Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,197)

Search Parameters:
Journal = Entropy
Section = Quantum Information

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6818 KiB  
Article
Deep Learning-Based Min-Entropy-Accelerated Evaluation for High-Speed Quantum Random Number Generation
by Xiaomin Guo, Wenhe Zhou, Yue Luo, Xiangyu Meng, Jiamin Li, Yaoxing Bian, Yanqiang Guo and Liantuan Xiao
Entropy 2025, 27(8), 786; https://doi.org/10.3390/e27080786 - 24 Jul 2025
Abstract
Secure communication is critically dependent on high-speed and high-security quantum random number generation (QRNG). In this work, we present a responsive approach to enhance the efficiency and security of QRNG by leveraging polarization-controlled heterodyne detection to simultaneously measure the quadrature amplitude and phase [...] Read more.
Secure communication is critically dependent on high-speed and high-security quantum random number generation (QRNG). In this work, we present a responsive approach to enhance the efficiency and security of QRNG by leveraging polarization-controlled heterodyne detection to simultaneously measure the quadrature amplitude and phase fluctuations of vacuum shot noise. To address the practical non-idealities inherent in QRNG systems, we investigate the critical impacts of imbalanced heterodyne detection, amplitude–phase overlap, finite-size effects, and security parameters on quantum conditional min-entropy derived from the entropy uncertainty principle. It effectively mitigates the overestimation of randomness and fortifies the system against potential eavesdropping attacks. For a high-security parameter of 1020, QRNG achieves a true random bit extraction ratio of 83.16% with a corresponding real-time speed of 37.25 Gbps following a 16-bit analog-to-digital converter quantization and 1.4 GHz bandwidth extraction. Furthermore, we develop a deep convolutional neural network for rapid and accurate entropy evaluation. The entropy evaluation of 13,473 sets of quadrature data is processed in 68.89 s with a mean absolute percentage error of 0.004, achieving an acceleration of two orders of magnitude in evaluation speed. Extracting the shot noise with full detection bandwidth, the generation rate of QRNG using dual-quadrature heterodyne detection exceeds 85 Gbps. The research contributes to advancing the practical deployment of QRNG and expediting rapid entropy assessment. Full article
(This article belongs to the Section Quantum Information)
43 pages, 843 KiB  
Article
A Missing Link: The Double-Slit Experiment and Quantum Entanglement
by Arkady Plotnitsky
Entropy 2025, 27(8), 781; https://doi.org/10.3390/e27080781 - 24 Jul 2025
Abstract
This article reconsiders the double-slit experiment by establishing a new type of relationship between it and the concept of entanglement. While the role of entanglement in the double-slit experiment has been considered, this particular relationship appears to have been missed in preceding discussions [...] Read more.
This article reconsiders the double-slit experiment by establishing a new type of relationship between it and the concept of entanglement. While the role of entanglement in the double-slit experiment has been considered, this particular relationship appears to have been missed in preceding discussions of the experiment, even by Bohr, who extensively used it to support his argument concerning quantum physics. The main reason for this relationship is the different roles of the diaphragm with slits in two setups, S1 and S2, defining the double-slit experiment as a quantum experiment. In S1, in each individual run of the experiment one can in principle (even if not actually) know throughout which slit the quantum object considered has passed; in S2 this knowledge is in principle impossible, which impossibility is coextensive with the appearance of the interference pattern, once a sufficient number of individual runs of the experiment have taken place. The article offers the following argument based on two new concepts, an “experimentally quantum object” and an “ontologically quantum object.” In S1 the diaphragm can be treated as part of an observational arrangement and thus considered as a classical object, while the object passing through one or the other slit is considered as an “ontologically quantum object,” defined as an object necessary to establish a quantum phenomenon. By contrast, in S2, the diaphragm can, via the concept of Heisenberg-von-Neumann cut, be treated as an “experimentally quantum object,” defined as an object treatable by quantum theory, even while possibly being an ontologically classical object. This interaction is not an observation but a quantum entanglement between these two quantum objects, one ontologically and one experimentally quantum. This argument is grounded in a particular interpretation of quantum phenomena and quantum theory, which belongs to the class of interpretations designated here as “reality without realism” (RWR) interpretations. The article also argues that wave-particle complementarity, with which the concept of complementarity is often associated, plays little, if any, role in quantum physics, or in Bohr’s thinking, and may be misleading in considering the double-slit experiment, often explained by using this complementarity. Full article
(This article belongs to the Special Issue Quantum Probability and Randomness V)
Show Figures

Figure 1

32 pages, 1575 KiB  
Article
Entropy Accumulation Under Post-Quantum Cryptographic Assumptions
by Ilya Merkulov and Rotem Arnon
Entropy 2025, 27(8), 772; https://doi.org/10.3390/e27080772 - 22 Jul 2025
Abstract
In device-independent (DI) quantum protocols, security statements are agnostic to the internal workings of the quantum devices—they rely solely on classical interactions with the devices and specific assumptions. Traditionally, such protocols are set in a non-local scenario, where two non-communicating devices exhibit Bell [...] Read more.
In device-independent (DI) quantum protocols, security statements are agnostic to the internal workings of the quantum devices—they rely solely on classical interactions with the devices and specific assumptions. Traditionally, such protocols are set in a non-local scenario, where two non-communicating devices exhibit Bell inequality violations. Recently, a new class of DI protocols has emerged that requires only a single device. In this setting, the assumption of no communication is replaced by a computational one: the device cannot solve certain post-quantum cryptographic problems. Protocols developed in this single-device computational setting—such as for randomness certification—have relied on ad hoc techniques, making their guarantees difficult to compare and generalize. In this work, we introduce a modular proof framework inspired by techniques from the non-local DI literature. Our approach combines tools from quantum information theory, including entropic uncertainty relations and the entropy accumulation theorem, to yield both conceptual clarity and quantitative security guarantees. This framework provides a foundation for systematically analyzing DI protocols in the single-device setting under computational assumptions. It enables the design and security proof of future protocols for DI randomness generation, expansion, amplification, and key distribution, grounded in post-quantum cryptographic hardness. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

12 pages, 493 KiB  
Article
Exploring Non-Gaussianity Reduction in Quantum Channels
by Micael Andrade Dias and Francisco Marcos de Assis
Entropy 2025, 27(7), 768; https://doi.org/10.3390/e27070768 - 20 Jul 2025
Viewed by 146
Abstract
The quantum relative entropy between a quantum state and its Gaussian equivalent is a quantifying function of the system’s non-Gaussianity, a useful resource in several applications, such as quantum communication and computation. One of its most fundamental properties is to be monotonically decreasing [...] Read more.
The quantum relative entropy between a quantum state and its Gaussian equivalent is a quantifying function of the system’s non-Gaussianity, a useful resource in several applications, such as quantum communication and computation. One of its most fundamental properties is to be monotonically decreasing under Gaussian evolutions. In this paper, we develop the conditions for a non-Gaussian quantum channel to preserve the monotonically decreasing property. We propose a necessary condition to classify between Gaussian and non-Gaussian channels and use it to define a class of quantum channels that decrease the system’s non-Gaussianity. We also discuss how this property, combined with a restriction on the states at the channel’s input, can be applied to the security analysis of continuous-variable quantum key distribution protocols. Full article
Show Figures

Figure 1

20 pages, 7353 KiB  
Article
Comparative Analysis of Robust Entanglement Generation in Engineered XX Spin Chains
by Eduardo K. Soares, Gentil D. de Moraes Neto and Fabiano M. Andrade
Entropy 2025, 27(7), 764; https://doi.org/10.3390/e27070764 - 18 Jul 2025
Viewed by 156
Abstract
We present a numerical investigation comparing two entanglement generation protocols in finite XX spin chains with varying spin magnitudes (s=1/2,1,3/2). Protocol 1 (P1) relies on staggered couplings to steer correlations toward [...] Read more.
We present a numerical investigation comparing two entanglement generation protocols in finite XX spin chains with varying spin magnitudes (s=1/2,1,3/2). Protocol 1 (P1) relies on staggered couplings to steer correlations toward the ends of the chain. At the same time, Protocol 2 (P2) adopts a dual-port architecture that uses optimized boundary fields to mediate virtual excitations between terminal spins. Our results show that P2 consistently outperforms P1 in all spin values, generating higher-fidelity entanglement in shorter timescales when evaluated under the same system parameters. Furthermore, P2 exhibits superior robustness under realistic imperfections, including diagonal and off-diagonal disorder, as well as dephasing noise. To further assess the resilience of both protocols in experimentally relevant settings, we employ the pseudomode formalism to characterize the impact of non-Markovian noise on the entanglement dynamics. Our analysis reveals that the dual-port mechanism (P2) remains effective even when memory effects are present, as it reduces the excitation of bulk modes that would otherwise enhance environment-induced backflow. Together, the scalability, efficiency, and noise resilience of the dual-port approach position it as a promising framework for entanglement distribution in solid-state quantum information platforms. Full article
(This article belongs to the Special Issue Entanglement in Quantum Spin Systems)
Show Figures

Figure 1

41 pages, 1006 KiB  
Article
A Max-Flow Approach to Random Tensor Networks
by Khurshed Fitter, Faedi Loulidi and Ion Nechita
Entropy 2025, 27(7), 756; https://doi.org/10.3390/e27070756 - 15 Jul 2025
Viewed by 143
Abstract
The entanglement entropy of a random tensor network (RTN) is studied using tools from free probability theory. Random tensor networks are simple toy models that help in understanding the entanglement behavior of a boundary region in the anti-de Sitter/conformal field theory (AdS/CFT) context. [...] Read more.
The entanglement entropy of a random tensor network (RTN) is studied using tools from free probability theory. Random tensor networks are simple toy models that help in understanding the entanglement behavior of a boundary region in the anti-de Sitter/conformal field theory (AdS/CFT) context. These can be regarded as specific probabilistic models for tensors with particular geometry dictated by a graph (or network) structure. First, we introduce a model of RTN obtained by contracting maximally entangled states (corresponding to the edges of the graph) on the tensor product of Gaussian tensors (corresponding to the vertices of the graph). The entanglement spectrum of the resulting random state is analyzed along a given bipartition of the local Hilbert spaces. The limiting eigenvalue distribution of the reduced density operator of the RTN state is provided in the limit of large local dimension. This limiting value is described through a maximum flow optimization problem in a new graph corresponding to the geometry of the RTN and the given bipartition. In the case of series-parallel graphs, an explicit formula for the limiting eigenvalue distribution is provided using classical and free multiplicative convolutions. The physical implications of these results are discussed, allowing the analysis to move beyond the semiclassical regime without any cut assumption, specifically in terms of finite corrections to the average entanglement entropy of the RTN. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

14 pages, 1922 KiB  
Article
Asymmetric Protocols for Mode Pairing Quantum Key Distribution with Finite-Key Analysis
by Zhenhua Li, Tianqi Dou, Yuheng Xie, Weiwen Kong, Yang Liu, Haiqiang Ma and Jianjun Tang
Entropy 2025, 27(7), 737; https://doi.org/10.3390/e27070737 - 9 Jul 2025
Viewed by 203
Abstract
The mode pairing quantum key distribution (MP-QKD) protocol has attracted considerable attention for its capability to ensure high secure key rates over long distances without requiring global phase locking. However, ensuring symmetric channels for the MP-QKD protocol is challenging in practical quantum communication [...] Read more.
The mode pairing quantum key distribution (MP-QKD) protocol has attracted considerable attention for its capability to ensure high secure key rates over long distances without requiring global phase locking. However, ensuring symmetric channels for the MP-QKD protocol is challenging in practical quantum communication networks. Previous studies on the asymmetric MP-QKD protocol have relied on ideal decoy state assumptions and infinite-key analysis, which are unattainable for real-world deployment. In this paper, we conduct a security analysis of the asymmetric MP-QKD protocol with the finite-key analysis, where we discard the previously impractical assumptions made in the decoy state method. Combined with statistical fluctuation analysis, we globally optimized the 10 independent parameters in the asymmetric MP-QKD protocol by employing our modified particle swarm optimization. Through further analysis, the simulation results demonstrate that our work achieves improved secure key rates and transmission distances compared to the strategy with additional attenuation. We further investigate the relationship between the intensities and probabilities of signal, decoy, and vacuum states with transmission distance, facilitating their more efficient deployment in future quantum networks. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

27 pages, 958 KiB  
Article
AQEA-QAS: An Adaptive Quantum Evolutionary Algorithm for Quantum Architecture Search
by Yaochong Li, Jing Zhang, Rigui Zhou, Yi Qu and Ruiqing Xu
Entropy 2025, 27(7), 733; https://doi.org/10.3390/e27070733 - 8 Jul 2025
Viewed by 335
Abstract
Quantum neural networks (QNNs) represent an emerging technology that uses a quantum computer for neural network computations. The QNNs have demonstrated potential advantages over classical neural networks in certain tasks. As a core component of a QNN, the parameterized quantum circuit (PQC) plays [...] Read more.
Quantum neural networks (QNNs) represent an emerging technology that uses a quantum computer for neural network computations. The QNNs have demonstrated potential advantages over classical neural networks in certain tasks. As a core component of a QNN, the parameterized quantum circuit (PQC) plays a crucial role in determining the QNN’s overall performance. However, quantum circuit architectures designed manually based on experience or using specific hardware structures can suffer from inefficiency due to the introduction of redundant quantum gates, which amplifies the impact of noise on system performance. Recent studies have suggested that the advantages of quantum evolutionary algorithms (QEAs) in terms of precision and convergence speed can provide an effective solution to quantum circuit architecture-related problems. Currently, most QEAs adopt a fixed rotation mode in the evolution process, and a lack of an adaptive updating mode can cause the QEAs to fall into a local optimum and make it difficult for them to converge. To address these problems, this study proposes an adaptive quantum evolution algorithm (AQEA). First, an adaptive mechanism is introduced to the evolution process, and the strategy of combining two dynamic rotation angles is adopted. Second, to prevent the fluctuations of the population’s offspring, the elite retention of the parents is used to ensure the inheritance of good genes. Finally, when the population falls into a local optimum, a quantum catastrophe mechanism is employed to break the current population state. The experimental results show that compared with the QNN structure based on manual design and QEA search, the proposed AQEA can reduce the number of network parameters by up to 20% and increase the accuracy by 7.21%. Moreover, in noisy environments, the AQEA-optimized circuit outperforms traditional circuits in maintaining high fidelity, and its excellent noise resistance provides strong support for the reliability of quantum computing. Full article
(This article belongs to the Special Issue Quantum Information and Quantum Computation)
Show Figures

Figure 1

18 pages, 292 KiB  
Article
Motion of Quantum Particles in Terms of Probabilities of Paths
by Emilio Santos
Entropy 2025, 27(7), 728; https://doi.org/10.3390/e27070728 - 6 Jul 2025
Viewed by 225
Abstract
The Feynman path integral formalism for non-relativistic quantum mechanics is revisited. A comparison is made with cases of light propagation (Huygens’ principle) and Brownian motion. The difficulties for a physical model applying Feynman’s formalism are pointed out. A reformulation is proposed, where the [...] Read more.
The Feynman path integral formalism for non-relativistic quantum mechanics is revisited. A comparison is made with cases of light propagation (Huygens’ principle) and Brownian motion. The difficulties for a physical model applying Feynman’s formalism are pointed out. A reformulation is proposed, where the transition probability of a particle from one space-time point to another one is the sum of probabilities of the possible paths. As an application, Born approximation for scattering is derived within the formalism, which suggests an interpretation involving the stochastic motion of a particle rather than the square of a wavelike amplitude. Full article
(This article belongs to the Special Issue Quantum Probability and Randomness V)
1 pages, 137 KiB  
Correction
Correction: Bianconi, G. The Quantum Relative Entropy of the Schwarzschild Black Hole and the Area Law. Entropy 2025, 27, 266
by Ginestra Bianconi
Entropy 2025, 27(7), 724; https://doi.org/10.3390/e27070724 - 4 Jul 2025
Viewed by 152
Abstract
The new version of [...] Full article
24 pages, 3666 KiB  
Article
Contrastive Learning Pre-Training and Quantum Theory for Cross-Lingual Aspect-Based Sentiment Analysis
by Xun Li and Kun Zhang
Entropy 2025, 27(7), 713; https://doi.org/10.3390/e27070713 - 1 Jul 2025
Viewed by 297
Abstract
The cross-lingual aspect-based sentiment analysis (ABSA) task continues to pose a significant challenge, as it involves training a classifier on high-resource source languages and then applying it to classify texts in low-resource target languages, thereby bridging linguistic gaps while preserving accuracy. Most existing [...] Read more.
The cross-lingual aspect-based sentiment analysis (ABSA) task continues to pose a significant challenge, as it involves training a classifier on high-resource source languages and then applying it to classify texts in low-resource target languages, thereby bridging linguistic gaps while preserving accuracy. Most existing methods achieve exceptional performance by relying on multilingual pre-trained language models (mPLM) and translation systems to transfer knowledge across languages. However, little attention has been paid to factors beyond semantic similarity, which ultimately hinders classification performance in target languages. To address this challenge, we propose CLQT, a novel framework that combines contrastive learning pre-training with quantum theory to address the cross-lingual ABSA task. Firstly, we develop a contrastive learning strategy to align data between the source and target languages. Subsequently, we incorporate a quantum network that employs quantum projection and quantum entanglement to facilitate effective knowledge transfer across languages. Extensive experiments reveal that the novel CLQT framework both achieves strong results and has a beneficial overall influence on the cross-lingual ABSA task. Full article
(This article belongs to the Special Issue The Future of Quantum Machine Learning and Quantum AI, 2nd Edition)
Show Figures

Figure 1

17 pages, 489 KiB  
Review
Experimental Advances in Phase Estimation with Photonic Quantum States
by Laura T. Knoll, Agustina G. Magnoni and Miguel A. Larotonda
Entropy 2025, 27(7), 712; https://doi.org/10.3390/e27070712 - 1 Jul 2025
Viewed by 454
Abstract
Photonic quantum metrology has emerged as a leading platform for quantum-enhanced precision measurements. By taking advantage of quantum resources such as entanglement, quantum metrology enables parameter estimation with sensitivities surpassing classical limits. In this review, we describe the basic tools and recent experimental [...] Read more.
Photonic quantum metrology has emerged as a leading platform for quantum-enhanced precision measurements. By taking advantage of quantum resources such as entanglement, quantum metrology enables parameter estimation with sensitivities surpassing classical limits. In this review, we describe the basic tools and recent experimental progress in the determination of an optical phase with a precision that may exceed the shot-noise limit, enabled by the use of nonclassical states of light. We review the state of the art and discuss the challenges and trends in the field. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

13 pages, 893 KiB  
Article
Semi-Device-Independent Randomness Expansion Using n→1 Parity-Oblivious Quantum Random Access Codes
by Xunan Wang, Xu Chen, Mengke Xu, Wanglei Mi and Xiao Chen
Entropy 2025, 27(7), 696; https://doi.org/10.3390/e27070696 - 28 Jun 2025
Viewed by 233
Abstract
Quantum mechanics enables the generation of genuine randomness through its intrinsic indeterminacy. In device-independent (DI) and semi-device-independent (SDI) frameworks, randomness generation protocols can further ensure that the output remains secure and unaffected by internal device imperfections, with certification grounded in violations of generalized [...] Read more.
Quantum mechanics enables the generation of genuine randomness through its intrinsic indeterminacy. In device-independent (DI) and semi-device-independent (SDI) frameworks, randomness generation protocols can further ensure that the output remains secure and unaffected by internal device imperfections, with certification grounded in violations of generalized Bell inequalities. In this work, we propose an SDI randomness expansion protocol using n1 parity-oblivious quantum random access code (PO-QRAC), where the presence of true quantum randomness is certified through the violation of a two-dimensional quantum witness. For various values of n, we derive the corresponding maximal expected success probabilities. Notably, for n=4, the expected success probability obtained under our protocol exceeds the upper bound reported in prior work. Furthermore, we establish an analytic relationship between the certifiable min-entropy and the quantum witness value, and demonstrate that, for a fixed witness value, PO-QRAC–based protocols certify more randomness than those based on standard QRACs. Among all configurations satisfying the parity-obliviousness constraint, the protocol based on the 31 PO-QRAC achieves optimal randomness expansion performance. Full article
(This article belongs to the Special Issue Quantum Probability and Randomness V)
Show Figures

Figure 1

21 pages, 1969 KiB  
Article
Manipulating Entanglement Dynamics in Dephased Interacting Qubits Using a Radiation Field
by Omar Qisieh, Rahma Abdelmagid and Gehad Sadiek
Entropy 2025, 27(7), 673; https://doi.org/10.3390/e27070673 - 24 Jun 2025
Viewed by 596
Abstract
We study the entanglement dynamics of a pair of non-identical interacting atoms (qubits) coupled off-resonance to a single-mode cavity radiation field and exposed to dephasing environments. The qubits are studied starting from various initial states that are disentangled from an initially coherent field. [...] Read more.
We study the entanglement dynamics of a pair of non-identical interacting atoms (qubits) coupled off-resonance to a single-mode cavity radiation field and exposed to dephasing environments. The qubits are studied starting from various initial states that are disentangled from an initially coherent field. The system models the basic building units of quantum information processing (QIP) platforms under the realistic considerations of asymmetry and external environmental influences. We investigate how introducing a radiation field alters the system’s entanglement dynamics in the presence of dephasing environments, and how it impacts the effects of the dephasing environments themselves. The work examines the problem under various settings of inter-qubit interactions, which are now experimentally controllable in some of the newly engineered artificial qubit systems. We illustrate that only upon introducing the radiation field, the system suffers a terminal disentanglement (followed by no revivals) in a finite time. This behavior is exacerbated when the atoms’ interaction with the field is stronger. Moreover, the effects of the field’s intensity and the atoms’ detunings are vastly sensitive to the choice of the initial state. We also demonstrate that the closer the atoms’ transition frequencies are to resonance with the field, the more pronounced are the effects of strengthening the independent dephasing environments corresponding to some initial states. Those states also suffered a greater reduction in entanglement content when the qubits with stronger atom–field interaction strength were influenced by a stronger independent dephasing environment. In addition, we examined the ability of the correlated dephasing environment to induce a noise-enhanced efficiency in the presence of an external radiation field. We showed that the radiation field could play a decisive role in enabling or restricting noise-enhanced efficiency, but one that is also highly sensitive to the system’s initial state. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

21 pages, 545 KiB  
Article
Normal Variance Mixture with Arcsine Law of an Interpolating Walk Between Persistent Random Walk and Quantum Walk
by Saori Yoshino, Honoka Shiratori, Tomoki Yamagami, Ryoichi Horisaki and Etsuo Segawa
Entropy 2025, 27(7), 670; https://doi.org/10.3390/e27070670 - 23 Jun 2025
Viewed by 206
Abstract
We propose a model that interpolates between quantum walks and persistent (correlated) random walks using one parameter on the one-dimensional lattice. We show that the limit distribution is described by the normal variance mixture with the arcsine law. Full article
(This article belongs to the Special Issue Quantum Walks for Quantum Technologies)
Show Figures

Figure 1

Back to TopTop