–873. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Qin, C.; Wang, W.C.; Sun, S.Y. Research progress of extraction and active of mogroside. Food Res. Dev. 2017, 38, 220–224. [Google Scholar]
- Qi, X.-Y.; Chen, W.J.; Zhang, L.Q.; Xie, B.-J. Mogrosides extract from Siraitia grosvenori scavenges free radicals in vitro and lowers oxidative stress, serum glucose, and lipid levels in alloxan-induced diabetic mice. Nutr. Res. 2008, 28, 278–284. [Google Scholar] [CrossRef]
- Fang, C.; Wang, Q.; Liu, X.; Xu, G. Metabolic profiling analysis of Siraitia grosvenorii revealed different characteristics of green fruit and saccharified yellow fruit. J. Pharm. Biomed. Anal. 2017, 145, 158–168. [Google Scholar] [CrossRef]
- Liu, Z. Refinement study of mogroside (V). Ion Exch. Adsorpt. 1999, 4, 364–368. [Google Scholar]
- Ning, D.; Liang, X.; Fang, H.; Yao, C.H. Preparation of mogroside Ⅴ from the fruits of Siraitia grosvenorii by semi-preparative HPLC. Food Sci. 2010, 31, 137–140. [Google Scholar]
- Cicek, S.S.; Esposito, T.; Girreser, U. Prediction of the sweetening effect of Siraitia grosvenorii (luo han guo) fruits by two-dimensional quantitative NMR. Food Chem. 2021, 335, 127622–127629. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, Y.; Zhou, G.; Li, X. The pharmacokinetic profiles of mogrosides in T2DM rats. J. Ethnopharmacol. 2022, 282, 114639–114647. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Chen, W.; Liu, L.; Yao, P.; Xie, B. Effect of a Siraitia grosvenori extract contalning mogrosides on the cellular immune system of type 1 diabetes mellitus mice. Mol. Nutr. Food Res. 2006, 50, 732–738. [Google Scholar]
- Liu, H.; Qi, X.; Yu, K.; Lu, A.; Lin, K.; Zhu, J.; Zhang, M.; Sun, Z. AMPK activation is involved in hypoglycemic and hypolipidemic activities of mogroside-rich extract from Siraitia grosvenorii (Swingle) fruits on high-fat diet/streptozotocin-induced diabetic mice. Food Funct. 2019, 10, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, H.; Zhang, H.; Wang, Y.; Hu, P. Development of a process for separation of mogroside V from Siraitia grosvenorii by macroporous resins. Molecules 2011, 16, 7288–7301. [Google Scholar] [CrossRef]
- Chiu, C.H.; Wang, R.; Zhuang, S.; Lin, P.Y.; Lo, Y.C.; Lu, T.J. Biotransformation of mogrosides from Siraitia grosvenorii by Ganoderma lucidum mycelium and the purification of mogroside III E by macroporous resins. J. Food Drug Anal. 2020, 28, 74–83. [Google Scholar] [CrossRef]
- Liu, G.; He, A.; Huang, H.; Hung, J.; Xiong, Y. Process optimization study on the purification of sweeteners of mogroside (V) based on macroporous adsorbent resin. Sci-Tech Dev. Enterp. 2021, 6, 42–44. [Google Scholar]
- Yang, H.; Song, H.; Suo, Z.; Li, F.; Jin, Q.; Zhu, X.; Chen, Q. A molecularly imprinted electrochemical sensor based on surface imprinted polymerization and boric acid affinity for selective and sensitive detection of P-glycoproteins. Anal. Chim. Acta 2022, 1207, 339797–339805. [Google Scholar] [CrossRef]
- Ye, F.; Yang, R.; Hua, X.; Zhao, W.; Zhang, W.; Jin, Z. Adsorption characteristics of stevioside and rebaudioside A from aqueous solutions on 3-aminophenylboronic acid-modified poly(divinylbenzene-co-acrylic acid). Sep. Purif. Technol. 2013, 118, 313–323. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Wang, H.; Liu, S.; Bao, J.J. Preparation and evaluation of a novel and high efficient boronic acid-substituted silica supported Pt catalyst. Colloids Surf. A Physicochem. Eng. Asp. 2019, 570, 322–330. [Google Scholar] [CrossRef]
- Zheng, W.; Zheng, P.; Zhao, R.; Xu, X.; Zhang, X.; Yuan, X.; Xu, Y.; Liu, Z.; Li, Y. Fe3O4@SiO2-Protein A-oHSV/CD63 Ab for capturing virus and exosomes. J. Anal. Test. 2024, 8, 335–350. [Google Scholar] [CrossRef]
- Song, Q.; Cheng, M.; Liu, H.; Jia, H.; Nan, Y.; Zheng, W.; Li, Y.; Bao, J.J. Preparation of phenylboronic acid and aldehyde bi-functional groups modified silica absorbent and applications in removing Cr(VI) and reducing to Cr(III). RSC Adv. 2023, 13, 15554–15565. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, C.; Sun, L.; Yu, B.; Cao, M.; Zhong, S. One-step synthesis of boronic acid group modified silica particles bythe aid of epoxy silanes. Appl. Surf. Sci. 2015, 351, 353–357. [Google Scholar] [CrossRef]
- Yin, P.; Xu, Q.; Qu, R.; Zhao, G. Removal of transition metal ions from aqueous solutions by adsorption onto a novel silica gel matrix composite adsorbent. J. Hazard. Mater. 2009, 169, 228–232. [Google Scholar] [CrossRef]
- Yan, J.; Springsteen, G.; Deeter, S.; Wang, B. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols it is not as simple as it appears. Tetrahedron 2014, 60, 11205–11209. [Google Scholar] [CrossRef]
- Chaturvedula, V.S.P.; Prakash, I. Cucurbitane glycosides from Siraitia grosvenorii. J. Carbohydr. Chem. 2011, 30, 16–26. [Google Scholar] [CrossRef]
- Liu, G.; He, A.; Huang, H.; Huang, J.; Xong, Y. Study on process optimization of purification of mogroside V from Siraitia grosvenorii using macroporous adsorption resin. Enterp. Sci. Technol. Dev. 2021, 42, 42–44. [Google Scholar]
- He, A.; Xiong, Y. Study on competitive adsorption behavior of macroporous adsorption resin on Siraitia grosvenorii mogroside V and purification process optimization. Food Sci. Technol. 2023, 48, 188–196. [Google Scholar]
Material | Freundlich Parameters | Langmuir Parameters | ||||
---|---|---|---|---|---|---|
KF | n | RF2 | Q0 | KL | RL2 | |
SiO2-GP-APBA | 105.07 | 2.1124 | 0.9493 | 212.57 | 0.0108 | 0.9962 |
No. | 1H-NMR (600 MHz, DMSO-d6) | 13C-NMR (150 MHz, DMSO-d6) | No. | 1H-NMR (600 MHz, DMSO-d6) | 13C-NMR (150 MHz, DMSO-d6) | |
---|---|---|---|---|---|---|
1 | 1.87 (m, 1H) 1.24 (overlapped, 1H) | 27.6 | G-1 | 1 | 4.36 (d, J = 8.3 Hz, 1H) | 101.8 |
2 | 1.78 (overlapped, 2H) | 28.3 | 2 | 3.36 (overlapped, 1H) | 76.7 | |
3 | 3.35 (overlapped, 1H) | 85.8 | 3 | 3.45–2.90 (m, 1H) | 76.8–73.6 | |
4 | 41.4 | 4 | 3.45–2.90 (m, 1H) | 70.7–70.0 | ||
5 | 143.6 | 5 | 3.45–2.90 (m, 1H) | 76.8–73.6 | ||
6 | 5.34 (d, J = 5.8 Hz, 1H) | 117.2 | 6 | 3.67 (overlapped, 1H) 3.44 (overlapped, 1H) | 61.8/61.1 | |
7 | 2.24 (m, 1H) 1.26 (overlapped, 1H) | 25.7 | G-2 | 1 | 4.16 (d, J = 7.7 Hz, 1H) | 103.0 |
8 | 1.56 (d, J = 8.0 Hz, 1H) | 42.7 | 2 | 2.96 (overlapped, 1H) | 76.8–73.6 | |
9 | 48.9 | 3 | 3.45–2.90 (m, 1H) | 76.8–73.6 | ||
10 | 2.36 (d, J = 11.6 Hz, 1H) | 35.4 | 4 | 3.45–2.90 (m, 1H) | 70.7–70.0 | |
11 | 77.1 | 5 | 3.45–2.90 (m, 1H) | 76.8–73.6 | ||
12 | 1.71 (overlapped, 1H) 1.65 (overlapped, 1H) | 40.1 | 6 | 4.10–4.08 (m, 1H) 3.42 (overlapped, 1H) | 68.8 | |
13 | 46.6 | G-3 | 1 | 4.32 (d, J = 7.8 Hz, 1H) | 103.1 | |
14 | 48.6 | 2 | 2.94 (overlapped, 1H) | 76.8 | ||
15 | 1.10 (overlapped, 1H) 1.01 (overlapped, 1H) | 33.9 | 3 | 3.45–2.90 (m, 1H) | 76.8–73.6 | |
16 | 1.44 (overlapped, 1H) 1.34 (overlapped, 1H) | 28.1 | 4 | 3.45–2.90 (m, 1H) | 70.7–70.0 | |
17 | 1.48 (m, 1H) | 50.0 | 5 | 3.45–2.90 (m, 1H) | 76.8–73.6 | |
18 | 0.81 (s, 3H) | 16.5 | 6 | 3.90 (d, J = 10.6 Hz, 1H) 3.57 (dd, J = 10.6, 7.0 Hz, 1H) | 68.2 | |
19 | 1.00 (s, 3H) | 26.2 | G-4 | 1 | 4.14 (d, J = 7.8 Hz, 1H) | 105.0 |
20 | 39.0 | 2 | 2.93 (overlapped, 1H) | 73.6 | ||
21 | 0.87 (d, J = 6.1 Hz, 3H) | 18.5 | 3 | 3.35 (overlapped, 1H) | 76.7 | |
22 | 1.43 (overlapped, 2H) | 32.3 | 4 | 3.14 (overlapped, 1H) | 76.4 | |
23 | 1.34 (overlapped, 1H) | 35.5 | 5 | 3.45–2.90 (m, 1H) | 76.8–73.6 | |
24 | 3.29 (overlapped, 1H) | 90.0 | 6 | 3.67 (overlapped, 1H) 3.44 (overlapped, 1H) | 61.8/61.1 | |
25 | 71.7 | G-5 | 1 | 4.53 (d, J = 5.9 Hz, 1H) | 103.5 | |
26 | 1.00 (s, 3H) | 26.2 | 2 | 3.36 (overlapped, 1H) | 80.9 | |
27 | 1.02 (s, 3H) | 24.6 | 3 | 3.45–2.90 (m, 1H) | 76.8–73.6 | |
28 | 1.10 (s, 3H) | 25.4 | 4 | 3.45–2.90 (m, 1H) | 70.7–70.0 | |
29 | 0.98 (s, 3H) | 27.2 | 5 | 3.45–2.90 (m, 1H) | 76.8–73.6 | |
30 | 0.77 (s, 3H) | 18.8 | 6 | 3.67 (overlapped, 1H) 3.44 (overlapped, 1H) | 61.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Li, L.; Zheng, P.; Zhao, R.; Cheng, M.; Su, Y.; Bao, J.J.; Li, Y. Purification of Mogroside V from Crude Extract of Siraitia grosvenorii Using Boronic Acid-Functionalized Silica Gel and Its Hypoglycemic Activity Determination. Separations 2025, 12, 135. https://doi.org/10.3390/separations12060135
Xu Y, Li L, Zheng P, Zhao R, Cheng M, Su Y, Bao JJ, Li Y. Purification of Mogroside V from Crude Extract of Siraitia grosvenorii Using Boronic Acid-Functionalized Silica Gel and Its Hypoglycemic Activity Determination. Separations. 2025; 12(6):135. https://doi.org/10.3390/separations12060135
Chicago/Turabian StyleXu, Yanmei, Laiming Li, Pingyi Zheng, Ran Zhao, Mengqi Cheng, Yanfang Su, Jame J. Bao, and Youxin Li. 2025. "Purification of Mogroside V from Crude Extract of Siraitia grosvenorii Using Boronic Acid-Functionalized Silica Gel and Its Hypoglycemic Activity Determination" Separations 12, no. 6: 135. https://doi.org/10.3390/separations12060135
APA StyleXu, Y., Li, L., Zheng, P., Zhao, R., Cheng, M., Su, Y., Bao, J. J., & Li, Y. (2025). Purification of Mogroside V from Crude Extract of Siraitia grosvenorii Using Boronic Acid-Functionalized Silica Gel and Its Hypoglycemic Activity Determination. Separations, 12(6), 135. https://doi.org/10.3390/separations12060135