Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Authors = Xiaoyun Jia ORCID = 0000-0002-5525-9349

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1515 KiB  
Article
Expression of Heat Shock Protein 90 Genes Induced by High Temperature Mediated Sensitivity of Aphis glycines Matsumura (Hemiptera: Aphididae) to Insecticides
by Xue Han, Yulong Jia, Changchun Dai, Xiaoyun Wang, Jian Liu and Zhenqi Tian
Insects 2025, 16(8), 772; https://doi.org/10.3390/insects16080772 - 28 Jul 2025
Viewed by 361
Abstract
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean fields. While high-temperature stress induced by global warming can initially suppress aphid populations, these pests may eventually adapt, leading to more severe infestations and crop damage. Heat shock proteins (HSPs), [...] Read more.
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean fields. While high-temperature stress induced by global warming can initially suppress aphid populations, these pests may eventually adapt, leading to more severe infestations and crop damage. Heat shock proteins (HSPs), which are upregulated in response to heat stress to protect aphid development, also confer tolerance to other abiotic stressors, including insecticides. To investigate the role of HSPs in insecticide resistance in A. glycines, we analyzed the expression profiles of three AgHsp90 genes (AgHsp75, AgHsp83, and AgGrp94) following exposure to high temperatures and insecticides. Functional validation was performed using RNA interference (RNAi) to silence AgHsp90 genes. Our results demonstrated that AgHsp90 genes were significantly upregulated under both heat and insecticide stress conditions. Furthermore, after feeding on dsRNA of AgHsp90 genes, mortality rates of A. glycines significantly increased when exposed to imidacloprid and lambda-cyhalothrin. This study provides evidence that AgHsp90 genes play a crucial role in mediating thermal tolerance and insecticide resistance in A. glycines. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

21 pages, 937 KiB  
Article
Influences of Non-Volatile Components on the Aroma of Strong-Aroma Baijiu by Gas Chromatography-Olfactometry and Recombination-Omission Test
by Yingqi Zhou, Yihong Wang, Jia Zheng, Siyi Pan, Xiaoyun Xu and Fang Yuan
Foods 2025, 14(14), 2490; https://doi.org/10.3390/foods14142490 - 16 Jul 2025
Viewed by 234
Abstract
Aroma is an important indicator for evaluating the quality of baijiu. In this study, we determined the aroma-active compounds in four representative brands of strong-aroma baijiu from Sichuan and Jianghuai regions through GC-MS/O, and GC-TOF-MS quantification. In addition, the non-volatile composition of four [...] Read more.
Aroma is an important indicator for evaluating the quality of baijiu. In this study, we determined the aroma-active compounds in four representative brands of strong-aroma baijiu from Sichuan and Jianghuai regions through GC-MS/O, and GC-TOF-MS quantification. In addition, the non-volatile composition of four baijiu samples was quantified by BSTFA derivatization and GC-MS. By constructing a full recombination model containing both volatile and non-volatile components, the effect of different groups of non-volatile compounds on the aroma of strong-aroma baijiu was evaluated through recombination-omission tests. A total of 72 aroma-active compounds and 59 non-volatile compounds were identified and quantified. The results indicated that pyrazines, furfural, and furan derivatives displayed higher aroma intensities in strong-aroma baijiu produced in Sichuan compared to that produced in Jianghuai. The recombination model that included both aroma-active and non-volatile compounds showed a closer resemblance to the original baijiu samples, underscoring the critical role these compounds play in shaping the dominant aroma profile of strong-aroma baijiu. Non-volatile compounds significantly influenced six aroma attributes: fruity, sweet, sauce, pit, acidic, and alcoholic notes. Omission tests revealed that among posorly volatile organic acids, monobasic acids had distinct effects on the aroma profile, while dibasic acids did not show any noticeable influence on the sensory characteristics. Full article
(This article belongs to the Special Issue Wine and Alcohol Products: Volatile Compounds and Sensory Properties)
Show Figures

Figure 1

18 pages, 3782 KiB  
Article
Morphology, Molecular Characterization, and Phylogeny of Travassosius rufus Khalil, 1922 (Strongylidea: Trichostrongylidae), a Parasite from Endangered Sino-Mongolian Beaver (Castor fiber birulai) in Xinjiang, China
by Huiping Jia, Wenwen Chu, Dong Zhang, Kai Li, Wenpu Huang and Xiaoyun Li
Animals 2025, 15(9), 1339; https://doi.org/10.3390/ani15091339 - 6 May 2025
Viewed by 497
Abstract
The genus Travassosius Khalil, 1922, the smallest genus in the subfamily Trichostrongylinae (family Trichostrongylidae), primarily infects the only two extant beaver species worldwide and can be lethal in severe infections. However, the mitochondrial genome evolution of Travassosius remains poorly understood, and its phylogenetic [...] Read more.
The genus Travassosius Khalil, 1922, the smallest genus in the subfamily Trichostrongylinae (family Trichostrongylidae), primarily infects the only two extant beaver species worldwide and can be lethal in severe infections. However, the mitochondrial genome evolution of Travassosius remains poorly understood, and its phylogenetic placement within Trichostrongylinae is still unresolved. In this study, we applied both morphological techniques (differential interference contrast microscopy) and molecular tools (nuclear ITS2 and mitochondrial genome) to examine T. rufus Khalil, 1922. Specimens were collected from the Sino-Mongolian beaver, a subspecies of the Eurasian beaver native to the Ulungur River Basin in northern Xinjiang, China. This work presents the first complete mitochondrial genome sequence and annotation of T. rufus, and it is also the first mitochondrial genome reported for the genus Travassosius. The mitochondrial genome of T. rufus measures 13,646 bp and contains 36 genes, including 12 protein-coding genes (PCGs) (excluding atp8), 22 transfer RNA genes, and 2 ribosomal RNA genes. Phylogenetic analysis based on amino acid sequences of 12 mitochondrial PCGs strongly supports the distinctiveness of the genus Travassosius. Additionally, T. rufus appears to be closely related to Nematodirus within Trichostrongylinae. This study also addresses the possible consequences of parasitic infection for the Sino-Mongolian beaver and offers a scientific foundation for conserving this endangered subspecies and managing parasitic diseases in its population. Full article
(This article belongs to the Section Mammals)
Show Figures

Figure 1

12 pages, 1937 KiB  
Article
QTL Mapping and Candidate Gene Analysis for Cotton Fiber Quality and Early Maturity Using F2 and F3 Generations
by Xiaoyun Jia, Jijie Zhu, Hongxia Zhao, Linglei Kong, Shijie Wang, Miao Li and Guoyin Wang
Plants 2025, 14(7), 1063; https://doi.org/10.3390/plants14071063 - 29 Mar 2025
Viewed by 545
Abstract
Cotton is the most important natural fiber-producing crop globally. High-quality fiber and early maturity are equally important breeding goals in the cotton industry. However, it remains challenging to synchronously improve these traits through conventional breeding techniques. To identify additional genetic information relating to [...] Read more.
Cotton is the most important natural fiber-producing crop globally. High-quality fiber and early maturity are equally important breeding goals in the cotton industry. However, it remains challenging to synchronously improve these traits through conventional breeding techniques. To identify additional genetic information relating to fiber quality and early maturity, 11 phenotypic traits for the F2 and F3 generations were tested, and quantitative trait loci (QTL) mapping was performed. Candidate genes were analyzed using published RNA-seq datasets and qRT-PCR assays. All 11 tested traits showed bi-directional transgressive segregation, and most traits followed an approximately normal distribution. Overall, significant positive and significant negative correlations were observed among these traits. During cotton breeding, varieties with strong boll-setting ability can be selected from early-maturing materials that have high-quality fiber. A total of 102 QTLs were mapped, including 4 major and 3 stable QTLs. qFL-D13-1 was mapped in both the F2 and F3 generations, achieving a 3.94% to 11.39% contribution rate to the phenotypic variation. Three genes located in the QTL regions were identified based on their high expression levels in the three evaluated RNA-seq datasets. Ghir_A04G014830.1, covered by qHNFFB-A4-1 and qFU-A4-1, encoded ACLA-1. Ghir_D13G015010.1, encoding VTC2, and Ghir_D13G016670.1, encoding GA2OX1, were in the stable QTL qFL-D13-1 region. The qRT-PCR results suggested that these three genes may be involved in regulating seed development, fiber initiation, and fiber elongation. Overall, these findings contribute additional information for the breeding of high-yield, high fiber quality, and early-maturity varieties, as well as serve as a foundation for research on the underlying molecular mechanisms. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

23 pages, 5618 KiB  
Article
Meteorological Data Processing Method for Energy-Saving Design of Intelligent Buildings Based on the Compressed Sensing Reconstruction Algorithm
by Jingjing Jia, Chulsoo Kim, Chunxiao Zhang, Mengmeng Han and Xiaoyun Li
Sustainability 2025, 17(4), 1469; https://doi.org/10.3390/su17041469 - 11 Feb 2025
Viewed by 779
Abstract
With the increasingly severe problems of global climate change and resource scarcity, sustainable development has become an important issue of common concern in various industries. The construction industry is one of the main sources of global energy consumption and carbon emissions, and sustainable [...] Read more.
With the increasingly severe problems of global climate change and resource scarcity, sustainable development has become an important issue of common concern in various industries. The construction industry is one of the main sources of global energy consumption and carbon emissions, and sustainable buildings are an effective way to address climate change and resource scarcity. Meteorological conditions are closely related to building energy efficiency. Therefore, the research is founded upon a substantial corpus of meteorological data, employing a compressed sensing reconstruction algorithm to supplement the absent meteorological data, and subsequently integrating an enhanced density peak clustering algorithm for data mining. Finally, an intelligent, sustainable, building energy-saving design platform is designed based on this. The research results show that in the case of random defects in monthly timed data that are difficult to repair, the reconstruction error of the compressed sensing reconstruction algorithm is only 0.0403, while the improved density peak clustering algorithm has the best accuracy in both synthetic and real datasets, with an average accuracy corresponding to 0.9745 and 0.8304. Finally, in the application of the intelligent, sustainable, building energy-saving design platform, various required information such as HVAC data energy-saving design parameters, cloud cover, and temperature radiation are intuitively and fully displayed. The above results indicate that the research method can effectively explore the potential valuable information of sustainable building energy-saving design, providing a reference for the design of sustainable buildings and climate analysis. Full article
Show Figures

Figure 1

12 pages, 2718 KiB  
Article
Impact of Deep-Rooted Vegetation on Deep Soil Water Recharge in the Gully Region of the Loess Plateau
by Jingjing Jin, Xiaoyun Ding, Fengshi Li, Zichen Jia, Haoyan Wei, Junchao Li and Min Li
Water 2025, 17(2), 208; https://doi.org/10.3390/w17020208 - 14 Jan 2025
Viewed by 822
Abstract
To investigate the impacts of vegetation change on deep soil water recharge, it is essential to identify the sources of deep soil water and deep drainage. The combination of stable and radioactive water isotopes is an effective method for studying deep vadose zones, [...] Read more.
To investigate the impacts of vegetation change on deep soil water recharge, it is essential to identify the sources of deep soil water and deep drainage. The combination of stable and radioactive water isotopes is an effective method for studying deep vadose zones, though it has been rarely applied in complex gully areas. In this study, we measured δ2H, δ18O, and 3H in soil water under long-term natural grassland and C. korshinskii on the same slope. Both natural grassland and C. korshinskii plots received deep soil water from rainfall during the rainy season; however, the replenishment thresholds for soil water at depths of 2–10.4 m differed between the two vegetation types, corresponding to rainfall intensities of ≥20 mm and ≥50 mm, respectively. Following the conversion of natural grassland to C. korshinskii vegetation, the rate of soil water storage deficit increased by 46.4 mm yr−1, and deep drainage shifted from 39.6 mm yr−1 to 0 mm yr−1. Deep-rooted vegetation significantly depletes soil water to meet transpiration demands, thus hindering rainfall recharge. These findings have important implications for water and land resource management, especially in areas undergoing significant vegetation changes. Full article
Show Figures

Figure 1

17 pages, 521 KiB  
Article
Numerical Simulation and Parameter Estimation of the Space-Fractional Magnetohydrodynamic Flow and Heat Transfer Coupled Model
by Yi Liu, Xiaoyun Jiang and Junqing Jia
Fractal Fract. 2024, 8(10), 557; https://doi.org/10.3390/fractalfract8100557 - 26 Sep 2024
Viewed by 851
Abstract
In this paper, a coupled model is built to research the space-fractional magnetohydrodynamic (MHD) flow and heat transfer problem. The fractional coupled model is solved numerically by combining the matrix function vector products method in the temporal direction with the spectral method in [...] Read more.
In this paper, a coupled model is built to research the space-fractional magnetohydrodynamic (MHD) flow and heat transfer problem. The fractional coupled model is solved numerically by combining the matrix function vector products method in the temporal direction with the spectral method in the spatial direction. A fast method based on the numerical scheme is established to reduce the computational time. With the help of the Bayesian method, the space-fractional orders of the coupled model are estimated, and the problem of multi-parameter estimation in the coupled model is solved. Finally, a numerical example is carried out to verify the stability of the numerical methods and the effectiveness of the parameter estimation method. Results show that the numerical method is stable, which converges with an accuracy of O(τ2+Nr). The fast method is efficient in reducing the computational time, and the parameter estimation method can effectively estimate parameters in the space-fractional coupled model. The numerical solutions are discussed to describe the effects of several important parameters on the velocity and the temperature. Results indicate that the Lorentz force produced by the MHD flow blocks the movement of the fluid and prolongs the time for the fluid to reach a stable state. But the Hall parameter m weakens this hindrance. The Joule heating effects play a negative role in heat transfer. Full article
(This article belongs to the Special Issue New Advances and Applications of Fractional Oscillate System)
Show Figures

Figure 1

11 pages, 1245 KiB  
Article
Quantitative Trait Loci Mapping and Candidate Gene Analysis for Fiber Quality Traits in Upland Cotton
by Xiaoyun Jia, Hongxia Zhao, Jijie Zhu, Shijie Wang, Miao Li and Guoyin Wang
Agronomy 2024, 14(8), 1719; https://doi.org/10.3390/agronomy14081719 - 5 Aug 2024
Viewed by 1450
Abstract
Superior fiber quality is one of the most important objectives in cotton breeding. To detect the genetic basis underlying fiber quality, an F2 population containing 413 plants was constructed by crossing Jifeng 914 and Jifeng 173, both of which have superior fiber quality, [...] Read more.
Superior fiber quality is one of the most important objectives in cotton breeding. To detect the genetic basis underlying fiber quality, an F2 population containing 413 plants was constructed by crossing Jifeng 914 and Jifeng 173, both of which have superior fiber quality, with Jifeng 173 being better. Five fiber quality traits were investigated in the F2, F2:3, F2:4, and F2:5 populations. Quantitative trait loci (QTL) mapping was conducted based on a high-density genetic map containing 11,488 single nucleotide polymorphisms (SNPs) and spanning 4202.12 cM in length. Transgressive segregation patterns and complex correlations in the five tested traits were observed. A total of 108 QTLs were found, including 13 major effect QTLs that contributed more than 10% toward phenotypic variation (PV) and 9 stable QTLs that could be repeatedly mapped in different generations. Chromosome A7 contained 12 QTL, ranking the first. No QTL was found on chromosomes D1 and D11. Two QTLs could be repeatedly detected in three populations, including qFL-D3-2 in F2, F2:4, and F2:5 with 9.18–21.45% of PV and qFS-A11-1 in F2:3, F2:4, and F2:5 with 6.05–10.41% of PV. Another seven stable QTLs could be detected in two populations, including four major effect QTLs: qFL-A12-3, qFS-D10-2, qMC-D6-2, and qMC-D8-1. Fourteen QTL-overlapping regions were found, which might explain the complex correlations among the five phenotypic traits. Four regions on chromosome A11, D3, D6, and D10 covered by both stable and major effect QTLs are promising for further fine mapping. The genomic regions of the two QTLs detected in three populations and the four major effect QTLs contain 810 genes. Gene functional analysis revealed that the annotated genes are mainly involved in protein binding and metabolic pathways. Fifteen candidate genes in the qFL-D3-2 region are highly expressed in fiber or ovules during fiber initiation, elongation, secondary cell wall thickening, or maturation stages. qRT-PCR revealed that Ghir_D03G005440.1 and Ghir_D03G011310.1 may play a role in promoting fiber initiation, while Ghir_D03G006470.1 may be beneficial for promoting fiber elongation. This study provides more information for revealing the molecular genetic basis underlying cotton fiber quality. Full article
Show Figures

Figure 1

18 pages, 4521 KiB  
Article
Emergence of a Novel G4P[6] Porcine Rotavirus with Unique Sequence Duplication in NSP5 Gene in China
by Xia Zhou, Xueyan Hou, Guifa Xiao, Bo Liu, Handuo Jia, Jie Wei, Xiaoyun Mi, Qingyong Guo, Yurong Wei and Shao-Lun Zhai
Animals 2024, 14(12), 1790; https://doi.org/10.3390/ani14121790 - 14 Jun 2024
Cited by 2 | Viewed by 1647
Abstract
Rotavirus is a major causative agent of diarrhoea in children, infants, and young animals around the world. The associated zoonotic risk necessitates the serious consideration of the complete genetic information of rotavirus. A segmented genome makes rotavirus prone to rearrangement and the formation [...] Read more.
Rotavirus is a major causative agent of diarrhoea in children, infants, and young animals around the world. The associated zoonotic risk necessitates the serious consideration of the complete genetic information of rotavirus. A segmented genome makes rotavirus prone to rearrangement and the formation of a new viral strain. Monitoring the molecular epidemiology of rotavirus is essential for its prevention and control. The quantitative RT-PCR targeting the NSP5 gene was used to detect rotavirus group A (RVA) in pig faecal samples, and two pairs of universal primers and protocols were used for amplifying the G and P genotype. The genotyping and phylogenetic analysis of 11 genes were performed by RT-PCR and a basic bioinformatics method. A unique G4P[6] rotavirus strain, designated S2CF (RVA/Pig-tc/CHN/S2CF/2023/G4P[6]), was identified in one faecal sample from a piglet with severe diarrhoea in Guangdong, China. Whole genome sequencing and analysis suggested that the 11 segments of the S2CF strain showed a unique Wa-like genotype constellation and a typical porcine RVA genomic configuration of G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. Notably, 4 of the 11 gene segments (VP4, VP6, VP2, and NSP5) clustered consistently with human-like RVAs, suggesting independent human-to-porcine interspecies transmission. Moreover, a unique 344-nt duplicated sequence was identified for the first time in the untranslated region of NSP5. This study further reveals the genetic diversity and potential inter-species transmission of porcine rotavirus. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

25 pages, 8381 KiB  
Article
PfbZIP85 Transcription Factor Mediates ω-3 Fatty Acid-Enriched Oil Biosynthesis by Down-Regulating PfLPAT1B Gene Expression in Plant Tissues
by Xusheng Huang, Yali Zhou, Xianfei Shi, Jing Wen, Yan Sun, Shuwei Chen, Ting Hu, Runzhi Li, Jiping Wang and Xiaoyun Jia
Int. J. Mol. Sci. 2024, 25(8), 4375; https://doi.org/10.3390/ijms25084375 - 16 Apr 2024
Cited by 6 | Viewed by 1987
Abstract
The basic leucine zipper (bZIP) transcription factor (TF) family is one of the biggest TF families identified so far in the plant kingdom, functioning in diverse biological processes including plant growth and development, signal transduction, and stress responses. For Perilla frutescens, a [...] Read more.
The basic leucine zipper (bZIP) transcription factor (TF) family is one of the biggest TF families identified so far in the plant kingdom, functioning in diverse biological processes including plant growth and development, signal transduction, and stress responses. For Perilla frutescens, a novel oilseed crop abundant in polyunsaturated fatty acids (PUFAs) (especially α-linolenic acid, ALA), the identification and biological functions of bZIP members remain limited. In this study, 101 PfbZIPs were identified in the perilla genome and classified into eleven distinct groups (Groups A, B, C, D, E, F, G, H, I, S, and UC) based on their phylogenetic relationships and gene structures. These PfbZIP genes were distributed unevenly across 18 chromosomes, with 83 pairs of them being segmental duplication genes. Moreover, 78 and 148 pairs of orthologous bZIP genes were detected between perilla and Arabidopsis or sesame, respectively. PfbZIP members belonging to the same subgroup exhibited highly conserved gene structures and functional domains, although significant differences were detected between groups. RNA-seq and RT-qPCR analysis revealed differential expressions of 101 PfbZIP genes during perilla seed development, with several PfbZIPs exhibiting significant correlations with the key oil-related genes. Y1H and GUS activity assays evidenced that PfbZIP85 downregulated the expression of the PfLPAT1B gene by physical interaction with the promoter. PfLPAT1B encodes a lysophosphatidate acyltransferase (LPAT), one of the key enzymes for triacylglycerol (TAG) assembly. Heterogeneous expression of PfbZIP85 significantly reduced the levels of TAG and UFAs (mainly C18:1 and C18:2) but enhanced C18:3 accumulation in both seeds and non-seed tissues in the transgenic tobacco lines. Furthermore, these transgenic tobacco plants showed no significantly adverse phenotype for other agronomic traits such as plant growth, thousand seed weight, and seed germination rate. Collectively, these findings offer valuable perspectives for understanding the functions of PfbZIPs in perilla, particularly in lipid metabolism, showing PfbZIP85 as a suitable target in plant genetic improvement for high-value vegetable oil production. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 5267 KiB  
Article
Spatial and Temporal Disparity Analyses of Glycosylated Benzaldehyde and Identification and Expression Pattern Analyses of Uridine Diphosphate Glycosyltransferase Genes in Prunus mume
by Haotian Jia, Xiaoyun Geng, Lina Fan, Xin Li, Jiao Wang and Ruijie Hao
Plants 2024, 13(5), 703; https://doi.org/10.3390/plants13050703 - 1 Mar 2024
Cited by 1 | Viewed by 1666
Abstract
The species Prunus mume consists of uniquely aromatic woody perennials with large amounts of free aromatic substances in the flower cells. Uridine diphosphate glycosyltransferase (UGT) modifies these free aromatic substances into water-soluble glycoside-bound volatiles (GBVs) which play an important role in regulating the [...] Read more.
The species Prunus mume consists of uniquely aromatic woody perennials with large amounts of free aromatic substances in the flower cells. Uridine diphosphate glycosyltransferase (UGT) modifies these free aromatic substances into water-soluble glycoside-bound volatiles (GBVs) which play an important role in regulating the use of volatiles by plants for information exchange, defense, and stress tolerance. To investigate the changes in the glycosidic state of aromatic substances during the flowering period of P. mume and discern the location and expression of glycoside synthesis genes, we extracted and enzymatically hydrolyzed GBVs of P. mume and then utilized gas chromatography–mass spectrometry (GC–MS) to characterize and analyze the types and contents of GBV glycosides. Further, we identified and classified the members of the UGT gene family of P. mume using the bioinformatic method and analyzed the correlation between the expression of the UGT family genes in P. mume and the changes in glycosidic content. The results showed that the benzenoids were the main aromatic substance that was glycosylated during flowering in P. mume and that glycosidic benzaldehyde was the most prevalent compound in different flower parts and at different flowering stages. The titer of glycoside benzaldehyde gradually increased during the bud stage and reached the highest level at the big bud stage (999.6 μg·g−1). Significantly, titers of glycoside benzaldehyde significantly decreased and stabilized after flowering while the level of free benzaldehyde, in contrast, significantly increased and then reached a plateau after the flowering process was completed. A total of 155 UGT family genes were identified in the P. mume genome, which were divided into 13 subfamilies (A–E, G–N); according to the classification of Arabidopsis thaliana UGT gene subfamilies, the L subfamily contains 17 genes. The transcriptome analysis showed that PmUGTL9 and PmUGTL13 were highly expressed in the bud stage and were strongly correlated with the content of the glycosidic form of benzaldehyde at all stages of flowering. This study provides a theoretical basis to elucidate the function of UGT family genes in P. mume during flower development, to explore the mechanism of the storage and transportation of aromatic compounds in flower tissues, and to exploit industrial applications of aromatic products from P. mume. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

18 pages, 4705 KiB  
Article
Integrated Transcriptomics and Metabolomics Analysis Reveals the Effects of Cutting on the Synthesis of Flavonoids and Saponins in Chinese Herbal Medicine Astragalus mongholious
by Xu Guo, Xiang Yan, Yuanyuan Wang, Zhiyong Shi, Jingping Niu, Jianping Liang and Xiaoyun Jia
Metabolites 2024, 14(2), 97; https://doi.org/10.3390/metabo14020097 - 30 Jan 2024
Cited by 4 | Viewed by 2354
Abstract
Astragali Radix, derived from the roots of Astragalus mongholicus, is a traditional Chinese medicine containing flavonoids and saponins as its key ingredients. With a shortage in the wild sources of the herbal plant, it is especially important to explore a cultivation mode [...] Read more.
Astragali Radix, derived from the roots of Astragalus mongholicus, is a traditional Chinese medicine containing flavonoids and saponins as its key ingredients. With a shortage in the wild sources of the herbal plant, it is especially important to explore a cultivation mode for A. mongholicus for medicinal purposes. Cutting, a physical environmental stress method, was used in this study with the objective of improving the quality of this herbal legume. We found that cutting of the top 1/3 of the aboveground part of A. mongholicus during the fruiting period resulted in a significant increase in the content of flavonoids and saponins, as well as in root growth, including length, diameter, and dry weight. Furthermore, the leaves were sampled and analyzed using a combined transcriptome and metabolome analysis approach at five different time points after the treatment. Sixteen differentially expressed unigenes (DEGs) involved in the biosynthesis of flavonoids were identified; these were found to stimulate the synthesis of flavonoids such as formononetin and calycosin–7–O–β–D–glucoside. Moreover, we identified 10 DEGs that were associated with the biosynthesis of saponins, including astragaloside IV and soyasaponin I, and found that they only regulated the mevalonic acid (MVA) pathway. These findings provide new insights into cultivating high-quality A. mongholicus, which could potentially alleviate the scarcity of this valuable medicinal plant. Full article
(This article belongs to the Section Integrative Metabolomics)
Show Figures

Figure 1

16 pages, 3406 KiB  
Article
Artemether Attenuates Gut Barrier Dysfunction and Intestinal Flora Imbalance in High-Fat and High-Fructose Diet-Fed Mice
by Xinxin Ren, Jia Xu, Ye Xu, Qin Wang, Kunlun Huang and Xiaoyun He
Nutrients 2023, 15(23), 4860; https://doi.org/10.3390/nu15234860 - 21 Nov 2023
Cited by 8 | Viewed by 2324
Abstract
Intestinal inflammation is a key determinant of intestinal and systemic health, and when our intestines are damaged, there is disruption of the intestinal barrier, which in turn induces a systemic inflammatory response. However, the etiology and pathogenesis of inflammatory diseases of the intestine [...] Read more.
Intestinal inflammation is a key determinant of intestinal and systemic health, and when our intestines are damaged, there is disruption of the intestinal barrier, which in turn induces a systemic inflammatory response. However, the etiology and pathogenesis of inflammatory diseases of the intestine are still not fully understood. Artemether (ART), one of the artemisinin derivatives, has been widely used to treat malaria. Nevertheless, the effect of ART on intestinal inflammation remains unclear. The present study intended to elucidate the potential mechanism of ART in diet-induced intestinal injury. A high-fat and high-fructose (HFHF) diet-induced mouse model of intestinal injury was constructed, and the mice were treated with ART to examine their role in intestinal injury. RT-qPCR, Western blotting, immunohistochemical staining, and 16S rRNA gene sequencing were used to investigate the anti-intestinal inflammation effect and mechanism of ART. The results indicated that ART intervention may significantly ameliorate the intestinal flora imbalance caused by the HFHF diet and alleviate intestinal barrier function disorders and inflammatory responses by raising the expression of tight junction proteins ZO-1 and occludin and decreasing the expression of pro-inflammatory factors TNF-α and IL-1β. Moreover, ART intervention restrained HFHF-induced activation of the TLR4/NF-κB p65 pathway in colon tissue, which may be concerned with the potential protective effect of ART on intestinal inflammation. ART might provide new insights into further explaining the mechanism of action of other metabolic diseases caused by intestinal disorders. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Graphical abstract

22 pages, 5729 KiB  
Article
Genome-Wide Analysis of Glycerol-3-Phosphate Acyltransferase (GPAT) Family in Perilla frutescens and Functional Characterization of PfGPAT9 Crucial for Biosynthesis of Storage Oils Rich in High-Value Lipids
by Yali Zhou, Xusheng Huang, Ting Hu, Shuwei Chen, Yao Wang, Xianfei Shi, Miao Yin, Runzhi Li, Jiping Wang and Xiaoyun Jia
Int. J. Mol. Sci. 2023, 24(20), 15106; https://doi.org/10.3390/ijms242015106 - 12 Oct 2023
Cited by 9 | Viewed by 2490
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol (TAG) biosynthesis. However, GPAT members and their functions remain poorly understood in Perilla frutescens, a special edible-medicinal plant with its seed oil rich in polyunsaturated fatty acids (mostly α-linolenic acid, ALA). Here, 14 [...] Read more.
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step in triacylglycerol (TAG) biosynthesis. However, GPAT members and their functions remain poorly understood in Perilla frutescens, a special edible-medicinal plant with its seed oil rich in polyunsaturated fatty acids (mostly α-linolenic acid, ALA). Here, 14 PfGPATs were identified from the P. frutescens genome and classified into three distinct groups according to their phylogenetic relationships. These 14 PfGPAT genes were distributed unevenly across 11 chromosomes. PfGPAT members within the same subfamily had highly conserved gene structures and four signature functional domains, despite considerable variations detected in these conserved motifs between groups. RNA-seq and RT-qPCR combined with dynamic analysis of oil and FA profiles during seed development indicated that PfGPAT9 may play a crucial role in the biosynthesis and accumulation of seed oil and PUFAs. Ex vivo enzymatic assay using the yeast expression system evidenced that PfGPAT9 had a strong GPAT enzyme activity crucial for TAG assembly and also a high substrate preference for oleic acid (OA, C18:1) and ALA (C18:3). Heterogeneous expression of PfGPAT9 significantly increased total oil and UFA (mostly C18:1 and C18:3) levels in both the seeds and leaves of the transgenic tobacco plants. Moreover, these transgenic tobacco lines exhibited no significant negative effect on other agronomic traits, including plant growth and seed germination rate, as well as other morphological and developmental properties. Collectively, our findings provide important insights into understanding PfGPAT functions, demonstrating that PfGPAT9 is the desirable target in metabolic engineering for increasing storage oil enriched with valuable FA profiles in oilseed crops. Full article
Show Figures

Figure 1

9 pages, 545 KiB  
Communication
Microwave Electrometry with Multi-Photon Coherence in Rydberg Atoms
by Zheng Yin, Qianzhu Li, Xiaoyun Song, Zhengmao Jia, Michal Parniak, Xiao Lu and Yandong Peng
Sensors 2023, 23(16), 7269; https://doi.org/10.3390/s23167269 - 19 Aug 2023
Viewed by 1903
Abstract
A scheme for the measurement of a microwave (MW) electric field is proposed via multi-photon coherence in Rydberg atoms. It is based on the three-photon electromagnetically induced absorption (TPEIA) spectrum. In this process, the multi-photon produces a narrow absorption peak, which has a [...] Read more.
A scheme for the measurement of a microwave (MW) electric field is proposed via multi-photon coherence in Rydberg atoms. It is based on the three-photon electromagnetically induced absorption (TPEIA) spectrum. In this process, the multi-photon produces a narrow absorption peak, which has a larger magnitude than the electromagnetically induced transparency (EIT) peak under the same conditions. The TPEIA peak is sensitive to MW fields, and can be used to measure MW electric field strength. We found that the magnitude of TPEIA peaks shows a linear relationship with the MW field strength. The simulation results show that the minimum detectable strength of the MW fields is about 1/10 of that based on an common EIT effect, and the probe sensitivity could be improved by about four times. Furthermore, the MW sensing based on three-photon coherence seems to be robust against the changes in the control field and shows a broad tunability, and the scheme may be useful for designing novel MW sensing devices. Full article
(This article belongs to the Special Issue Quantum Sensors and Sensing Technology)
Show Figures

Figure 1

Back to TopTop