Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Authors = Yiyang Luo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7805 KiB  
Article
Intelligent Prediction of Water-CO2 Relative Permeability in Heterogeneous Porous Media Towards Carbon Sequestration in Saline Aquifers
by Jiulong Wang, Junming Lao, Xiaotian Luo, Yiyang Zhou and Hongqing Song
Water 2025, 17(11), 1598; https://doi.org/10.3390/w17111598 - 25 May 2025
Viewed by 489
Abstract
Relative permeability is a critical parameter governing multiphase fluid flow through porous media, significantly impacting recovery efficiency and CO2 sequestration potential in geological reservoirs. Accurately evaluating relative permeability in heterogeneous reservoirs remains challenging due to spatially variable porosity and permeability distributions. This [...] Read more.
Relative permeability is a critical parameter governing multiphase fluid flow through porous media, significantly impacting recovery efficiency and CO2 sequestration potential in geological reservoirs. Accurately evaluating relative permeability in heterogeneous reservoirs remains challenging due to spatially variable porosity and permeability distributions. This study presents a novel intelligent prediction approach for evaluating water-CO2 relative permeability in heterogeneous porous media by integrating fluid properties, heterogeneity characteristics, and relative permeability measurements from uniform porous media. We established a comprehensive training dataset through systematic micromodel experiments that captured various heterogeneity patterns and fluid conditions. Using this dataset, we developed an Artificial Neural Network (ANN) model that achieved exceptional accuracy with a Mean Squared Error below 0.0025. The model was then applied to predict relative permeability in heterogeneous reservoirs using site-specific relative permeability data obtained from core experiments as input parameters. To validate our approach, we incorporated the predicted relative permeability values into Computer Modelling Group (CMG) reservoir simulations of CO2 sequestration in saline aquifers. The simulation results demonstrated strong agreement with published literature, confirming the model’s predictive capability. This work provides a practical, efficient, and reliable methodology for predicting relative permeability in heterogeneous reservoirs, addressing a significant challenge in reservoir characterization and flow modeling. Full article
(This article belongs to the Special Issue Water, Geohazards, and Artificial Intelligence, 2nd Edition)
Show Figures

Figure 1

13 pages, 2186 KiB  
Article
Preparation and Characterization of Vitamin D3-Based Binary Amorphous Systems
by Xiaoshuo Zhao, Xuemei Wang, Qiuyang Wu, Yiyang Cao, Xuening Song, Yingting Luo, Zisheng Luo, Jingwen Liu and Hao Zhang
Foods 2025, 14(8), 1321; https://doi.org/10.3390/foods14081321 - 11 Apr 2025
Viewed by 514
Abstract
Vitamin D3 (VD3) is an essential nutrient for human health that plays a key role in bone health and immune regulation. However, VD3 deficiency has become a common issue worldwide due to insufficient daily intake and inadequate conversion from sunlight exposure. The relatively [...] Read more.
Vitamin D3 (VD3) is an essential nutrient for human health that plays a key role in bone health and immune regulation. However, VD3 deficiency has become a common issue worldwide due to insufficient daily intake and inadequate conversion from sunlight exposure. The relatively poor aqueous solubility of VD3 is one of the major challenges in the development of oral supplements and functional foods, since it usually results in low oral absorption. In this study, a total of 11 potential binary systems were prepared by solvent evaporation. The binary amorphous system of VD3 and L-arginine (ARG) has been found to be the most promising binary system, since the VD3–ARG system can significantly improve the solubility of VD3, with an 80-fold enhancement relative to neat crystalline VD3. The amorphization of the VD3–ARG binary system was confirmed and the morphology was observed. Molecular interactions between VD3 and ARG were mainly attributed to hydrogen bonding, and three specific bonding sites were revealed. Furthermore, superior dissolution behavior was observed in the VD3–ARG binary amorphous system compared to the neat VD3. A significantly higher saturation level was achieved and the saturation maintained for the desired period. Overall, this study developed a promising formulation strategy to enhance the solubility of VD3, which can be further applied in functional foods for VD3 supplements. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

16 pages, 3575 KiB  
Article
Knockout of dhx38 Causes Inner Ear Developmental Defects in Zebrafish
by Mengmeng Ren, Xiang Chen, Liyan Dai, Jiayi Tu, Hualei Hu, Xiaohan Sun, Jiong Luo, Pei Li, Yiyang Fu, Yuejie Zhu, Weiqiang Sun, Zhaohui Tang, Mugen Liu, Xiang Ren and Qunwei Lu
Biomedicines 2025, 13(1), 20; https://doi.org/10.3390/biomedicines13010020 - 26 Dec 2024
Viewed by 930
Abstract
Background: Alternative splicing is essential for the physiological and pathological development of the inner ear. Disruptions in this process can result in both syndromic and non-syndromic forms of hearing loss. DHX38, a DEAH box RNA helicase, is integral to pre-mRNA splicing regulation [...] Read more.
Background: Alternative splicing is essential for the physiological and pathological development of the inner ear. Disruptions in this process can result in both syndromic and non-syndromic forms of hearing loss. DHX38, a DEAH box RNA helicase, is integral to pre-mRNA splicing regulation and plays critical roles in development, cell differentiation, and stem cell maintenance. However, its specific role in inner ear development remains undefined. Here, we utilized a dhx38 knockout zebrafish model to monitor the ear morphology and elucidate a crucial role for DHX38 in the development of the zebrafish inner ear. Methods: Bright-field morphological analysis and in situ hybridization were performed to observe ear morphology changes. Immunofluorescence and semi-quantitative RT-PCR were employed to test apoptotic cells and abnormal splicing. Results: The dhx38-/- mutant zebrafish showed significant inner ear impairments, including decrescent otocysts, absent semicircular canal protrusion, and smaller otoliths. These structural abnormalities were accompanied by substantial DNA damage and p53-dependent apoptosis within the inner ear cells. Alternative splicing analysis showed that genes related to DNA damage repair and inner ear morphogenesis are abnormal in dhx38 knockout mutants. In summary, we suggest that dhx38 promotes cell survival during the inner ear development of zebrafish by ensuring the correct splicing of genes related to DNA damage repair. Full article
(This article belongs to the Special Issue Zebrafish Models for Development and Disease 4.0)
Show Figures

Figure 1

14 pages, 2338 KiB  
Article
Improvement of Post-Surgery Constipation in Patients with Fractures by Lactobacillus rhamnosus JYLR-127: A Single-Blind Randomized Controlled Trial
by Yiyang Han, Yunlong Zhou, Xuan Xu, Shen Chen, Shuwei Zhang, Nan Jiang, Zhiqiang Liu, Junyu Zhang, Zhaowei Luo, Xinfeng Zhang, Liang Hao and Tingtao Chen
Nutrients 2024, 16(10), 1505; https://doi.org/10.3390/nu16101505 - 16 May 2024
Cited by 7 | Viewed by 2560
Abstract
The high prevalence of constipation after fracture surgery brings intolerable discomfort to patients on the one hand, and affects post-surgery nutrient absorption on the other hand, resulting in poor prognosis. Given the acknowledged probiotic properties of Lactobacillus rhamnosus, 100 fracture patients with [...] Read more.
The high prevalence of constipation after fracture surgery brings intolerable discomfort to patients on the one hand, and affects post-surgery nutrient absorption on the other hand, resulting in poor prognosis. Given the acknowledged probiotic properties of Lactobacillus rhamnosus, 100 fracture patients with post-surgery constipation were centrally enrolled and administered orally with L. rhamnosus JYLR-127 to assess the efficacy of probiotic-adjuvant therapy in alleviating post-fracture constipation symptoms. The results showed that L. rhamnosus JYLR-127 improved fecal properties, promoted gastrointestinal recovery, and relieved constipation symptoms, which were mainly achieved by elevating Firmicutes (p < 0.01) and descending Bacteroidetes (p < 0.001), hence remodeling the disrupted intestinal microecology. In addition, blood routine presented a decrease in C-reactive protein levels (p < 0.05) and an increase in platelet counts (p < 0.05) after probiotic supplementation, prompting the feasibility of L. rhamnosus JYLR-127 in anti-inflammation, anti-infection and hemorrhagic tendency prevention after fracture surgery. Our study to apply probiotics in ameliorating constipation after fracture surgery is expected to bless the bothered patients, and provide broader application scenarios for L. rhamnosus preparations. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

17 pages, 4073 KiB  
Article
The Development of Aptamer-Based Gold Nanoparticle Lateral Flow Test Strips for the Detection of SARS-CoV-2 S Proteins on the Surface of Cold-Chain Food Packaging
by Xiaotong Li, Jiachen Wang, Ge Yang, Xiaona Fang, Lianhui Zhao, Zhaofeng Luo and Yiyang Dong
Molecules 2024, 29(8), 1776; https://doi.org/10.3390/molecules29081776 - 13 Apr 2024
Cited by 6 | Viewed by 3483
Abstract
The COVID-19 pandemic over recent years has shown a great need for the rapid, low-cost, and on-site detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, an aptamer-based colloidal gold nanoparticle lateral flow test strip was well developed to realize [...] Read more.
The COVID-19 pandemic over recent years has shown a great need for the rapid, low-cost, and on-site detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, an aptamer-based colloidal gold nanoparticle lateral flow test strip was well developed to realize the visual detection of wild-type SARS-CoV-2 spike proteins (SPs) and multiple variants. Under the optimal reaction conditions, a low detection limit of SARS-CoV-2 S proteins of 0.68 nM was acquired, and the actual detection recovery was 83.3% to 108.8% for real-world samples. This suggests a potential tool for the prompt detection of SARS-CoV-2 with good sensitivity and accuracy, and a new method for the development of alternative antibody test strips for the detection of other viral targets. Full article
Show Figures

Graphical abstract

14 pages, 2513 KiB  
Article
Compositing Benzothieno[3,2-b]Benzofuran Derivatives with Single-Walled Carbon Nanotubes for Enhanced Thermoelectric Performance
by Yiyang Li, Liankun Ai, Qunyi Luo, Xin Wu, Baolin Li and Cun-Yue Guo
Molecules 2023, 28(18), 6519; https://doi.org/10.3390/molecules28186519 - 8 Sep 2023
Cited by 8 | Viewed by 1642
Abstract
Although numerous thermoelectric (TE) composites of organic materials and single-walled carbon nanotubes (SWCNTs) have been developed in the past decade, most of the research has been related to polymers without much on organic small molecules (OSMs). In this work, benzothieno[3,2-b]benzofuran (BTBF) [...] Read more.
Although numerous thermoelectric (TE) composites of organic materials and single-walled carbon nanotubes (SWCNTs) have been developed in the past decade, most of the research has been related to polymers without much on organic small molecules (OSMs). In this work, benzothieno[3,2-b]benzofuran (BTBF) and its derivatives (BTBF-Br and BTBF-2Br) were synthesized and their TE composites with SWCNTs were prepared. It is found that the highest molecular orbital level and band gap (Eg) of BTBF, BTBF-Br, and BTBF-2Br gradually decrease upon the introduction of electron-withdrawing Br group on BTBF. These changes significantly improve the Seebeck coefficient and power factor (PF) of OSM/SWCNT composites. An appropriate energy barrier between BTBF-2Br and SWCNTs promotes the energy filtering effect, which further contributes to the enhancement of composites’ thermoelectric properties. The composites of SWCNTs and BTBF-2Br with the smallest Eg (4.192 eV) afford the best thermoelectric performance with the room temperature power factor of 169.70 ± 3.46 μW m−1 K−2 in addition to good mechanical flexibility and thermal stability. This study provides a feasible strategy for the preparation of OSM/SWCNT composites with improved thermoelectric properties. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

10 pages, 3940 KiB  
Communication
A 3D Multilevel Heterostructure Containing 2D Vertically Aligned MoS2 Nanosheets and 1D Sandwich C-MoS2-C Nanotubes to Enhance the Storage of Li+ Ions
by Yiyang Zhao, Wenhao Luo, Huiqing Luo, Xiaodi Liu and Wenjun Zheng
Nanomaterials 2023, 13(14), 2088; https://doi.org/10.3390/nano13142088 - 18 Jul 2023
Cited by 2 | Viewed by 1587
Abstract
To overcome the disadvantages of the MoS2 anode for LIBs in terms of low intrinsic conductivity, poor mechanical stability, and adverse reaction with electrolytes, a 3D multilevel heterostructure (VANS-MoS2-CNTs) has been successfully prepared by a simple hydrothermal method followed by [...] Read more.
To overcome the disadvantages of the MoS2 anode for LIBs in terms of low intrinsic conductivity, poor mechanical stability, and adverse reaction with electrolytes, a 3D multilevel heterostructure (VANS-MoS2-CNTs) has been successfully prepared by a simple hydrothermal method followed by thermal treatment. VANS-MoS2-CNTs are made up of 2D vertically aligned MoS2 nanosheets (VANS) and 1D sandwich C-MoS2-C nanotubes (CNTs). The sandwich-like nanotube is the core part, which is made up of the MoS2 nanotube covered by carbon layers on both side surfaces. Due to the special heterostructure, VANS-MoS2-CNTs have good conductivity, high structured stability, and excellent Li+/electron transport, resulting in high discharge capacity (1587 mAh/g at a current density of 0.1 A/g), excellent rate capacity (1330 and 730 mAh/g at current densities of 0.1 and 2 A/g, respectively), and good cyclic stability (1270 mAh/g at 0.1 A/g after 100 cycles). Full article
Show Figures

Figure 1

13 pages, 2646 KiB  
Article
In Vitro Propagation and Genetic Uniformity Assessment of Manglietiastrum sinicum: A Critically Endangered Magnoliaceae Species
by Yiyang Luo, Keyuan Zheng, Xiaodi Liu, Jialu Tao, Xugao Sun, Yanwen Deng and Xiaomei Deng
Plants 2023, 12(13), 2500; https://doi.org/10.3390/plants12132500 - 30 Jun 2023
Cited by 6 | Viewed by 2538
Abstract
Manglietiastrum sinicum Y.W. Law is a critically endangered species with great ornamental and commercial value, which urgently requires protection. We tested different combinations of basal media and plant growth regulators to determine (i) the optimal conditions for bud induction and proliferation of explants [...] Read more.
Manglietiastrum sinicum Y.W. Law is a critically endangered species with great ornamental and commercial value, which urgently requires protection. We tested different combinations of basal media and plant growth regulators to determine (i) the optimal conditions for bud induction and proliferation of explants and (ii) optimal rooting conditions. RAPD- and ISSR-PCR were used to assess the genetic fidelity of regenerated plantlets. Murashige and Skoog medium (MS) supplemented with 0.5 mg/L 6-benzyladenine (BA) and 0.05 mg/L indole-3-butyric acid (IBA) is the optimal medium for bud induction (100% induction). MSM medium (a special basal medium for M. sinicum) was more suitable for the efficient proliferation and rooting of M. sinicum. Maximum bud proliferation rate (446.20%) was obtained on MSM, with 0.4 mg/L BA, 0.5 mg/L kinetin, and 0.06 mg/L IBA, while maximum root induction rate (88.89%) was obtained on MSM supplemented with 0.4 mg/L 1-naphthylacetic acid and 1.0 mg/L IBA with a 7-day initial darkness treatment. The rooted plantlets were transferred to a substrate containing peat soil, perlite, coconut chaff, and bark (volume ratio 2:1:1:1), with a resulting survival rate of 92.2%. RAPD and ISSR markers confirmed the genetic uniformity and stability of regenerated plants. Full article
(This article belongs to the Special Issue Advances and Applications in Plant Tissue Culture)
Show Figures

Figure 1

13 pages, 15394 KiB  
Article
Evolution of Phase Transformation on Microwave Dielectric Properties of BaSixO1+2x Ceramics and Their Temperature-Stable LTCC Materials
by Tailai Wen, Yulu Luo, Zehang Zeng, Xiaotian Liu, Changzhi Yin, Yiyang Cai, Xiaoxiao Li, Kang Du, Wen Lei and Shengxiang Wang
Crystals 2023, 13(6), 870; https://doi.org/10.3390/cryst13060870 - 26 May 2023
Cited by 2 | Viewed by 1452
Abstract
BaSixO1+2x (1.61 ≤ x ≤ 1.90) and LiF-doped BaSi1.63O4.26 ceramics were prepared by using a traditional solid-state method at the optimal sintering temperatures. The evolution of phase compositions of BaSixO1+2x (1.61 ≤ [...] Read more.
BaSixO1+2x (1.61 ≤ x ≤ 1.90) and LiF-doped BaSi1.63O4.26 ceramics were prepared by using a traditional solid-state method at the optimal sintering temperatures. The evolution of phase compositions of BaSixO1+2x (1.61 ≤ x ≤ 1.9) ceramics was revealed. The coexistence of Ba5Si8O21 and Ba3Si5O13 phases was obtained in BaSixO1+2x (1.61 ≤ x ≤ 1.67) ceramics. The BaSi2O5 phase appeared inBaSixO1+2x (1.68 ≤ x ≤ 1.90) ceramics. At 1.68 ≤ x ≤ 1.69, only BaSi2O5 and Ba3Si5O13 phases existed. With the further increase in x, the Ba5Si8O21 phase appeared, and BaSi2O5, Ba5Si8O21 and Ba3Si5O13 phases coexisted in BaSixO1+2x (1.70 ≤ x ≤ 1.90) ceramics. The phase compositions of BaSixO1+2x (1.61 ≤ x ≤ 1.90) ceramics were controlled by the ratio of Ba:Si. The BaSixO1+2x (x = 1.68) ceramics with 98.15 wt% Ba3Si5O13 and 1.85 wt% BaSi2O5 phases exhibited a negative τf value (−37.53 ppm/°C), and the good microwave dielectric properties of εr = 7.51, Q × f = 13,038 GHz and τf = +3.95 ppm/°C were obtained for BaSi1.63O4.26 ceramics with 70.05 wt% Ba5Si8O21 and 29.95 wt% Ba3Si5O13 phases. The addition of LiF sintering aids were able to reduce the sintering temperatures of BaSi1.63O4.26 ceramics to 800 °C. The phase composition of BaSi1.63O4.26 ceramics was affected by the sintering temperature, and the coexistence of Ba5Si8O21, Ba2Si3O8, BaSi2O5 and SiO2 phases was achieved in BaSi1.63O4.26-3 wt% LiF ceramics. The BaSi1.63O4.26-3 wt% LiF ceramics sintered at 800 °C exhibited dense microstructures and excellent microwave dielectric properties (εr = 7.10, Q × f = 12,463 GHz and τf = +5.75 ppm/°C), and no chemical reaction occurred between BaSi1.63O4.26-3 wt% LiF ceramics and the Ag electrodes, which indicates their potential for low-temperature co-fired ceramic (LTCC) applications. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

11 pages, 32784 KiB  
Communication
The Facile Synthesis of Hollow CuS Microspheres Assembled from Nanosheets for Li-Ion Storage and Photocatalytic Applications
by Yiyang Zhao, Yonghui Shao, Hao Chen, Xinwen Luo and Xiaodi Liu
Nanomaterials 2023, 13(9), 1505; https://doi.org/10.3390/nano13091505 - 28 Apr 2023
Cited by 4 | Viewed by 1900
Abstract
Herein, well-defined hollow CuS microspheres assembled from nanosheets were successfully synthesized through a facile solvothermal method. Hollow CuS microspheres have an average diameter of 1.5 μm; moreover, the primary CuS nanosheets have an ultrathin thickness of about 10 nm and are bound by [...] Read more.
Herein, well-defined hollow CuS microspheres assembled from nanosheets were successfully synthesized through a facile solvothermal method. Hollow CuS microspheres have an average diameter of 1.5 μm; moreover, the primary CuS nanosheets have an ultrathin thickness of about 10 nm and are bound by {0001} polar facets. When used as anodes for lithium-ion batteries (LIBs), hollow CuS microspheres exhibit excellent electrochemical properties, including a large discharge capacity (610.1 mAh g−1 at 0.5 C), an excellent rate capability (207.6 and 143.4 mAh g−1 at 1 and 5 C), and a superior cyclic stability (196.3 mAh g−1 at 1 C after 500 cycles). When used as photocatalysts for Rhodamine B (RhB), hollow CuS microspheres can degrade more than 99% of the initial RhB within 21 min. These excellent Li-ion storage properties and photocatalytical performances are attributed to their unique hierarchical hollow structure. Full article
Show Figures

Figure 1

19 pages, 4989 KiB  
Article
Berberine Alleviates Doxorubicin-Induced Myocardial Injury and Fibrosis by Eliminating Oxidative Stress and Mitochondrial Damage via Promoting Nrf-2 Pathway Activation
by Yiyang Wang, Jia Liao, Yuanliang Luo, Mengsi Li, Xingyu Su, Bo Yu, Jiashuo Teng, Huadong Wang and Xiuxiu Lv
Int. J. Mol. Sci. 2023, 24(4), 3257; https://doi.org/10.3390/ijms24043257 - 7 Feb 2023
Cited by 34 | Viewed by 3851
Abstract
Doxorubicin (DOX)-related cardiotoxicity has been recognized as a serious complication of cancer chemotherapy. Effective targeted strategies for myocardial protection in addition to DOX treatment are urgently needed. The purpose of this paper was to determine the therapeutic effect of berberine (Ber) on DOX-triggered [...] Read more.
Doxorubicin (DOX)-related cardiotoxicity has been recognized as a serious complication of cancer chemotherapy. Effective targeted strategies for myocardial protection in addition to DOX treatment are urgently needed. The purpose of this paper was to determine the therapeutic effect of berberine (Ber) on DOX-triggered cardiomyopathy and explore the underlying mechanism. Our data showed that Ber markedly prevented cardiac diastolic dysfunction and fibrosis, reduced cardiac malondialdehyde (MDA) level and increased antioxidant superoxide dismutase (SOD) activity in DOX-treated rats. Moreover, Ber effectively rescued the DOX-induced production of reactive oxygen species (ROS) and MDA, mitochondrial morphological damage and membrane potential loss in neonatal rat cardiac myocytes and fibroblasts. This effect was mediated by increases in the nuclear accumulation of nuclear erythroid factor 2-related factor 2 (Nrf2) and levels of heme oxygenase-1 (HO-1) and mitochondrial transcription factor A (TFAM). We also found that Ber suppressed the differentiation of cardiac fibroblasts (CFs) into myofibroblasts, as indicated by decreased expression of α-smooth muscle actin (α-SMA), collagen I and collagen III in DOX-treated CFs. Pretreatment with Ber inhibited ROS and MDA production and increased SOD activity and the mitochondrial membrane potential in DOX-challenged CFs. Further investigation indicated that the Nrf2 inhibitor trigonelline reversed the protective effect of Ber on both cardiomyocytes and CFs after DOX stimulation. Taken together, these findings demonstrated that Ber effectively alleviated DOX-induced oxidative stress and mitochondrial damage by activating the Nrf2-mediated pathway, thereby leading to the prevention of myocardial injury and fibrosis. The current study suggests that Ber is a potential therapeutic agent for DOX-induced cardiotoxicity that exerts its effects by activating Nrf2. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

27 pages, 8614 KiB  
Article
Association Measure and Compact Prediction for Chemical Process Data from an Information-Theoretic Perspective
by Lei Luo, Ge He, Yuequn Zhang, Xu Ji, Li Zhou, Yiyang Dai and Yagu Dang
Processes 2022, 10(12), 2659; https://doi.org/10.3390/pr10122659 - 9 Dec 2022
Cited by 1 | Viewed by 2358
Abstract
Mutual information (MI) has been widely used for association mining in complex chemical processes, but how to precisely estimate MI between variables of different numerical types, discriminate their association relationships with targets and finally achieve compact and interpretable prediction has not been discussed [...] Read more.
Mutual information (MI) has been widely used for association mining in complex chemical processes, but how to precisely estimate MI between variables of different numerical types, discriminate their association relationships with targets and finally achieve compact and interpretable prediction has not been discussed in detail, which may limit MI in more complicated industrial applications. Therefore, this paper first reviews the existing information-based association measures and proposes a general framework, GIEF, to consistently detect associations and independence between different types of variables. Then, the study defines four mutually exclusive association relations of variables from an information-theoretic perspective to guide feature selection and compact prediction in high-dimensional processes. Based on GIEF and conditional mutual information maximization (CMIM), a new algorithm, CMIM-GIEF, is proposed and tested on a fluidized catalytic cracking (FCC) process with 217 variables, one which achieves significantly improved accuracies with fewer variables in predicting the yields of four crucial products. The compact variables identified are also consistent with the results of Shapley Additive exPlanations (SHAP) and industrial experience, proving good adaptivity of the method for chemical process data. Full article
Show Figures

Figure 1

17 pages, 10917 KiB  
Article
Ferroptosis Related Immunomodulatory Effect of a Novel Extracellular Polysaccharides from Marine Fungus Aureobasidium melanogenum
by Yuqi Lin, Jiajia Yang, Lianxiang Luo, Xiaoyong Zhang, Shengyu Deng, Xiaodan Chen, Yiyang Li, Alaa El-Din A. Bekhit, Baojun Xu and Riming Huang
Mar. Drugs 2022, 20(5), 332; https://doi.org/10.3390/md20050332 - 19 May 2022
Cited by 19 | Viewed by 3777
Abstract
Marine fungi represent an important and sustainable resource, from which the search for novel biological substances for application in the pharmacy or food industry offers great potential. In our research, novel polysaccharide (AUM-1) was obtained from marine Aureobasidium melanogenum SCAU-266 were obtained and [...] Read more.
Marine fungi represent an important and sustainable resource, from which the search for novel biological substances for application in the pharmacy or food industry offers great potential. In our research, novel polysaccharide (AUM-1) was obtained from marine Aureobasidium melanogenum SCAU-266 were obtained and the molecular weight of AUM-1 was determined to be 8000 Da with 97.30% of glucose, 1.9% of mannose, and 0.08% galactose, owing to a potential backbone of α-D-Glcp-(1→2)-α-D-Manp-(1→4)-α-D-Glcp-(1→6)-(SO3)-4-α-D-Glcp-(1→6)-1-β-D-Glcp-1→2)-α-D-Glcp-(1→6)-β-D-Glcp-1→6)-α-D-Glcp-1→4)-α-D-Glcp-6→1)-[α-D-Glcp-4]26→1)-α-D-Glcp and two side chains that consisted of α-D-Glcp-1 and α-D-Glcp-(1→6)-α-D-Glcp residues. The immunomodulatory effect of AUM-1 was identified. Then, the potential molecular mechanism by which AUM-1 may be connected to ferroptosis was indicated by metabonomics, and the expression of COX2, SLC7A11, GPX4, ACSL4, FTH1, and ROS were further verified. Thus, we first speculated that AUM-1 has a potential effect on the ferroptosis-related immunomodulatory property in RAW 264.7 cells by adjusting the expression of GPX4, regulated glutathione (oxidative), directly causing lipid peroxidation owing to the higher ROS level through the glutamate metabolism and TCA cycle. Thus, the ferroptosis related immunomodulatory effect of AUM-1 was obtained. Full article
(This article belongs to the Special Issue Poly- and Oligosaccharides from Marine Origins)
Show Figures

Figure 1

10 pages, 3618 KiB  
Article
An Ionically Conductive, Self-Powered and Stable Organogel for Pressure Sensing
by Li Wang, Zhengduo Wang, Yingtao Li, Yu Luo, Bingheng Lu, Yiyang Gao, Wei Yu, Guoxin Gao and Shujiang Ding
Nanomaterials 2022, 12(4), 714; https://doi.org/10.3390/nano12040714 - 21 Feb 2022
Cited by 7 | Viewed by 3174
Abstract
Gel-based ionic conductors are promising candidates for flexible electronics, serving as stretchable sensors or electrodes. However, most of them suffer from a short operating life, low conductivity and rely on an external power supply, limiting their practical application. Herein, we report a stable [...] Read more.
Gel-based ionic conductors are promising candidates for flexible electronics, serving as stretchable sensors or electrodes. However, most of them suffer from a short operating life, low conductivity and rely on an external power supply, limiting their practical application. Herein, we report a stable organogel ionic conductor with high conductivity and self-powering ability. Briefly, lithium trifluoromethanesulfonate, as a conductive salt, provides high conductivity and the poly(1,1-difluoroethylene) layers, as a self-powering system, supply stable energy output under the influence of pressure. Moreover, the proposed conductors withstand long-term and multi-cycle durability tests. The prepared auxiliary training device can withstand the impact of a basketball and detect the impact force, showing potential in passive sensing during practical applications. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies in Nanogenerators)
Show Figures

Graphical abstract

14 pages, 3301 KiB  
Article
Early Fault Diagnosis Method for Batch Process Based on Local Time Window Standardization and Trend Analysis
by Yuman Yao, Yiyang Dai and Wenjia Luo
Sensors 2021, 21(23), 8075; https://doi.org/10.3390/s21238075 - 2 Dec 2021
Cited by 2 | Viewed by 2502
Abstract
The products of a batch process have high economic value. Meanwhile, a batch process involves complex chemicals and equipment. The variability of its operation leads to a high failure rate. Therefore, early fault diagnosis of batch processes is of great significance. Usually, the [...] Read more.
The products of a batch process have high economic value. Meanwhile, a batch process involves complex chemicals and equipment. The variability of its operation leads to a high failure rate. Therefore, early fault diagnosis of batch processes is of great significance. Usually, the available information of the sensor data in batch processing is obscured by its noise. The multistage variation of data results in poor diagnostic performance. This paper constructed a standardized method to enlarge fault information as well as a batch fault diagnosis method based on trend analysis. First, an adaptive standardization based on the time window was created; second, utilizing quadratic fitting, we extracted a data trend under the window; third, a new trend recognition method based on the Euclidean distance calculation principle was composed. The method was verified in penicillin fermentation. We constructed two test datasets: one based on an existing batch, and one based on an unknown batch. The average diagnostic rate of each group was 100% and 87.5%; the mean diagnosis time was the same; 0.2083 h. Compared with traditional fault diagnosis methods, this algorithm has better fault diagnosis ability and feature extraction ability. Full article
(This article belongs to the Special Issue Cyberphysical Sensing Systems for Fault Detection and Identification)
Show Figures

Figure 1

Back to TopTop