The Facile Synthesis of Hollow CuS Microspheres Assembled from Nanosheets for Li-Ion Storage and Photocatalytic Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Hollow CuS Microspheres
2.2. Materials Characterization
2.3. Electrochemical Measurement
2.4. Photocatalytic Test
3. Results
3.1. Structure Characterization
3.2. Formation Mechanism
3.3. Li-Ion Storage Properties
3.4. Photocatalytic Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, C.; Chen, S.; Yu, C.; Wang, R.; Luo, Q.; Chen, S.; Wu, Z.; Liu, C.; Cheng, S.; Xia, J. Achieving high-performance Li6.5Sb0.5Ge0.5S5I-based all-solid-state lithium batteries. Appl. Mater. Today 2023, 31, 101770. [Google Scholar] [CrossRef]
- Orimolade, B.O.; Idris, A.O.; Feleni, U.; Mamba, B. Recent advances in degradation of pharmaceuticals using Bi2WO6 mediated photocatalysis-a comprehensive review. Environ. Pollut. 2021, 289, 117891. [Google Scholar] [CrossRef]
- Golmohammadzadeh, R.; Faraji, F.; Jong, B.; Pozo-Gonzalo, C.; Banerjee, P.C. Current challenges and future opportunities toward recycling of spent lithium-ion batteries. Renew. Sustain. Energy Rev. 2022, 159, 112202. [Google Scholar] [CrossRef]
- Lee, W.W.; Lee, J.M. Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs). J. Mater. Chem. A 2014, 2, 1589–1626. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, L.; Sun, C.; Gu, Y.; Wen, W.; Fang, X. Rose-like CuS microflowers and their enhanced visible-light photocatalytic performance. CrystEngComm 2018, 20, 6529–6537. [Google Scholar] [CrossRef]
- Bell, J.D.; Murphy, J.A. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem. Soc. Rev. 2021, 50, 9540–9685. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Su, D.; Ma, W.; Zhao, Y.; Yan, D.; Li, J.; Jin, H. Design of hierarchical CuS/graphene architectures with enhanced lithium storage capability. Appl. Surf. Sci. 2017, 403, 1–8. [Google Scholar] [CrossRef]
- Zhu, J.; Yin, Z.; Yang, D.; Sun, T.; Yu, H.; Hoster, H.E.; Hng, H.H.; Zhang, H.; Yan, Q. Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy Environ. Sci. 2013, 6, 987–993. [Google Scholar] [CrossRef]
- Xiao, S.; Lu, Y.; Li, X.; Xiao, B.Y.; Wu, L.; Song, J.P.; Xiao, Y.X.; Wu, S.M.; Wang, Y.; Chang, G.G.; et al. Hierarchically dual-mesoporous TiO2 microspheres for enhanced photocatalytic properties and lithium storage. Chem. Eur. J. 2018, 24, 13246–13252. [Google Scholar] [CrossRef]
- Du, L.; Long, Z.; Wen, H.; Ge, W.; Zhou, Y.; Wang, J. (ionic liquid)-derived morphology control of Nb2O5 materials and their photocatalytic properties. CrystEngComm 2014, 16, 9096–9103. [Google Scholar] [CrossRef]
- Liu, X.; Liu, G.; Liu, Y.; Sun, R.; Ma, J.; Guo, J.; Hu, M. Urchin-like hierarchical H-Nb2O5 microspheres: Synthesis, formation mechanism and their applications in lithium ion batteries. Dalton Trans. 2017, 46, 10935–10940. [Google Scholar] [CrossRef]
- An, C.; Ni, Y.; Wang, Z.; Li, X.; Liu, X. Facile fabrication of CuS micro-flower as high durable sodium-ion battery anode. Inorg. Chem. Front. 2018, 5, 1045–1052. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.P.; Sougrati, M.T.; Feng, Z.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 2017, 7, 1601424. [Google Scholar] [CrossRef]
- Quan, Y.; Zhang, M.; Wang, G.; Lu, L.; Wang, Z.; Xu, H.; Liu, S.; Min, Q. 3D hierarchical porous CuS flower-dispersed CNT arrays on nickel foam as a binder-free electrode for supercapacitors. New J. Chem. 2019, 43, 10906–10914. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Li, Q. Facile synthesis of CuS Nanostructured flowers and their visible light photocatalytic properties. Appl. Phys. A 2017, 123, 196. [Google Scholar] [CrossRef]
- Nabi, G.; Tanveer, M.; Tahir, M.B.; Kiran, M.; Nawaz, T. Mixed solvent based surface modification of CuS nanostructures for an excellent photocatalytic application. Inorg. Chem. Commun. 2020, 121, 108205. [Google Scholar] [CrossRef]
- Iqbal, S.; Bahadur, A.; Anwer, S.; Shoaib, M.; Liu, G.; Li, H.; Raheel, M.; Javed, M.; Khalid, B. Designing novel morphologies of L-cysteine surface capped 2D covellite (CuS) nanoplates to study the effect of CuS morphologies on dye degradation rate under visible light. CrystEngComm 2020, 22, 4162–4173. [Google Scholar] [CrossRef]
- Liu, X.; Guo, M.; Wei, C.; Ji, X.; Zheng, W. Purposely synthesis of hierarchical CuS nanoflowers composed of ultrathin nanoflakes with exposed (001) facets using a solvent-template ionic liquid and their application in supercapacitors. Mater. Sci. Eng. B 2021, 273, 115433. [Google Scholar] [CrossRef]
- Liu, X.; Liu, G.; Wang, L.; Li, Y.; Ma, Y.; Ma, J. Morphology- and facet-controlled synthesis of CuO micro/nanomaterials and analysis of their lithium ion storage properties. J. Power Sources 2016, 312, 199–206. [Google Scholar] [CrossRef]
- Liu, G.; Liu, X.; Wang, L.; Ma, J.; Xie, H.; Ji, X.; Guo, J.; Zhang, R. Hierarchical Li4Ti5O12-TiO2 microspheres assembled from nanoflakes with exposed Li4Ti5O12 (011) and anatase TiO2 (001) facets for high-performance lithium-ion batteries. Electrochim. Acta 2016, 222, 1103–1111. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.; Liu, R.; Liu, G.; Ji, X.; Feng, Y.; Ma, J. Ionic liquid-assisted synthesis of hierarchical Ti2Nb10O29 porous microspheres coated by ultrathin N-doped carbon layers for high-performance lithium-ion battery. Ceram. Int. 2021, 47, 17606–17641. [Google Scholar] [CrossRef]
- Liu, X.; Fan, H.; Li, B.; Hu, M.; Hu, Y.; Liu, M.; Liu, G.; Ma, J. α-Fe2O3 hollow microspheres assembled by ultra-thin nanoflakes exposed with (241) high-index facet: Solvothermal synthesis, lithium storage performance, and superparamagnetic property. Int. J. Hydrogen Energy 2019, 44, 1070–1077. [Google Scholar] [CrossRef]
- Yang, Z.; Shang, Z.; Liu, F.; Chen, Y.; Liu, G.; Chen, Y.; Wang, X.; Zhang, B.; Liu, G. Hollow porous BiOCl microspheres assembled with single layer of nanocrystals: Spray solution combustion synthesis and the enhanced photocatalytic properties. Nanotechnology 2021, 32, 205602. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, Y.; Zhang, X.; Wen, Y.; Guo, J. Sacrificial template formation of CoMoO4 hollow nanostructures constructed by ultrathin nanosheets for robust lithium storage. RSC Adv. 2016, 6, 51710–51715. [Google Scholar] [CrossRef]
- Zhang, L.; Jiu, H.; Fu, Y.; Sun, Y.; Chen, P.; Li, Y.; Ma, S. Facile synthesis and luminescence of GdPO4:Eu hollow microspheres by a sacrificial template route. Mater. Lett. 2013, 101, 47–50. [Google Scholar] [CrossRef]
- Dai, C.; Tian, X.; Nie, Y.; Tian, C.; Yang, C.; Zhou, Z.; Li, Y.; Gao, X. Successful synthesis of 3D CoSe2 hollow microspheres with high surface roughness and its excellent performance in catalytic hydrogen evolution reaction. Chem. Eng. J. 2017, 321, 105–112. [Google Scholar] [CrossRef]
- Cao, S.W.; Zhu, Y.J. Iron oxide hollow spheres: Microwave-hydrothermal ionic liquid preparation, formation mechanism, crystal phase and morphology control and properties. Acta Mater. 2009, 57, 2154–2165. [Google Scholar] [CrossRef]
- Du, W.; Qian, X.; Ma, X.; Gong, Q.; Cao, H.; Yin, H. Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets. Chem. Eur. J. 2007, 13, 3241–3247. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Tang, Y.; Li, B.; Zhou, L.; Gong, F.; He, H.; Sun, B.; Tang, C.; Gao, F.; Dong, L. Influence of molar ratio and calcination temperature on the properties of TixSn1-xO2 supporting copper oxide for CO oxidation. Appl. Catal. B 2016, 180, 451–462. [Google Scholar] [CrossRef]
- Liang, H.; Shuang, W.; Zhang, Y.; Chao, S.; Han, H.; Wang, X.; Zhang, H.; Yang, L. Graphene-like multilayered CuS nanosheets assembled into flower-like microspheres and their electrocatalytic oxygen evolution properties. ChemElectroChem 2018, 5, 494–500. [Google Scholar] [CrossRef]
- Hsu, Y.K.; Chen, Y.C.; Lin, Y.G. Synthesis of copper sulfide nanowire arrays for high-performance supercapacitors. Electrochim. Acta 2014, 139, 401. [Google Scholar] [CrossRef]
- Liu, X.; Duan, X.; Peng, P.; Zheng, W. Hydrothermal synthesis of copper selenides with controllable phases and morphologies from an ionic liquid precursor. Nanoscale 2011, 3, 5090–5095. [Google Scholar] [CrossRef]
- Shakya, S.; Prakash, G.V. Formation of PbO hexagonal nanosheets and their conversion into luminescent inorganic-organic perovskite nanosheets: Growth and mechanism. RSC Adv. 2015, 5, 27946–27952. [Google Scholar] [CrossRef]
- Wen, L.L.; Hong, Y.Z.; Jing, L.; Qiang, W.; Yuan, F.L.; Cheng, Z.H. H2S bubbles-assisted synthesis of hollow Cu2−xSeyS1−y/reduced graphene oxide nanocomposites with tunable compositions and localized surface plasmon resonance. RSC Adv. 2015, 5, 91206–91212. [Google Scholar]
- Zhan, Q.; Shi, X.; Fan, D.; Zhou, L.; Wei, S. Solvent mixing generating air bubbles as a template for polydopamine nanobowl fabrication: Underlying mechanism, nanomotor assembly and application in cancer treatment. Chem. Eng. J. 2021, 404, 126443. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, Y.; Wang, Z.; Zhao, J.; Dong, G. Glycerol-controlled synthesis of MoS2 hierarchical architectures with well-tailored subunits and enhanced electrochemical performance for lithium ion batteries. Chem. Eng. J. 2017, 4, 487–496. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Zhang, Y.; Li, M.; Qin, C.; Bakenov, Z. Chemical dealloying synthesis of CuS nanowire-on-nanoplate network as anode materials for Li-ion batteries. Metals 2018, 8, 252. [Google Scholar] [CrossRef]
- Ren, C.; Yue, H.; Wang, G.; Wen, Q.; Jin, R. Copper sulfides nanocrystals encapsulated in polypyrrole nanotubes for stable lithium storage. Mater. Lett. 2021, 282, 128840. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, X.W.; Wang, J.Z.; Chou, S.L.; Konstantinov, K.; Liu, H.K. CuS nanoflakes, microspheres, microflowers, and nanowires: Synthesis and lithium storage properties. J. Nanosci. Nanotechnol. 2013, 13, 1309–1316. [Google Scholar] [CrossRef]
- Hosseinpour, Z.; Scarpellini, A.; Najafishirtari, S.; Marras, S.; Colombo, M.; Alemi, A.; Volder, M.D.; George, C.; Lesnyak, V. Morphology-dependent electrochemical properties of CuS hierarchical superstructures. ChemPhysChem 2015, 16, 3418–3424. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y.; Gao, W.; Wang, Y.; Jiao, L.; Yuan, H.; Liu, S. Synthesis of novel CuS with hierarchical structures and its application in lithium-ion batteries. Powder Technol. 2011, 212, 64–68. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Wang, Y.; Zeng, J.; Ji, P.; Zhao, J. Copper sulfide microspheres wrapped with reduced graphene oxide for high-capacity lithium-ion storage. Mater. Sci. Eng. B 2016, 213, 57–62. [Google Scholar] [CrossRef]
- Fu, Y.; Manthiram, A. Electrochemical properties of Cu2S with ether-based electrolyte in Li-ion batteries. Electrochim. Acta 2013, 109, 716–719. [Google Scholar] [CrossRef]
- Han, F.; Li, W.C.; Li, D.; Lu, A.H. In situ electrochemical generation of mesostructured Cu2S/C composite for enhanced lithium storage: Mechanism and material properties. ChemElectroChem 2014, 1, 733–740. [Google Scholar] [CrossRef]
- Jia, C.; Zhang, X.; Yang, P. Anatase/rutile-TiO2 hollow hierarchical architecture modified by SnO2 toward efficient lithium storage. Int. J. Hydrogen Energy 2018, 43, 2237–2246. [Google Scholar] [CrossRef]
- Guo, Y.; Li, S.; Fang, Q.; Zuo, J.; Liu, M.; Zhang, J. An integrated electrode based on nanoflakes of MoS2 on carbon cloth for enhanced lithium storage. RSC Adv. 2020, 10, 9335–9340. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Y.; Huang, J.; Zhang, Y.; Zhao, J. Microwave-assisted synthesis of CuS/graphene composite for enhanced lithium storage properties. Electrochim. Acta 2017, 225, 443–451. [Google Scholar] [CrossRef]
- Zhou, H.; Guo, J.; Fang, N.; Liang, J.; Shen, T.; Yuan, S. Investigation of photocatalytic performance of CuS/Bi2WO6 and degradation pathway of RhB in water. J. Water Supply Res. T. 2020, 69, 145–149. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Ge, Z.; Zhu, L.; Li, Y. Preparation by solvothermal synthesis, growth mechanism, and photocatalytic performance of CuS nanopowders. Eur. J. Inorg. Chem. 2014, 14, 2368–2375. [Google Scholar] [CrossRef]
- Deng, X.; Wang, C.; Yang, H.; Shao, M.; Zhang, S.; Wang, X.; Ding, M.; Huang, J.; Xu, X. One-pot hydrothermal synthesis of CdS decorated CuS microflower-like structures for enhanced photocatalytic properties. Sci. Rep. 2018, 7, 3877. [Google Scholar] [CrossRef]
- Seo, K.; Sinha, K.; Novitskaya, E.; Graeve, O.A. Polyvinylpyrrolidone (PVP) effects on iron oxide nanoparticle formation. Mater. Lett. 2018, 25, 203–206. [Google Scholar] [CrossRef]
- Chen, P.; Su, Y.; Liu, H.; Wang, Y. Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications. ACS Appl. Mater. Interfaces 2013, 5, 12073–12082. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Jin, L.; Yang, Y.; Guo, K.; Hu, F. Novel method of constructing CdS/ZnS heterojunction for high performance and stable photocatalytic activity. J. Photochem. Photobiol. A 2019, 380, 11859. [Google Scholar] [CrossRef]
- Zhong, W.; Wu, X.; Wang, P.; Fan, J.; Yu, H. Homojunction CdS photocatalysts with a massive S2-adsorbed surface phase: One-step facile synthesis and high H2-evolution performance. ACS Sustain. Chem. Eng. 2020, 8, 543–551. [Google Scholar] [CrossRef]
- Yepsen, O.; Yáñez, J.; Mansilla, H.D. Photocorrosion of copper sulfides: Toward a solar mining industry. Sol. Energy 2018, 171, 106–111. [Google Scholar] [CrossRef]
- Hou, L.; Niu, Y.; Yang, F.; Ge, F.; Yuan, C. Facile solvothermal synthesis of hollow biobr submicrospheres with enhanced visible-light-responsive photocatalytic performance. J. Anal. Methods Chem. 2020, 2020, 3058621. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, C.; Zhou, T.; Hu, J. Morphology-preserved transformation of CdS hollow structures toward photocatalytic H2 evolution. CrystEngComm 2020, 22, 1057–1062. [Google Scholar] [CrossRef]
- Nguyen, C.C.; Vu, N.N.; Do, T.O. Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications. J. Mater. Chem. A 2015, 3, 18345–18359. [Google Scholar] [CrossRef]
- Li, C.X.; Han, L.J.; Liu, R.J.; Li, H.H.; Zhang, S.J.; Zhang, G.J. Controlled synthesis of CdS micro/nano leaves with (0001) facets exposed: Enhanced photocatalytic activity toward hydrogen evolution. J. Mater. Chem. 2012, 22, 23815–23820. [Google Scholar] [CrossRef]
- Hao, X.; Hu, Y.; Cui, Z.; Zhou, J.; Wang, Y.; Zou, Z. Self-constructed facet junctions on hexagonal CdS single crystals with high photoactivity and photostability for water splitting. Appl. Catal. B-Environ. 2019, 244, 694–703. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Z.; Zhang, J.; Zhang, Z. Exposed facet and crystal phase tuning of hierarchical tungsten oxide nanostructures and their enhanced visible-light-driven photocatalytic performance. CrystEngComm 2015, 17, 9102–9911. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Shao, Y.; Chen, H.; Luo, X.; Liu, X. The Facile Synthesis of Hollow CuS Microspheres Assembled from Nanosheets for Li-Ion Storage and Photocatalytic Applications. Nanomaterials 2023, 13, 1505. https://doi.org/10.3390/nano13091505
Zhao Y, Shao Y, Chen H, Luo X, Liu X. The Facile Synthesis of Hollow CuS Microspheres Assembled from Nanosheets for Li-Ion Storage and Photocatalytic Applications. Nanomaterials. 2023; 13(9):1505. https://doi.org/10.3390/nano13091505
Chicago/Turabian StyleZhao, Yiyang, Yonghui Shao, Hao Chen, Xinwen Luo, and Xiaodi Liu. 2023. "The Facile Synthesis of Hollow CuS Microspheres Assembled from Nanosheets for Li-Ion Storage and Photocatalytic Applications" Nanomaterials 13, no. 9: 1505. https://doi.org/10.3390/nano13091505
APA StyleZhao, Y., Shao, Y., Chen, H., Luo, X., & Liu, X. (2023). The Facile Synthesis of Hollow CuS Microspheres Assembled from Nanosheets for Li-Ion Storage and Photocatalytic Applications. Nanomaterials, 13(9), 1505. https://doi.org/10.3390/nano13091505