Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (163)

Search Parameters:
Journal = Metabolites
Section = Food Metabolomics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1006 KiB  
Article
Investigating Systemic Metabolic Effects of Betula alba Leaf Extract in Rats via Urinary Metabolomics
by Gregorio Peron, Alina Yerkassymova, Gokhan Zengin and Stefano Dall’Acqua
Metabolites 2025, 15(7), 471; https://doi.org/10.3390/metabo15070471 - 10 Jul 2025
Viewed by 349
Abstract
Background/Objectives: Herbal extracts from Betula alba (birch) are traditionally used for their purported diuretic effects, but scientific evidence supporting these claims remains limited. In this pilot study, we evaluated the short-term effects of a standardized B. alba leaf extract in healthy adult rats [...] Read more.
Background/Objectives: Herbal extracts from Betula alba (birch) are traditionally used for their purported diuretic effects, but scientific evidence supporting these claims remains limited. In this pilot study, we evaluated the short-term effects of a standardized B. alba leaf extract in healthy adult rats using an untargeted urinary metabolomics approach based on UPLC-QTOF. Methods: Two doses, 25 or 50 mg/kg, of a standardized B. alba extract were orally administered to rats. The extract contains hyperoside (0.53%), quercetin glucuronide (0.36%), myricetin glucoside (0.32%), and chlorogenic acid (0.28%) as its main constituents. After 3 days of treatment, the 24 h urine output was measured. Results: While no statistically significant changes were observed in the 24 h urine volume or the urinary Na+ and K+ excretion, multivariate metabolomic analysis revealed treatment-induced alterations in the urinary metabolic profile. Notably, the levels of two glucocorticoids, i.e., corticosterone and 11-dehydrocorticosterone, were increased in treated animals, suggesting that the extract may influence corticosteroid metabolism or excretion, potentially impacting antidiuretic hormone signaling. Elevated bile-related compounds, including bile acids and bilin, and glucuronidated metabolites were also observed, indicating changes in bile acid metabolism, hepatic detoxification, and possibly gut microbiota activity. Conclusions: Although this study did not confirm a diuretic effect of B. alba extract, the observed metabolic shifts suggest broader systemic bioactivities that warrant further investigation. Overall, the results indicate that the approach based on urinary metabolomics may be valuable in uncovering the mechanisms of action and evaluating the bioactivity of herbal extracts with purported diuretic properties. Full article
Show Figures

Graphical abstract

19 pages, 322 KiB  
Article
Nutraceutical Potential of Havardia pallens and Vachellia rigidula in the Diet Formulation for Male Goat
by Jesús Humberto Reyna-Fuentes, Cecilia Carmela Zapata-Campos, Jorge Ariel Torres-Castillo, Daniel López-Aguirre, Juan Antonio Núñez-Colima, Luis Eliezer Cruz-Bacab, Fabián Eliseo Olazarán-Santibáñez, Fernando Sánchez-Dávila, Aida Isabel Leal-Robles and Juan Antonio Granados-Montelongo
Metabolites 2025, 15(7), 457; https://doi.org/10.3390/metabo15070457 - 5 Jul 2025
Viewed by 536
Abstract
Background: Xerophilous scrubland is a semi-desert ecosystem characterized by a wide diversity of shrubs, which have secondary compounds with nutraceutical potential that could be used as feed for livestock, specifically by goats, since this species has developed behavioral and physiological adaptations that [...] Read more.
Background: Xerophilous scrubland is a semi-desert ecosystem characterized by a wide diversity of shrubs, which have secondary compounds with nutraceutical potential that could be used as feed for livestock, specifically by goats, since this species has developed behavioral and physiological adaptations that allow it to take advantage of the plant resources of said scrubland. Objective: To evaluate the nutraceutical potential of Havardia pallens and Vachellia rigidula, native species of the xerophilous scrubland, when incorporated as ingredients in goat diets. Methods: Integral diets for male goats were prepared, formulated with 35% inclusion of Havardia pallens, Vachellia rigidula, and Medicago sativa, the latter used as a plant control species. The content of flavonoids and total phenols was compared using colorimetric methods, and the antioxidant capacity was measured using the FRAP method. RP-HPLC-ESI-MS characterized the bioactive compounds in the different extracts. Statistical analysis was performed by ANOVA. Results: The aqueous extraction of Vachellia rigidula showed the highest concentration of total phenols (x¯ = 18.22 mg GAE/g−1), followed by the ethanolic extract in the same species (x¯ = 17.045 mg GAE/g−1). Similarly, Vachellia rigidula presented the highest antioxidant capacity (x¯ = 144,711.53 µmol TE/g−1), while Medicago sativa presented the lowest (x¯ = 11,701.92 µmol TE/g). The RP-HPLC-ESI-MS analysis revealed that Vachellia rigidula presented a higher abundance of flavones, catechins, flavonols, methoxyflavones, and tyrosols. However, Harvardia pallens presented higher levels of methoxycinnamic and hydroxycinnamic acids. One-way ANOVA results showed that diets containing 35% Vachellia rigidula and Havardia pallens significantly contrasted (p < 0.05), increased the content of secondary compounds and antioxidant capacity compared to the control species. Furthermore, including Vachellia rigidula led to a significantly higher antioxidant capacity (p < 0.05) than diets with Havardia pallens or Medicago sativa. Conclusions: Incorporating the leguminous shrubs Vachellia rigidula and Havardia pallens into the formulation of comprehensive diets for buck goats improves the content and availability of phenols, flavonoids, and antioxidants. However, in vivo evaluation of these diets is important to determine their physiological and productive effects on the animals. Full article
(This article belongs to the Section Food Metabolomics)
27 pages, 1713 KiB  
Article
Vitamin B12 and Folate in Adherent and Non-Adherent Individuals with Phenylketonuria: A Cross-Sectional Study, Systematic Review, and Meta-Analysis
by Kamila Bokayeva, Małgorzata Jamka, Dariusz Walkowiak, Monika Duś-Żuchowska, Łukasz Kałużny, Natalia Wichłacz-Trojanowska, Agnieszka Chrobot, Renata Mozrzymas, Gulnara Sultanova, Karl-Heinz Herzig and Jarosław Walkowiak
Metabolites 2025, 15(7), 438; https://doi.org/10.3390/metabo15070438 - 1 Jul 2025
Viewed by 431
Abstract
Background/Objectives: The impact of dietary adherence and regular formula intake on the vitamin levels in individuals with phenylketonuria (PKU) remains unclear. This study aimed to assess the influence of both adherence to dietary management and regular formula intake on the vitamin B12 and [...] Read more.
Background/Objectives: The impact of dietary adherence and regular formula intake on the vitamin levels in individuals with phenylketonuria (PKU) remains unclear. This study aimed to assess the influence of both adherence to dietary management and regular formula intake on the vitamin B12 and folate levels in individuals with PKU. Methods: This cross-sectional multicentre study included 63 patients with PKU aged 12–41 years. The participants were classified as adherent or non-adherent based on their mean plasma phenylalanine levels or as regular or irregular formula consumers. The participants’ vitamin B12 and folate levels were compared across these groups. In addition, a systematic search of PubMed, Web of Science, Scopus, and Cochrane Library identified 11,631 studies comparing vitamin B12 and folate levels between adherent vs. non-adherent patients and regular vs. irregular formula intake groups, of which eight met the inclusion criteria. Analyses were conducted using random-effects and fixed-effects models and effect sizes were expressed as standardised mean differences (SMDs). Results: This cross-sectional study showed significantly higher vitamin B12 and folate levels in adherent vs. non-adherent individuals (767.6 ± 264.5 vs. 524.7 ± 216.4 pg/mL; 13.44 ± 1.96 vs. 10.62 ± 3.36 ng/mL, both p < 0.001) and in regular vs. irregular formula consumers (746.7 ± 228.4 vs. 527.4 ± 281.9 pg/mL; 13.32 ± 2.25 vs. 10.48 ± 3.23 ng/mL, p < 0.0001 and p < 0.001 respectively). The meta-analysis found no significant differences between the adherent and non-adherent groups, which were defined based on their phenylalanine levels, but showed higher vitamin B12 levels (fixed-effects model, SMD: 1.080, 95% CI: 0.754, 1.405, p < 0.0001) and a near-significant trend toward higher folate levels (random-effects model, SMD: 0.729, 95% CI: −0.032, 1.490, p = 0.061) in regular formula consumers. Conclusions: Regular formula intake is a key determinant of vitamin B12 in patients with PKU. These findings highlight the importance of consistent formula use in dietary management and warrant further research. Full article
(This article belongs to the Special Issue Effects of Micronutrients on Human Metabolism)
Show Figures

Figure 1

25 pages, 4766 KiB  
Article
Nitrogen Deprivation Drives Red Motile Cell Formation in Haematococcus pluvialis: Physiological and Transcriptomic Insights
by Hailiang Xing, Na Zhou, Kai Liu, Xiaotian Yan, Wanxia Li, Xue Sun, Liuquan Zhang, Fengjie Liu, Nianjun Xu and Chaoyang Hu
Metabolites 2025, 15(6), 388; https://doi.org/10.3390/metabo15060388 - 10 Jun 2025
Viewed by 546
Abstract
Background: Natural astaxanthin, a commercially valuable carotenoid, is primarily sourced from Haematococcus pluvialis, a microalga known for its remarkable resilience to environmental stress. Methods: In this study, the physiological and transcriptomic responses of H. pluvialis to ND were investigated at various time [...] Read more.
Background: Natural astaxanthin, a commercially valuable carotenoid, is primarily sourced from Haematococcus pluvialis, a microalga known for its remarkable resilience to environmental stress. Methods: In this study, the physiological and transcriptomic responses of H. pluvialis to ND were investigated at various time points under high light conditions. Results: Under high light conditions, nitrogen deprivation (ND) enhances astaxanthin content (33.23 mg g−1) while inhibiting the formation of the secondary cell wall (SCW), increasing astaxanthin content by 29% compared to the nitrogen-replete group (25.64 mg g−1); however, the underlying mechanisms remain unclear. ND reduced chlorophyll fluorescence parameters, elevated reactive oxygen species (ROS) levels, and increased starch and total sugar accumulation while decreasing protein and lipid content. Fatty acid content increased on the first day but had declined by the fifth day. A transcriptomic analysis revealed substantial alterations in gene expression in response to ND. Genes associated with the TCA cycle, glycolysis, astaxanthin biosynthesis, and cell motility were upregulated, while those involved in photosynthesis, lipid synthesis, ribosome biogenesis, amino acid synthesis, and SCW synthesis were downregulated. Additionally, ND modulated the expression of genes involved in ROS scavenging. Conclusions: These findings provide critical insights into the adaptive mechanisms of H. pluvialis in response to ND under high light, contributing to the development of strategies for enhanced production of astaxanthin-rich motile cells. Full article
(This article belongs to the Special Issue New Insights into Microalgae Metabolism)
Show Figures

Figure 1

16 pages, 1210 KiB  
Article
Effect of Thermal Processing by Spray Drying on Key Ginger Compounds
by Alina Warren-Walker, Manfred Beckmann, Alison Watson, Steffan McAllister and Amanda J. Lloyd
Metabolites 2025, 15(6), 350; https://doi.org/10.3390/metabo15060350 - 24 May 2025
Viewed by 821
Abstract
Background/Objectives: Spray drying is a technique widely employed in the food and nutraceutical industries to convert liquid extracts into stable powders, preserving their functional properties. Ginger (Zingiber officinale) is rich in bioactive compounds such as gingerols, shogaols, and zingerone, which contribute [...] Read more.
Background/Objectives: Spray drying is a technique widely employed in the food and nutraceutical industries to convert liquid extracts into stable powders, preserving their functional properties. Ginger (Zingiber officinale) is rich in bioactive compounds such as gingerols, shogaols, and zingerone, which contribute to its health benefits. This study aimed to investigate the impact of spray drying on the chemical profile of ginger, particularly focusing on the transformation of gingerols into shogaols and related compounds. Methods: Fresh ginger juice was spray-dried using various carrier agents, including Clear Gum (CO03), pea protein, and inulin. Mass spectra of the resulting powders were acquired using High-Resolution Flow Infusion Electrospray Ionisation Mass Spectrometry (HR-FIE-MS) to obtain fingerprint data. Key bioactive compounds were tentatively identified to Level 2, and their relative intensities were assessed to evaluate the effects of different carriers on the chemical composition of the ginger powders. Results: Spray drying with the commercial carrier CO03 resulted in an increase in shogaol analogues ([10]-, [8]-, and cis-[8]-shogaol), gingerenone B, and oxidation products such as 6-hydroxyshogaol, 6-dehydroshogaol, and zingerone. In contrast, natural carriers like pea protein and inulin led to lower relative intensities of these bioactives, suggesting limited capacity for promoting thermal transformations. Spray drying without a carrier produced a shogaol-dominant profile but resulted in powders with poor handling properties, such as stickiness and agglomeration. Antioxidant and total polyphenol assays showed that spray drying reduced antioxidant capacity, while total polyphenol content was more preserved; natural carriers such as inulin better maintained bioactivity compared to modified starch or pea protein. Conclusions: Among the five formulations evaluated—ginger juice with no carrier, with CO03 (two dilutions), pea protein, or inulin—CO03-based samples showed the greatest chemical transformation, while inulin and pea protein better preserved antioxidant capacity but induced fewer metabolite changes. Thus, choice of carrier in the spray-drying process influences the chemical profile and functional characteristics of resultant ginger powders. While CO03 effectively enhances the formation of bioactive shogaols and related compounds, its ultra-processed nature may not align with clean-label product trends. Natural carriers, although more label-friendly, may not create the desired chemical transformations. Therefore, optimising carrier selection is important to balance bioactivity, product stability, and consumer acceptability in the development of ginger-based functional products. Full article
Show Figures

Figure 1

15 pages, 1523 KiB  
Article
Urinary Hippuric Acid as a Sex-Dependent Biomarker for Fruit and Nut Intake Raised from the EAT-Lancet Index and Nuclear Magnetic Resonance Analysis
by Edwin Fernández-Cruz, Víctor de la O, Cristina M. Fernández-Diaz, Pilar Matía-Martín, M. Ángel Rubio-Herrera, Nuria Amigó, Alfonso L. Calle-Pascual and J. Alfredo Martínez
Metabolites 2025, 15(6), 348; https://doi.org/10.3390/metabo15060348 - 23 May 2025
Viewed by 693
Abstract
Background/Objectives: Assessing nutrient intake is essential for understanding body homeostasis and diet–health interactions. Traditional methods, such as dietary questionnaires and quality indices, are limited by subjectivity and variability in food composition tables. Metabolomic markers, like urinary hippuric acid, provide an objective means [...] Read more.
Background/Objectives: Assessing nutrient intake is essential for understanding body homeostasis and diet–health interactions. Traditional methods, such as dietary questionnaires and quality indices, are limited by subjectivity and variability in food composition tables. Metabolomic markers, like urinary hippuric acid, provide an objective means to estimate food and nutrient intake, helping to link dietary patterns with metabolic outputs and health outcomes. This study uniquely evaluates urinary hippuric acid as a putative biomarker of nut intake, expanding the previously known role as a fruit intake marker, and investigates sex-related differences in the excretion. Methods: Using Nuclear Magnetic Resonance (NMR) spectroscopy, 34 urinary metabolites from 138 participants (69.7% women) in the Dietary Deal project were analyzed. Metabolite concentrations were categorized by median adherence to the EAT-Lancet score (≤p50 or >p50). A validated Food Frequency Questionnaire (FFQ) assessed dietary and energy intake. Correlation analyses linked metabolites to the 14 EAT-Lancet food groups, and a linear regression adjusted model examined associations between urinary hippuric acid and fruit/nut consumption, with sensitivity analysis for sex. Results: The EAT-Lancet index, stratified by median adherence, effectively distinguished between high and low dietary intake of fruits (p = 0.012) and nuts (p < 0.001). Urinary hippuric acid concentrations were found to be influenced by sex (p = 0.020), with females showing a 44.7% higher mean concentration. Overall, urinary hippuric acid levels were positively associated with FFQ-estimated nut consumption (p = 0.049), providing the first evidence of potential suitability as a nut intake biomarker. Conclusions: Hippuric acid emerges as a promising dietary biomarker for assessing nut intake in healthy populations. This study provides novel insights that extend the application of hippuric acid to dietary nut assessment and emphasizes the importance of a sex-specific interpretation for precision nutrition purposes using NMR technology. Full article
Show Figures

Graphical abstract

16 pages, 2430 KiB  
Article
A Comparative Analysis of Raw and Bran-Fried Acori tatarinowii Rhizoma Based on the Intelligent Sensory Evaluation System
by Yingna Le, Zhongjian Yang, Ruiping Wang, Shaolong Ma, Yang Cui, Kun Shi, Li Xin, Jinlian Zhang and Lingyun Zhong
Metabolites 2025, 15(5), 338; https://doi.org/10.3390/metabo15050338 - 20 May 2025
Viewed by 583
Abstract
Objectives: The study aimed to investigate the differences in odor, color, and taste characteristics between raw and bran-fried Acori tatarinowii Rhizoma (RATR and BATR) using advanced sensory evaluation technologies. The objective was to establish a reliable differential analysis method for distinguishing RATR and [...] Read more.
Objectives: The study aimed to investigate the differences in odor, color, and taste characteristics between raw and bran-fried Acori tatarinowii Rhizoma (RATR and BATR) using advanced sensory evaluation technologies. The objective was to establish a reliable differential analysis method for distinguishing RATR and BATR slices to support quality control in herbal processing. Methods: The Heracles NEO ultra-fast gas-phase electronic nose was employed to analyze odor profiles, while electronic eye and electronic tongue technologies were used to assess color and taste differences, respectively. Odor fingerprint analysis identified key volatile components, and colorimetric and taste measurements were conducted to compare RATR and BATR samples. Results: Fifteen characteristic odor components were identified, with methanol, 2-propanol, and 2-cyclopentenone potentially serving as discriminant markers differentiating RATR and BATR. PCA demonstrated exceptional separation efficacy, with a cumulative contribution rate of 99.937% for the primary components. Conclusions: The integration of Heracles NEO electronic nose, electronic eye, and electronic tongue technologies effectively distinguished RATR from BATR. This approach provides a novel strategy for online quality monitoring in herbal slice production and offers a robust analytical framework for the identification and quality assessment of processed herbal medicines. Full article
(This article belongs to the Section Food Metabolomics)
Show Figures

Figure 1

23 pages, 3896 KiB  
Article
Storage Profiling: Evaluating the Effect of Modified Atmosphere Packaging on Metabolomic Changes of Strawberries (Fragaria × ananassa)
by Johannes Brockelt, Robin Dammann, Jennifer Griese, Agnes Weiss, Markus Fischer and Marina Creydt
Metabolites 2025, 15(5), 330; https://doi.org/10.3390/metabo15050330 - 15 May 2025
Viewed by 705
Abstract
Background/Objectives: Strawberries (Fragaria × ananassa) are among the most commonly consumed fruits due to their taste and nutritional benefits. However, their high rate of spoilage poses a major problem during the period from harvest and transport to further processing or marketing. [...] Read more.
Background/Objectives: Strawberries (Fragaria × ananassa) are among the most commonly consumed fruits due to their taste and nutritional benefits. However, their high rate of spoilage poses a major problem during the period from harvest and transport to further processing or marketing. The aim of this study was, therefore, to investigate the effects of passive modified atmosphere packaging on the metabolome and shelf life of strawberries as a more sustainable alternative compared to standard market storage conditions. Methods: A total of 99 strawberry samples were analyzed for microbial viable counts, water content, and metabolomic changes using non-targeted low-resolution near-infrared spectroscopy, high-resolution mass spectrometry, and microbial culture-based methods. Results: Using near-infrared spectroscopy as a rapid screening method, the linear regression model indicated that strawberries stored under modified atmosphere packaging conditions had a longer shelf life. Furthermore, lipidomic analysis using mass spectrometry showed that the levels of spoilage biomarkers, such as oxidized phosphatidylcholines and lysophosphatidylcholines, were increased under common market storage conditions without a controlled atmosphere. In contrast, the levels of these metabolites were reduced when strawberries were stored in modified atmosphere packaging. Moreover, the strawberries stored under modified atmosphere packaging had a lower number of bacteria, yeasts, and molds as well as a lower water loss throughout the entire storage period. Conclusions: Overall, the study highlights the potential of passive modified atmosphere packaging films to extend the shelf life and thus maintain the edibility of strawberries over a longer period. Full article
Show Figures

Figure 1

20 pages, 3404 KiB  
Article
A Data-Driven Approach to Link GC-MS and LC-MS with Sensory Attributes of Chicken Bouillon with Added Yeast-Derived Flavor Products in a Combined Prediction Model
by Simon Leygeber, Carmen Diez-Simon, Justus L. Großmann, Anne-Charlotte Dubbelman, Amy C. Harms, Johan A. Westerhuis, Doris M. Jacobs, Peter W. Lindenburg, Margriet M. W. B. Hendriks, Brenda C. H. Ammerlaan, Marco A. van den Berg, Rudi van Doorn, Roland Mumm, Age K. Smilde, Robert D. Hall and Thomas Hankemeier
Metabolites 2025, 15(5), 317; https://doi.org/10.3390/metabo15050317 - 8 May 2025
Viewed by 860
Abstract
Background: There is a continuous demand to create new, superior sensory food experiences. In the food industry, yeast-derived flavor products (YPs) are often used as ingredients in foods to create new aromas and taste qualities that are appreciated by consumers. Methods: Chicken bouillon [...] Read more.
Background: There is a continuous demand to create new, superior sensory food experiences. In the food industry, yeast-derived flavor products (YPs) are often used as ingredients in foods to create new aromas and taste qualities that are appreciated by consumers. Methods: Chicken bouillon samples containing diverse YPs were chemically and sensorially characterized using statistical multivariate analyses. The sensory evaluation was performed using quantitative descriptive analysis (QDA) by trained panelists. Thirty-four sensory attributes were scored, including odor, flavor, mouthfeel, aftertaste and afterfeel. Untargeted metabolomic profiles were obtained using stir bar sorptive extraction (SBSE) coupled to GC-MS, RPLC-MS and targeted HILIC-MS. Results: In total, 261 volatiles were detected using GC-MS, from chemical groups of predominantly aldehydes, esters, pyrazines and ketones. Random Forest (RF) modeling revealed volatiles associated with roast odor (2-ethyl-5-methyl pyrazine, 2,3,5-trimethyl-6-isopentyl pyrazine) and chicken odor (2,4-nonadienal, 2,4-decadienal, 2-acetyl furan), which could be predicted by our combined model with R2 > 0.5. In total, 2305 non-volatiles were detected for RPLC-MS and 34 for targeted HILIC-MS, where fructose-isoleucine and cyclo-leucine-proline were found to correlate with roast flavor and odor. Furthermore, a list of metabolites (glutamate, monophosphates, methionyl-leucine) was linked to umami-related flavor. This study describes a straightforward data-driven approach for studying foods with added YPs to identify flavor-impacting correlations between molecular composition and sensory perception. It also highlights limitations and preconditions for good prediction models. Overall, this study emphasizes a matrix-based approach for the prediction of food taste, which can be used to analyze foods for targeted flavor design or quality control. Full article
(This article belongs to the Section Food Metabolomics)
Show Figures

Figure 1

16 pages, 3953 KiB  
Article
Comparative Analysis of Metabolite Changes in Huangjiu During Different Aging Periods Using HRMS Metabolomics
by Yue E, Zhuang Wang and Hongbin Guo
Metabolites 2025, 15(5), 298; https://doi.org/10.3390/metabo15050298 - 30 Apr 2025
Viewed by 553
Abstract
Background: Huangjiu, a traditional Chinese fermented alcoholic beverage, exhibits a multifaceted chemical profile comprising diverse metabolites, such as lipids, amino acids, and phenolic compounds. The age of the wine is an important indicator of its quality and is a primary reference for purchasing [...] Read more.
Background: Huangjiu, a traditional Chinese fermented alcoholic beverage, exhibits a multifaceted chemical profile comprising diverse metabolites, such as lipids, amino acids, and phenolic compounds. The age of the wine is an important indicator of its quality and is a primary reference for purchasing decisions. Methods: This study employs high-resolution mass spectrometry to perform metabolomics analysis on Huangjiu of varying ages and uses multivariate statistical analysis to characterize the chemical features of different types of Huangjiu. This research investigates the Huangjiu aged from 3 to 30 years, involving samples of five different aging periods. Results: A total of 415 compounds were detected across all samples, including 147 differential metabolites. It was observed that, as the aging of Huangjiu increased, the relative content of most metabolites showed a rising trend. However, 19 metabolites, mainly lipids and lipid-like molecules, decreased in concentration over time. This finding highlights significant differences in metabolite composition among Huangjiu of different ages. Furthermore, 19 characteristic differential metabolites were predicted as markers for distinguishing Huangjiu of different ages. Conclusions: This study provides theoretical and material foundations for quality control, health benefits, and industrial development of Huangjiu. Full article
(This article belongs to the Section Food Metabolomics)
Show Figures

Figure 1

15 pages, 2109 KiB  
Article
Quality Dynamics of Beef Bottom Round During 2-Month Frozen Storage (−18 °C) and Week-Long Refrigeration (4 °C)
by Yue Song, Wenbo Hou, Mengliu Zhu, Otobong Donald Akan, Yanxia Xing, Yang Yu, Bo Li and He Zhu
Metabolites 2025, 15(5), 294; https://doi.org/10.3390/metabo15050294 - 29 Apr 2025
Viewed by 585
Abstract
Background/Objectives: The present study aimed to investigate the effects of frozen (−18 °C) and refrigerated (4 °C) storage conditions on several beef bottom round quality parameters. Methods: Fresh beef bottom round samples were stored under both frozen (−18 °C) and refrigerated [...] Read more.
Background/Objectives: The present study aimed to investigate the effects of frozen (−18 °C) and refrigerated (4 °C) storage conditions on several beef bottom round quality parameters. Methods: Fresh beef bottom round samples were stored under both frozen (−18 °C) and refrigerated (4 °C) conditions. For frozen samples, the pH, color, cooking loss, thawing loss, centrifugal loss, drip loss, moisture content, shear force, TBARS and TPA were measured at 0, 30 and 60 days. For refrigerated samples, the pH and color were analyzed at 0, 1, 3, 5 and 7 days, and the differential metabolites were also identified based on the VOCs analysis combined with multivariate statistical analysis. Results: The surface color (L*, a*, and b*) of the beef bottom round became darker during both the frozen and refrigerated periods of prolonged storage. The samples’ pH significantly declined (p < 0.05) during the frozen storage but alternated (initially reduced and then increased) under refrigerated conditions. Additionally, the frozen treatment led to a significant change (p < 0.05) in the texture profile. The thiobarbituric acid reactive substance (TBAR) values, shear force, cooking loss, thawing loss, centrifugal loss, and drip loss increased significantly with an extended frozen storage time, while the moisture content was significantly lower (p < 0.05). Moreover, nine volatile organic compounds (VOCs) were identified as potential determinants of beef bottom quality during refrigerated storage. Conclusions: The findings can contribute to a deeper understanding of quality variations during frozen storage and refrigerated storage, and provide new thoughts to improve preservation and storage strategies for the beef bottom round. Full article
(This article belongs to the Section Food Metabolomics)
Show Figures

Graphical abstract

13 pages, 5638 KiB  
Article
Identification and Evaluation of Colour Change in Rosemary and Biluochun Tea Infusions
by Yuan Yuan, Caochuang Fang, Chaohan Li, Jiaqi You and Kun Ma
Metabolites 2025, 15(4), 265; https://doi.org/10.3390/metabo15040265 - 11 Apr 2025
Viewed by 649
Abstract
Background: The colour of tea beverages during processing and storage significantly influences their visual quality. However, natural pink tea products are rare. This study investigated the mechanism behind the pink colouration in the mixed infusion of Biluochun (a green tea) and rosemary. Methods: [...] Read more.
Background: The colour of tea beverages during processing and storage significantly influences their visual quality. However, natural pink tea products are rare. This study investigated the mechanism behind the pink colouration in the mixed infusion of Biluochun (a green tea) and rosemary. Methods: Infusions of Biluochun (B), rosemary (R), and their mixture (BR), brewed with boiling water for 10 min, were analysed using liquid chromatography-mass spectrometry (LC-MS). Additionally, the pH value and tea pigment content were measured. Results: A total of 134 differential metabolites (DEMs) were detected. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that phenylalanine metabolism and tyrosine metabolism pathways were enriched with abundant DEMs. Some amino acids in BR showed degradation. The content of pelargonin, a compound in the anthocyanin biosynthetic pathway, was significantly elevated in BR compared to that in B and R. DEMs related to fatty acid metabolism were at low levels in BR. Other compounds, such as quercetin, caffeate, rosmarinic acid, and isoferulic acid, were also more abundant in BR. No significant differences in pH value and tea pigment content were found among the three infusions. Conclusions: A model of pink colouration formation in BR was proposed based on the results of this study. Some substances in Biluochun and rosemary were released during the brewing process. Tyrosine was converted into p-coumaric acid, which further reacted to form pelargonin. Pelargonin, an orange-red (pH ≈ 5.0) anthocyanin, was the primary contributor to the pink colouration in BR. Additionally, p-coumaric acid formed co-pigments such as quercetin, caffeic acid, rosmarinic acid, and isovaleric acid. These co-pigments stabilised or enhanced the colour of pelargonin through co-pigmentation. The findings provide a theoretical basis for optimising tea processing techniques and improving quality control in beverage production. Full article
(This article belongs to the Section Food Metabolomics)
Show Figures

Figure 1

22 pages, 3116 KiB  
Article
Single-Nucleus RNA Sequencing Reveals Muscle-Region-Specific Differences in Fibro-Adipogenic Progenitors Driving Intramuscular Fat Accumulation
by Shuji Ueda, Chiaki Kitamura, Yuka Tateoka, Akinori Kanai, Yutaka Suzuki, Itsuko Fukuda and Yasuhito Shirai
Metabolites 2025, 15(4), 231; https://doi.org/10.3390/metabo15040231 - 28 Mar 2025
Viewed by 1454
Abstract
Background: Ectopic fat deposition refers to lipid accumulation that affects metabolic function and tissue characteristics. Japanese Black cattle are distinguished by their high intramuscular fat content, which contributes to their distinctive character. However, the genetic mechanisms underlying these traits remain unclear. This study [...] Read more.
Background: Ectopic fat deposition refers to lipid accumulation that affects metabolic function and tissue characteristics. Japanese Black cattle are distinguished by their high intramuscular fat content, which contributes to their distinctive character. However, the genetic mechanisms underlying these traits remain unclear. This study compared gene expression patterns in different muscle regions to identify genes associated with intramuscular fat accumulation. First, we conducted RNA sequencing to analyze differences in gene expression profiles among the sternocleidomastoid, pectoralis minor, and pectoralis major muscles. In addition, single-cell nuclear RNA sequencing was conducted to investigate the cellular composition of these muscle tissues. Results: Distinct gene expression patterns were observed among the different muscles. In the pectoralis, which contains a high proportion of intramuscular fat, adipocyte-related genes such as FABP4, SCD, and ADIPOQ were highly expressed. In addition, lipases such as PNPLA2, LPL, MGLL, and LIPE were predominantly expressed in intramuscular fat, whereas PLA2G12A, PLD3, and ALOX15 were specifically expressed in myofibers. Moreover, a subclass of fibro–adipogenic progenitor cells that differentiate into intramuscular adipocytes was found to express genes related to microenvironment formation, including ICAM1, TGFBRs, and members of the COL4A family. Conclusions: This study provides novel insight into the genetic regulation of intramuscular fat accumulation. It improves our understanding of the molecular mechanisms underlying their distinctive meat characteristics. Full article
(This article belongs to the Section Food Metabolomics)
Show Figures

Graphical abstract

14 pages, 4319 KiB  
Article
Effect of Antifreeze Glycopeptides on the Quality and Microstructure of Frozen Lamb Meatballs
by Rong Dong, Shengkun Yan, Guoqiang Wang and Pei Wang
Metabolites 2025, 15(3), 202; https://doi.org/10.3390/metabo15030202 - 13 Mar 2025
Viewed by 771
Abstract
This study explored the protective effects of antifreeze glycopeptide and alginate on the quality of −18 °C frozen lamb meatballs across various storage periods. Methods: Measurements of volatile salt nitrogen (TVB-N), thiobarbituric acid (TBARS), water retention, water distribution, microstructure, and metabolite changes were [...] Read more.
This study explored the protective effects of antifreeze glycopeptide and alginate on the quality of −18 °C frozen lamb meatballs across various storage periods. Methods: Measurements of volatile salt nitrogen (TVB-N), thiobarbituric acid (TBARS), water retention, water distribution, microstructure, and metabolite changes were taken in the lamb meatballs. Results: The results showed that the addition of antifreeze glycopeptides (AFGs) significantly preserved the quality characteristics of lamb meatballs. In particular, the 0.30% antifreeze glycopeptide demonstrated the strongest protective effect on water retention and metabolites during freezing. The ice crystal area within the microstructure of lamb meatballs with added antifreeze glycopeptides was markedly reduced compared to the others after 14 days of freezing (p < 0.05). Additionally, AFGs lessened the lipid oxidation reaction and prolonged the oxidation time of lamb after 28 days of freezing. Conclusion: In summary, AFGs beneficially affected the quality of frozen lamb meatballs and are a potential, safe, and efficient cryoprotectant. Full article
(This article belongs to the Section Food Metabolomics)
Show Figures

Figure 1

18 pages, 2892 KiB  
Article
Effects of Roasting Process on Sensory Qualities, Color, Physicochemical Components, and Identification of Key Aroma Compounds in Hubei Strip-Shaped Green Tea
by Fei Ye, Anhui Gui, Xiaoyan Qiao, Panpan Liu, Xueping Wang, Shengpeng Wang, Lin Feng, Jin Teng, Jinjin Xue, Xun Chen, Yuanhong Mei, Binghua Zhang, Hanshan Han, Anhua Liao, Pengcheng Zheng and Shiwei Gao
Metabolites 2025, 15(3), 155; https://doi.org/10.3390/metabo15030155 - 25 Feb 2025
Viewed by 711
Abstract
Background: Roasting conditions significantly influence the sensory profile of Hubei strip-shaped green tea (HSSGT). Methods: This study examined the effects of roast processing on the sensory attributes, color qualities, physicochemical properties, and key aroma compounds of HSSGT. Sensory evaluation, color qualities determination, principal [...] Read more.
Background: Roasting conditions significantly influence the sensory profile of Hubei strip-shaped green tea (HSSGT). Methods: This study examined the effects of roast processing on the sensory attributes, color qualities, physicochemical properties, and key aroma compounds of HSSGT. Sensory evaluation, color qualities determination, principal component analysis of physicochemical components (PCA), HS-SPME (headspace solid-phase microextraction) coupled with GC-MS (gas chromatography–mass spectrometry), relative odor activity value (ROAV), gas chromatography–olfactometry (GC-O), and absolute quantification analysis were employed to identify the critical difference in compounds that influence HSSGT desirability. Results: The results indicated that HSSGT roasted at 110 °C for 14 min achieved the highest sensory scores, superior physicochemical qualities, and an enhanced aroma index, which was attributed to shifting the proportion of chestnut to floral volatile compounds. Additionally, sensory-guided ROAV, GC-O, and absolute quantification revealed that linalool, octanal, nonanal, and hexanal were the most significant volatile compounds. The variations in these four critical compounds throughout the roasting process were further elucidated, showing that the ideal roasting conditions heightened floral aromas while diminishing the presence of less desirable green odors. These findings offer technical guidance and theoretical support for producing HSSGT with a more desirable balance of chestnut and floral aroma characteristics. Full article
Show Figures

Figure 1

Back to TopTop