Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (353)

Search Parameters:
Journal = Separations
Section = Analysis of Natural Products and Pharmaceuticals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4330 KiB  
Article
Extraction of Terpenoids from Pine Needle Biomass Using Dimethyl Ether
by Gary S. Groenewold, Christopher Orme, Caleb Stetson, Rebecca M. Brown, Lynn M. Wendt and Aaron D. Wilson
Separations 2025, 12(7), 169; https://doi.org/10.3390/separations12070169 - 26 Jun 2025
Viewed by 494
Abstract
Pine needles are an industrial feedstock for extracts used in a variety of applications, but conventional extraction methods often result in a degradation of the terpenoid compounds that naturally occur in loblolly pine (Pinus taeda). Separation of these compounds from pine [...] Read more.
Pine needles are an industrial feedstock for extracts used in a variety of applications, but conventional extraction methods often result in a degradation of the terpenoid compounds that naturally occur in loblolly pine (Pinus taeda). Separation of these compounds from pine biomass is an energy-intensive operation, typically requiring a significant input of thermal energy. An alternative separation approach with potential energy savings is extraction with a condensable gas, namely, dimethyl ether. Biomass materials are exposed to liquid dimethyl ether under pressure, which mobilizes the organics. The extract is then separated from the insoluble pine matter, and dimethyl ether is volatilized away from the separated organic species. A variety of terpene derivatives were extracted from pine needle biomass using this approach, including monoterpenes, sesquiterpenes, and related oxygenates, which were identified using two-dimensional gas chromatography/mass spectrometry. Additionally, the dimethyl ether-treated needles resemble needles subjected to low-temperature drying, whereas needles treated with a high-temperature drying method appear to have shrunken structures. The results suggest that dimethyl ether extraction has significant potential for separating valuable organics from complex matrices without the application of thermal energy during treatment. Full article
Show Figures

Figure 1

23 pages, 1098 KiB  
Article
Separation of Bioactive Compounds from Pfaffia glomerata: Drying, Green Extraction, and Physicochemical Properties
by Marcela Moreira Terhaag, Ana Catarina Mosquera dos Santos, Daniel Gonzaga de Lima, Otavio Akira Sakai, Giselle Giovanna do Couto de Oliveira, Cristiane Mengue Feniman Moritz, Bogdan Demczuk Junior, Jorcilene dos Santos Silva, Suelen Pereira Ruiz, Maria Graciela Iecher Faria, Beatriz Cervejeira Bolanho Barros and Erica Marusa Pergo Coelho
Separations 2025, 12(6), 164; https://doi.org/10.3390/separations12060164 - 17 Jun 2025
Viewed by 378
Abstract
Leaves (LV), stems (STs), and inflorescences (IFs) of Pfaffia glomerata are usually discarded despite containing various bioactive compounds, especially β-ecdysone saponin. The objective was to optimize by desirability (DI) the ultrasound-assisted extraction (UAE) of bioactive compounds (total phenolics (TPCs), antioxidant activity (AA), and [...] Read more.
Leaves (LV), stems (STs), and inflorescences (IFs) of Pfaffia glomerata are usually discarded despite containing various bioactive compounds, especially β-ecdysone saponin. The objective was to optimize by desirability (DI) the ultrasound-assisted extraction (UAE) of bioactive compounds (total phenolics (TPCs), antioxidant activity (AA), and total saponins) from the aerial parts (LV, ST, and IF) of P. glomerata. Ideal drying conditions were determined and the drying kinetics were evaluated. LV, STs, and IFs were dried and extracted (0.06 g/mL 80% EtOH) in a USS (6 cm × 12 mm, pulse 3/6 s) by Central Composite Design (CCD), varying sonication power (140–560 W) and time (11–139 min), with TPC, AA by DPPH, and total saponin content as responses. The DI indicated that the higher TPC, AA, and saponin levels were obtained at 136.5 min and 137.87 W (STs), and 138.6 min and 562.32 W (LV and IFs). IF extracts contained higher saponin, TPCs, and AA. Higher β-ecdysone levels (3.90 mg g−1) were present in the leaves. Several phenolics were detected in area parts of P. glomerata, the most abundant being p-coumaric acid (LV) and nicotinic acid (STs and IFs). These compounds provide potential health benefits. Phytol was found in all extracts. Extracts by UAE from leaves have antibacterial potential, with demonstrated inhibitory effects against S. aureus, E. coli, L. monocytogenes, S. Typhi, and P. aeruginosa, and presented bactericidal effects against E. coli, L. monocytogenes, and S. Typhi. Aerial parts of P. glomerata can be used to obtain extracts by UAE rich in bioactive compounds, providing complete utilization of the plant and sustainability to cultivation. This work represents the first report on the application of ecofriendly UAE techniques to extract bioactive compounds from the aerial parts of Brazilian ginseng. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Graphical abstract

14 pages, 498 KiB  
Article
Multivariate Analysis of UPLC-MS/MS Metabolomic Profiles in Four Hiraea Species (Malpighiaceae)
by Jaqueline Munise Guimarães da Silva, Rafael Felipe de Almeida and Maria Luiza Zeraik
Separations 2025, 12(6), 159; https://doi.org/10.3390/separations12060159 - 11 Jun 2025
Viewed by 320
Abstract
The presence of bioactive compounds is reported in several Malpighiaceae species. However, little metabolomic information is documented in the genus Hiraea (Malpighiaceae). Thus, the objective was to identify secondary metabolites in the leaves of Hiraea cuiabensis, H. hatschbachii, H. reclinata, [...] Read more.
The presence of bioactive compounds is reported in several Malpighiaceae species. However, little metabolomic information is documented in the genus Hiraea (Malpighiaceae). Thus, the objective was to identify secondary metabolites in the leaves of Hiraea cuiabensis, H. hatschbachii, H. reclinata, and H. restingae using ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS/MS) and to compare the profiles by VIP score (partial least squares discriminant analysis, PLS-DA). Leaves were extracted with ethanol–water (4:1 v/v) and subjected to UPLC-MS/MS. The UPLC-MS/MS chromatographic profiles (in both positive and negative ionization modes) were separately processed and compared using the VIP score (PLS-DA). Fifty compounds were annotated, forty-five for the first time in the genus Hiraea, including flavonoids and phenolic acids, such as chlorogenic acid. The VIP score analysis revealed differences in the intensities of the compounds identified in Hiraea leaves (95% confidence), with rutin and myricitrin as the key metabolites for distinguishing among the four Hiraea species. These findings contributed to an understanding of the chemical diversity within Hiraea, suggesting possible ecological adaptations and potential pharmacological applications. Full article
Show Figures

Figure 1

21 pages, 1368 KiB  
Article
Green Extraction Combined with Chemometric Approach: Profiling Phytochemicals and Antioxidant Properties of Ten Species of the Lamiaceae Family
by Branislava Teofilović, Emilia Gligorić, Martina Ninić, Saša Vukmirović, Žarko Gagić, Nebojša Mandić-Kovačević, Biljana Tubić, Đorđe Đukanović and Nevena Grujić-Letić
Separations 2025, 12(6), 155; https://doi.org/10.3390/separations12060155 - 8 Jun 2025
Viewed by 413
Abstract
The pharmacological potential of Lamiaceae plants is primarily linked to their high content of phenolic acids and flavonoids, known for strong antioxidant properties. This study investigated the antioxidant activity of ten widely used Lamiaceae herbs—oregano, lavender, basil, savory, garden thyme, wild thyme, sage, [...] Read more.
The pharmacological potential of Lamiaceae plants is primarily linked to their high content of phenolic acids and flavonoids, known for strong antioxidant properties. This study investigated the antioxidant activity of ten widely used Lamiaceae herbs—oregano, lavender, basil, savory, garden thyme, wild thyme, sage, rosemary, lemon balm, and mint—prepared as traditional infusions and microwave-assisted extracts. The antioxidant capacity was evaluated using spectrophotometric assays, and total phenolics and flavonoids were quantified via spectrophotometry and HPLC. Chemometric analysis (PCA) was applied to explore correlations among antioxidant parameters. The results demonstrated excellent antioxidant activity across all samples. The IC50 for DPPH radicals was in the range from 3.73(0.13) to 8.03(0.17) μg/mL and that for ABTS radicals was from 2.89(0.12) to 8.55(0.34). The CUPRAC antioxidant assay delivered values in the range from 351.93(11.85) to 1129.68(44.46) μg TE/mg DE. The FRAP method produced values from 1.27(0.03) to 6.60(0.26) μmol Fe/mg DE. The presence of gallic acid was detected in all examined samples, with lemon balm and lavender exhibiting the highest concentrations across both applied extraction methods. Notably, lavender showed especially high levels of p-hydroxybenzoic acid and chlorogenic acid. Microwave-assisted extraction generally yielded higher levels of bioactive compounds compared to infusion. These findings highlight the potential of Lamiaceae herbal extracts, particularly those obtained through microwave-assisted extraction, as valuable sources of dietary antioxidants for everyday use. Full article
Show Figures

Figure 1

14 pages, 1004 KiB  
Article
Physicochemical and Phytochemical Determinations of Greek “Kollitsida’’ (Arctium lappa L.) from Different Regions and Evaluation of Its Antimicrobial Activity
by Dimitrios G. Lazaridis, Sokratis D. Giannoulis, Maria Simoni, Vassilios K. Karabagias, Nikolaos D. Andritsos, Vasileios Triantafyllidis and Ioannis K. Karabagias
Separations 2025, 12(6), 151; https://doi.org/10.3390/separations12060151 - 4 Jun 2025
Viewed by 434
Abstract
The present study aimed to investigate Greek Kollitsida root samples from different geographical regions based on physicochemical and antibacterial analyses. For this purpose, samples were treated with different solvents, deionized water (solvent A) and ethanol of grape origin (solvent B), to monitor if [...] Read more.
The present study aimed to investigate Greek Kollitsida root samples from different geographical regions based on physicochemical and antibacterial analyses. For this purpose, samples were treated with different solvents, deionized water (solvent A) and ethanol of grape origin (solvent B), to monitor if the physicochemical and phytochemical parameter values can be affected by the type of solvent. Results showed that the extraction solvent affected the physicochemical and phytochemical profile of Kollitsida. In addition, the aqueous and ethanolic extracts showed antibacterial activity against Salmonella typhimurium and Staphylococcus aureus, which was also affected by the geographical origin of Kollitsida samples. Finally, the application of multivariate analysis on the data obtained using deionized water or ethanol of grape origin as an extraction solvent for the analyses classified samples according to their geographical origin by 100%, using the cross-validation method of linear discriminant analysis. The study brings new knowledge regarding the physicochemical, phytochemical, and antibacterial profiles, along with the authenticity, of Greek Kollitsida. Full article
Show Figures

Graphical abstract

19 pages, 533 KiB  
Review
Extraction of Phenolic Compounds from Agro-Industrial By-Products Using Natural Deep Eutectic Solvents: A Review of Green and Advanced Techniques
by Fernanda de Sousa Bezerra and Maria Gabriela Bello Koblitz
Separations 2025, 12(6), 150; https://doi.org/10.3390/separations12060150 - 3 Jun 2025
Cited by 1 | Viewed by 810
Abstract
As sustainability gains prominence, the circular economy has encouraged the valorization of agri-food by-products, which are rich in phenolic compounds known for their antioxidant and anti-inflammatory properties. Conventional extraction methods commonly employ organic solvents, which contradict green chemistry principles. Natural deep eutectic solvents [...] Read more.
As sustainability gains prominence, the circular economy has encouraged the valorization of agri-food by-products, which are rich in phenolic compounds known for their antioxidant and anti-inflammatory properties. Conventional extraction methods commonly employ organic solvents, which contradict green chemistry principles. Natural deep eutectic solvents (NaDESs) have emerged as environmentally friendly alternatives for recovering bioactive compounds from food waste. This review investigated recent studies (2020–2024) on ultrasound (UAE), microwave (MAE), and pressurized liquid extraction (PLE) using NaDESs to extract phenolic compounds from agri-food by-products. A total of 116 publications were initially identified, of which 19 met the inclusion criteria. UAE combined with NaDESs proved effective, particularly for fruit and oilseed residues. MAE achieved good yields for phenolic acids and flavonoids but showed limitations on high temperatures. PLE, though less explored, demonstrated promising results when optimized for temperature, pressure, and NaDES composition. The combination of NaDESs with assisted extraction techniques enhanced yield, selectivity, and environmental performance compared to conventional approaches. These findings highlight a greener and more efficient strategy for phenolic recovery within a biorefinery framework. Ultimately, this approach contributes to the sustainable management and valorization of agri-food by-products, supporting circular economy principles and the development of cleaner extraction technologies for functional ingredients. Full article
Show Figures

Figure 1

20 pages, 2180 KiB  
Article
Effective Liquid–Liquid Extraction for the Recovery of Grape Pomace Polyphenols from Natural Deep Eutectic Solvents (NaDES)
by Alessandro Frontini, Giulio Tarentini, Carmine Negro, Andrea Luvisi, Massimiliano Apollonio and Luigi De Bellis
Separations 2025, 12(6), 148; https://doi.org/10.3390/separations12060148 - 2 Jun 2025
Viewed by 609
Abstract
Natural deep eutectic solvents (NaDESs) are emerging solvents for their yield when used for extraction of different molecules, including polyphenols. NaDESs are a cutting-edge technology that offers numerous advantages, including cheap cost, safety, effectiveness and environmental friendliness. However, due to NaDES’ high boiling [...] Read more.
Natural deep eutectic solvents (NaDESs) are emerging solvents for their yield when used for extraction of different molecules, including polyphenols. NaDESs are a cutting-edge technology that offers numerous advantages, including cheap cost, safety, effectiveness and environmental friendliness. However, due to NaDES’ high boiling point, the recovery and separation of compounds after the extraction is the bottleneck of the process. In this work, two affordable methods were tested for the recovery of phenolic compounds from three binary NaDESs (composed of choline chloride mixed separately with lactic acid, tartaric acid or glycerol as hydrogen bond donors): the antisolvent and the liquid–liquid extraction methods. The former was assessed by diluting the extracts with different aliquots of water, employed as antisolvent, which was ineffective. For the liquid–liquid extraction method, ethyl acetate (EtOAc), acetonitrile (ACN), 2-chlorobutane (2-CB) and 2-methyltetrahydrofuran (2-MeTHF) were compared. Except for ACN, all solvents were perfectly immiscible with the three NaDESs, forming biphasic systems that were analyzed by colorimetric assays and HPLC/MS. 2-MeTHF applied on a 10-fold water dilution of the NaDES extract reached recovery percentages higher than 90% for most of the non-anthocyanin phenols and good recovery (up to 80%) for some anthocyanins. 2-MeTHF appears to be the first known solvent capable of extracting anthocyanins from NaDESs. Finally, a two-step liquid–liquid extraction performed firstly with EtOAc and subsequently with 2-MeTHF is proposed for the separation of different phenolic fractions. Full article
Show Figures

Figure 1

15 pages, 715 KiB  
Article
Essential Oils as Nature’s Dual Powerhouses for Agroindustry and Medicine: Volatile Composition and Bioactivities—Antioxidant, Antimicrobial, and Cytotoxic
by Javier Rocha-Pimienta, Javier Espino, Sara Martillanes and Jonathan Delgado-Adámez
Separations 2025, 12(6), 145; https://doi.org/10.3390/separations12060145 - 1 Jun 2025
Viewed by 459
Abstract
Essential oils (EOs), which are complex mixtures of plant-derived volatile compounds, have been utilized for centuries in the medical, food, and pharmaceutical industries because of their diverse biological properties. In recent years, there has been growing interest in elucidating the bioactivities of essential [...] Read more.
Essential oils (EOs), which are complex mixtures of plant-derived volatile compounds, have been utilized for centuries in the medical, food, and pharmaceutical industries because of their diverse biological properties. In recent years, there has been growing interest in elucidating the bioactivities of essential oils and their underlying mechanisms of action. This study aimed to investigate the antioxidant, antimicrobial, and cytotoxic characteristics of Laurus nobilis, Eucalyptus camaldulensis, Rosmarinus officinalis, and Mentha suaveolens oils and relate them to their volatile compound content. The volatile compounds of the essential oils were characterized and quantified by gas chromatography, the antioxidant activity was quantified using the ABTS assay, the antibacterial activity was quantified using broth microdilution and agar diffusion techniques, and the MTT assay was used to establish the cytotoxic potential. This study revealed a significant antioxidant capacity, which correlated with the proportion of terpenes known for their antioxidant properties. The antioxidant potency was ranked in descending order: R. officinalis, M. suaveolens, E. camaldulensis, and L. nobilis. Antimicrobial testing demonstrated that all the examined essential oils were effective against the evaluated microbial species, including both Gram-positive (Listeria innocua) and Gram-negative (Escherichia coli) bacteria. Additionally, all the tested essential oils triggered cell death in the human epithelioid cervical carcinoma (HeLa) cell line. Collectively, this article highlights the promising therapeutic and alimentary potential of essential oils and underscores the need for further research to fully harness their benefits in industrial settings. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Figure 1

16 pages, 4649 KiB  
Article
Rapid Two-Step Isolation of Kaempferol from the Hosta plantaginea Flower and Its Anti-Inflammatory Mechanism: Evidence from Network Pharmacology, Molecular Docking, Molecular Dynamics Simulation, and Experimental Validation
by Yating Yang, Bowei Xia, Huan Ouyang, Junyu Guo, Qingya Hu, Li Yang and Junwei He
Separations 2025, 12(6), 138; https://doi.org/10.3390/separations12060138 - 23 May 2025
Cited by 1 | Viewed by 369
Abstract
The rapid isolation of target constituents from natural products poses a significant challenge and is a key focus in current research. The Hosta plantaginea flower (HPF), a traditional Chinese medicinal herb, is primarily used to treat inflammatory diseases, with kaempferol as one of [...] Read more.
The rapid isolation of target constituents from natural products poses a significant challenge and is a key focus in current research. The Hosta plantaginea flower (HPF), a traditional Chinese medicinal herb, is primarily used to treat inflammatory diseases, with kaempferol as one of its major bioactive constituents. In this study, macroporous adsorption resin was used to purify total flavonoids (TF) from the HPFs. The 50% ethanol–water elution fraction of the TF was then recrystallized to yield kaempferol with a purity of 99.44%. Network pharmacology analysis identified 61 potential kaempferol-inflammation targets, which were linked to the PI3K-Akt and TNF signaling pathways. Molecular docking and molecular dynamics simulations revealed the stability and binding of kaempferol to PI3K, Akt, and TNF-α proteins. The analysis metrics included binding ability, the root mean square deviation (RMSD), radius of gyration, free energy landscape, solvent-accessible surface area, hydrogen bond count, RMS fluctuation, free binding energy, amino acid residue free energy decomposition, and principal component analysis. The anti-inflammatory mechanism of kaempferol was further validated in an LPS-induced RAW264.7 cell model, where it was shown to inhibit the PI3K-Akt and TNF-α signaling pathways. This study provides new insights into the anti-inflammatory mechanism of kaempferol and presents novel strategies for the rapid isolation of target constituents from natural products. Full article
Show Figures

Figure 1

17 pages, 1997 KiB  
Article
Purification of Mogroside V from Crude Extract of Siraitia grosvenorii Using Boronic Acid-Functionalized Silica Gel and Its Hypoglycemic Activity Determination
by Yanmei Xu, Laiming Li, Pingyi Zheng, Ran Zhao, Mengqi Cheng, Yanfang Su, Jame J. Bao and Youxin Li
Separations 2025, 12(6), 135; https://doi.org/10.3390/separations12060135 - 22 May 2025
Viewed by 488
Abstract
Mogroside V crude extract from Siraitia grosvenorii has many pharmacological effects, such as anti-diabetes, antioxidant, etc. It is being used as a kind of natural sweetener in more and more countries. The improvement of Mogroside V purity can greatly promote the utilization value [...] Read more.
Mogroside V crude extract from Siraitia grosvenorii has many pharmacological effects, such as anti-diabetes, antioxidant, etc. It is being used as a kind of natural sweetener in more and more countries. The improvement of Mogroside V purity can greatly promote the utilization value of Siraitia grosvenorii and the quality of related products. For this paper, a boronic acid-functionalized silica gel adsorbent (SiO2-GP-APBA) was synthesized and applied for the first time in the purification of mogroside V from the crude extract of Siraitia grosvenorii. It was demonstrated that it was 30–100 μm with 163.1 μmol/g of boronic acid groups on the surface of silica gel and stable at below 380.20 °C. Its maximum adsorption capacity to mogroside V was up to 206.74 mg/g at room temperature. After the saturated absorption from the crude extract of Siraitia grosvenorii in a pH 3 solution, 96.36% mogroside V could be released from SiO2-GP-APBA using a pH 7 aqueous solution, which was better than ethanol. The purity of mogroside V was significantly increased from 35.67% to 76.34%. Semi-preparative HPLC could further improve the purity of mogroside V to 99.60%. Additionally, the direct inhibition effect of the mogroside V on α-glucosidase was determined for the first time. Its inhibitory constant was 46.11 μM, indicating mogroside V was beneficial for the treatment of diabetes. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Graphical abstract

14 pages, 1459 KiB  
Article
Rapid Determination of Nimesulide by Capillary Zone Electrophoresis in Various Pharmaceutical Formulations
by Claudia Vinci Ho and Jiří Pazourek
Separations 2025, 12(5), 132; https://doi.org/10.3390/separations12050132 - 19 May 2025
Viewed by 660
Abstract
Nimesulide is a popular non-steroidal anti-inflammatory drug (NSAID) and a cyclooxygenase-2 inhibitor available in more than 50 countries worldwide. A rapid and simple method for nimesulide determination is presented. Experimental parameters based on a previously published work were revised and adopted into a [...] Read more.
Nimesulide is a popular non-steroidal anti-inflammatory drug (NSAID) and a cyclooxygenase-2 inhibitor available in more than 50 countries worldwide. A rapid and simple method for nimesulide determination is presented. Experimental parameters based on a previously published work were revised and adopted into a method with significantly better performance: pH was shifted from 8.10 to 9.25, borate background electrolyte concentration from 10 to 60 mM—resulting in a run time less than 4 min, and number of theoretical plates greater than 100,000. The method was validated and applied for the determination of nimesulide in three formulations with the active substance of nimesulide: tablets, gel, and powder (in sachets for oral suspension). Also, the tablets were tested for uniformity of content of single-dose preparations according to Ph. Eur. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Graphical abstract

11 pages, 1447 KiB  
Article
Development and Validation of a Sensitive LC-MS/MS Method for the Determination of N-Nitroso-Atenolol in Atenolol-Based Pharmaceuticals
by Soonho Kwon, Sang-Hyun Ahn, Yongha Chang, Joon-Sang Park, Hwangeui Cho and Jung-Bok Kim
Separations 2025, 12(5), 122; https://doi.org/10.3390/separations12050122 - 12 May 2025
Viewed by 1056
Abstract
The recent detection of N-nitroso-atenolol, a mutagenic and potentially carcinogenic impurity in atenolol-based pharmaceuticals, has raised serious safety concerns and emphasized the need for stringent analytical control. This study developed and validated a highly sensitive LC-MS/MS method for quantifying N-nitroso-atenolol in both active [...] Read more.
The recent detection of N-nitroso-atenolol, a mutagenic and potentially carcinogenic impurity in atenolol-based pharmaceuticals, has raised serious safety concerns and emphasized the need for stringent analytical control. This study developed and validated a highly sensitive LC-MS/MS method for quantifying N-nitroso-atenolol in both active pharmaceutical ingredients (APIs) and finished products. Quantification was carried out using multiple reaction monitoring (MRM) under positive-mode electrospray ionization (ESI). Separation was performed on a C18 reversed-phase column with a gradient of water and methanol containing 0.1% formic acid. The method was validated to meet a specification limit of 15 ng/mg, with a linear range of 0.5–80 ng/mL, effectively covering 10–400% of the regulatory threshold. The method exhibited an excellent performance in terms of specificity, accuracy, precision, linearity, and robustness. It achieved a limit of detection (LOD) of 0.2 ng/mL (0.30 ng/mg) and a limit of quantification (LOQ) of 0.5 ng/mL (0.75 ng/mg), alongside a comprehensive uncertainty analysis with an expanded uncertainty of ±3.86 mg/kg. Application to commercial atenolol products confirmed the reliability and practical utility of the method. This validated approach offers a critical tool for pharmaceutical manufacturers and regulatory agencies to monitor and control N-nitroso-atenolol, ensuring compliance and enhancing patient safety. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Graphical abstract

19 pages, 3465 KiB  
Article
Metabolic Profiling and Pharmacokinetics Characterization of Yinhua Pinggan Granules with High-Performance Liquid Chromatography Combined with High-Resolution Mass Spectrometry
by Ningning Gu, Haofang Wan, Imranjan Yalkun, Yu He, Yihang Lu, Chang Li and Haitong Wan
Separations 2025, 12(5), 113; https://doi.org/10.3390/separations12050113 - 28 Apr 2025
Viewed by 560
Abstract
Yinhua Pinggan Granules (YPG) is a patented traditional Chinese medicine (TCM) compound prescription, with wide clinical application against cold, cough, and relevant diseases. However, the chemical profiles of YPG in vivo are still unknown, hindering further pharmacological and quality control (QC) researches. This [...] Read more.
Yinhua Pinggan Granules (YPG) is a patented traditional Chinese medicine (TCM) compound prescription, with wide clinical application against cold, cough, and relevant diseases. However, the chemical profiles of YPG in vivo are still unknown, hindering further pharmacological and quality control (QC) researches. This study presents an ultra-high-performance liquid chromatography coupled with high-resolution orbitrap mass spectrometry (UHPLC-MS)-based method. Using the Compound Discoverer platform and a self-built ‘in-house’ compound database, the metabolic profiles and pharmacokinetics characters of YPG were investigated. Consequently, a total of 230 compounds (including 39 prototype components and 191 metabolites) were tentatively identified, in which the parent compounds were mainly flavonoids, alkaloids, and terpenoids, and the main metabolic pathways of metabolites include hydration, dehydration, and oxidation. The serum concentration of seven major representative compounds, including quinic acid, chlorogenic acid, amygdalin, 3′-methoxypuerarin, puerarin, glycyrrhizic acid, and polydatin, were also measured, to elucidate their pharmacokinetics behaviors in vivo. The pharmacokinetic study showed that the seven representative compounds were quantified in rat plasma within 5 min post-administration, with Tmax of less than 2 h, followed by a gradual decline in concentration over a 10 h period. The method demonstrated excellent linearity (R2 > 0.998), precision, and recovery (RSD < 15%). As the first systematic characterization of YPG’ s in vivo components and metabolites using UHPLC-MS, this study may contribute to comprehensively elucidate the metabolic profiles of the major components in YPG, and provide a critical foundation for further investigation on the QC and bioactivity research of YPG. Full article
Show Figures

Graphical abstract

27 pages, 7256 KiB  
Article
Determination of the Phytochemical Profile and Antioxidant Activity of Some Alcoholic Extracts of Levisticum officinale with Pharmaceutical and Cosmetic Applications
by Alaa Sahlabgi, Dumitru Lupuliasa, Iuliana Stoicescu, Lavinia Lia Vlaia, Monica Licu, Antoanela Popescu, Alexandru Scafa-Udriște, Răzvan Ene, Lucian Hîncu, Carmen Elena Lupu and Magdalena Mititelu
Separations 2025, 12(4), 79; https://doi.org/10.3390/separations12040079 - 28 Mar 2025
Cited by 1 | Viewed by 1146
Abstract
Levisticum officinale (lovage) is an aromatic and medicinal plant traditionally used for its antioxidant, anti-inflammatory and antimicrobial properties. The aim of this study was to evaluate the phytochemical composition and antioxidant activity of hydroalcoholic extracts obtained from leaves, roots and the whole plant, [...] Read more.
Levisticum officinale (lovage) is an aromatic and medicinal plant traditionally used for its antioxidant, anti-inflammatory and antimicrobial properties. The aim of this study was to evaluate the phytochemical composition and antioxidant activity of hydroalcoholic extracts obtained from leaves, roots and the whole plant, as well as to develop hydrogels with pharmaceutical potential. The hydroalcoholic extracts (70% ethanol) were characterized by spectrophotometric and HPLC-DAD methods to determine the total content of phenolic compounds, phenolic acids, flavonoids and condensed tannins. The antioxidant activity was evaluated by DPPH and ABTS methods. The extracts were included in 2% carbopol-based hydrogels and tested for stability and antioxidant efficacy. The hydroalcoholic extract of the leaves showed the highest content of total phenolic compounds (20.84 ± 2.18 mg GAE/g), total flavones (11.39 ± 2.48 mg QE/g) and condensed tannins (1.98 ± 1.55 mg CE/g), and was also the richest in quercetin (3.32 ± 1.25 mg/g), kaempferol (1.84 ± 1.63 mg/g), luteolin (2.12 ± 1.19 mg/g), rutin (4.38 ± 1.84 mg/g) and apigenin (1.91 ± 1.44 mg/g). The root extract had the highest content of phenolic acids, including ferulic acid (3.86 ± 1.37 mg/g), vanillic acid (2.53 ± 1.76 mg/g) and caffeic acid (3.28 ± 1.28 mg/g). The antioxidant activity was highest in the leaves extract, with values of 276.2 ± 3.4 µmol TE/g (ABTS) and 246.4 ± 3.6 µmol TE/g (DPPH). The whole-plant extracts showed intermediate values, offering a balance between flavonoids and phenolic acids. Hydrogels formulated with 5% extracts demonstrated stability and sustained antioxidant activity over time. Leaf extracts, due to their high flavonoid content, are recommended for formulations with antioxidant and photoprotective effects, while root extracts are suitable for anti-inflammatory and antimicrobial applications. Hydrogels obtained based on 2% carbopol represent a promising delivery system for dermato-cosmetic and pharmaceutical applications because they exhibited significant antioxidant action. Full article
(This article belongs to the Special Issue Isolation and Identification of Biologically Active Natural Compounds)
Show Figures

Figure 1

17 pages, 6945 KiB  
Article
Separation and Identification of Non-Volatile Sour and Bitter Substances in Amomum villosum L. by Ultra-Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry and Electronic Tongue Analysis, as Well as Their In Vitro Anti-Tumor Activity
by Yang Chen, Ziwei Liao, Weiqin Li, Zhe Wang, Wan Tang, Qiang Yang and Jian Xu
Separations 2025, 12(4), 77; https://doi.org/10.3390/separations12040077 - 28 Mar 2025
Viewed by 507
Abstract
Amomum villosum L. is a perennial herbaceous belonging to the ginger family. Due to its unique aroma, it is widely used in alcoholic beverages and food processing. Unfortunately, issues with bitterness and sourness occur, which affect the taste and quality of processed products. [...] Read more.
Amomum villosum L. is a perennial herbaceous belonging to the ginger family. Due to its unique aroma, it is widely used in alcoholic beverages and food processing. Unfortunately, issues with bitterness and sourness occur, which affect the taste and quality of processed products. In this study, the non-volatile sour and bitter substances in Amomum villosum L. were systematically isolated, purified, and characterized through a combination of chromatographic separation techniques and ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The results indicate that three sour compounds (DL-malic acid, protocatechuic acid, and p-hydroxybenzoic acid) and one bitter compound (catechin) were identified for the first time in Amomum villosum L. The in vitro anti-tumor activity was screened and determined using Cell Counting Kit-8 (CCK-8) assays, a 5-Ethynyl-2′-deoxyuridine (EdU) staining experiment, and scratch assays. The results reveal that the bitter substance of catechin (25–100 μg/mL) exhibited significant inhibitory effects, which inhibited the proliferation and migration of human non-small cell lung cancer A549 cells through dose-dependent mechanisms. This investigation also reveals the influence of different traditional extraction solvents on the degree of bitterness and sourness in Amomum villosum extracts, providing a theoretical basis for improving the quality and pharmacological utilization of Amomum villosum extracts. Full article
Show Figures

Figure 1

Back to TopTop