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Abstract: A scheme for the measurement of a microwave (MW) electric field is proposed via multi-
photon coherence in Rydberg atoms. It is based on the three-photon electromagnetically induced
absorption (TPEIA) spectrum. In this process, the multi-photon produces a narrow absorption peak,
which has a larger magnitude than the electromagnetically induced transparency (EIT) peak under
the same conditions. The TPEIA peak is sensitive to MW fields, and can be used to measure MW
electric field strength. We found that the magnitude of TPEIA peaks shows a linear relationship with
the MW field strength. The simulation results show that the minimum detectable strength of the
MW fields is about 1/10 of that based on an common EIT effect, and the probe sensitivity could be
improved by about four times. Furthermore, the MW sensing based on three-photon coherence seems
to be robust against the changes in the control field and shows a broad tunability, and the scheme
may be useful for designing novel MW sensing devices.

Keywords: microwave sensing; multi-photon coherence; Rydberg atoms

1. Introduction

Atom-based metrology has been widely used in many fields, such as atomic clocks [1],
and the measurement of temperature [2], frequency [3], magnetic [4] and electric fields [5],
due to the unique properties of atoms and molecules. Rydberg-atom-based MW electrom-
etry has arisen great interest [5,6]. Rydberg atoms are sensitive to electric fields, and can
coherently interact with a microwave (MW) electric field. It can significantly increase
the accuracy and repeatability of measurement. The main research works are based on
electromagnetically induced transparency (EIT) and Aulter-Townes splitting [7–11], where
two laser fields drive atoms to their Rydberg states, and Rydberg EIT splitting induced by a
MW field is used for MW electrometry [5,12–18]. New achievements in MW measurement
include a Rydberg-atom-based superheterodyne receiver [19], enhanced MW metrology
by population repumping [20], broadband terahertz wave detection [21], the arrival an-
gle of microwave signals [22], continuous radio frequency electric-field detection [23],
extending of bandwidth sensitivity [24], auxiliary transition [25], radio-frequency phase
measurements [26–28], etc.

Some research works concern the amplitude change in transmission spectrum. For ex-
ample, MW signal strength has been proven to enhance microwave measurement in
Rydberg atoms [20]. An enhanced transmission signal is obtained using self-heterodyne
spectroscopy [29], and the quadratic changes in peak amplitudes demonstrates a minimum
detectable RF electromagnetic field strength. We notice some interesting results in three-
photon coherence [30–33], which provides a new way method for EIT-related applications,
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such as observation of three-photon electromagnetically induced absorption (TPEIA) [34] in
atomic systems, constructive interference in the three-photon absorption [35,36], demonstra-
tion of three-photon coherence condition [37–39], and its extension to Rydberg atoms [40].
To the best of our knowledge, little research involves MW metrology using TPEIA in
Rydberg atoms.

In this paper, we propose a scheme of measuring MW electric fields based on three-
photon coherence in Rydberg atoms. A probe and control fields counter-propagate through
the atomic system [41]. The 87Rb atoms are excited from the ground states to the Rydberg
states, and the absorption spectrum of three-photon transition shows a single absorption
peak around the resonant frequency. Due to microwave-induced three-photon coherence,
a strong TPEIA peak appears under the three-photon resonance condition. It is interesting
to find that the magnitude of the TPEIA peak changes linearly with the MW electric field
strength. This scheme may be used to detect the MW electric field. The simulation results
show the sensitivity could be enhanced by about four times, and the minimum detectable
strength of the MW electric field could be increased by more than one order of magnitude,
compared with the common EIT scheme. In the following discussion, we briefly discuss
the multi-photon coherence which is consistent with the some results in Ref. [34], and pay
more attention to using TPEIA to measure MW electric fields. The proposed TPEIA scheme
relies on three photon coherence, and is different from the common EIT scheme related
to a single-photon transition. It is also different from the MW measurement schemes in
Refs. [20,29]. Our scheme shows a wide tunability and may help to design novel MW
sensing devices.

2. Model and Methods

Figure 1a shows a four-level ladder-type atomic system [5]. The relevant atomic energy
levels of 87Rb are 5S1/2 (|1〉), 5P3/2 (|2〉), 53D5/2 (|3〉), and 54P3/2 (|4〉). A probe laser Ωp
with a wavelength of λp ∼ 780 nm and a coupling laser Ωc with λc ∼ 480 nm counter-
propagate through the atoms and drive |1〉 ↔ |2〉 and |2〉 ↔ |3〉 transition, respectively.
A MW field drives the Rydberg transition of the states |3〉 to |4〉. Figure 1b shows the
schematic configuration of the coupling fields and atomic vapor cell. A similar system has
been used in intracavity EIT [42], THz field measurement [43], nonlinear optical effects [44],
and so on.

(a) (b)

Figure 1. (a) Four-level Rydberg atom model and (b) schematic diagram including the atoms and
coupling fields.

In the interaction picture and after the rotating wave approximation, the Hamiltonian
of the system can be written as

H =− h̄[∆p|2〉〈2|+
(
∆p + ∆c

)
|3〉〈3|+

(
∆p + ∆c − ∆m

)
|4〉〈4|+ Ωp|1〉〈2|

+ Ωc|2〉〈3|+ Ωm|3〉〈4|+ H.C.],
(1)
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where H is the interaction Hamiltonian, Ωp = µ12Ep/h̄, Ωc = µ23Ec/h̄, and Ωm = µ34Em/h̄
is the Rabi frequency. ∆p = ωp − ω12, ∆c = ωc − ω23, and ∆m = ωm − ω34 denote the
detuning of the corresponding fields, respectively. µij (i, j = 1, 2, 3, 4) is the transition dipole
moment from state |i〉 to state |j〉. The dynamic evolution of the system can be described
using the density-matrix method as follows [45]:

ρ̇ = − i
h̄
[H, ρ] + L(ρ), (2)

where L(ρ) denotes the decoherence processes. The time evolution of density matrix
elements can be written as

ρ̇11 = Γ2ρ22 − i(ρ12 − ρ21)Ωp,

ρ̇22 = −Γ2ρ22 + Γ3ρ33 − i[(ρ23 − ρ32)Ωc + (ρ12 − ρ21)Ωp],

ρ̇33 = −Γ3ρ33 + Γ4ρ44 − i[(ρ32 − ρ23)Ωc + (ρ34 − ρ43)Ωm],

ρ̇44 = −Γ4ρ44 − i(ρ43 − ρ34)Ωm,

ρ̇21 = − 1
2 Γ2ρ21 − i[∆pρ21 − ρ31Ωc − (ρ11 − ρ22)Ωp],

ρ̇31 = − 1
2 Γ3ρ31 − i[∆1ρ31 − ρ21Ωc − ρ41Ωm + ρ32Ωp],

ρ̇41 = − 1
2 Γ4ρ41 − i(∆2ρ41 − ρ31Ωm + ρ42Ωp),

ρ̇32 = −γ32ρ32 − i[∆cρ32 + (ρ33 − ρ22)Ωc − ρ42Ωm + ρ31Ωp],

ρ̇42 = −γ42ρ42 − i(∆3ρ42 + ρ43Ωc − ρ32Ωm + ρ41Ωp),

ρ̇43 = −γ43ρ43 − i[−∆mρ43 + ρ42Ωc + (ρ44 − ρ33)Ωm],

(3)

with ρij = ρ∗ ji and the closure relation ∑j ρjj = 1, (i,j = 1,2,3,4). Here, ∆1 = ∆p + ∆c,
∆2 = ∆p + ∆c − ∆m, and ∆3 = ∆c − ∆m. γij is the decay from the states |i〉 to |j〉, and γij =
(Γi + Γj)/2, with Γi being the population decay rate of state |i〉. In the weak probe field

limit, we consider ρ
(0)
11 ≈ 1, ρ

(0)
ij ≈ 0. The coherence term ρ21 can be obtained by solving

the steady-state solutions of Equation (3). With consideration of the residual Doppler
effect, the frequency detuning of the control and probe fields are modified as δc = ∆c − kcv,
δp = ∆p + kpv, where kc = 2π/λc, kp = 2π/λp, and the susceptibility of the Rydberg
atoms is then Doppler-averaged:

χ=
2N|µ12|2

h̄ε0Ωp

1√
πu

∫ +∞

−∞
ρ21e−

v2

u2 dv, (4)

where N is Rydberg atom density. µ12 is the dipole moment of transition |1〉 ↔ |2〉, ε0 is the
dielectric constant of vacuum, u =

√
2kBT/m is the most probable velocity of the atoms,

kB is the Boltzmann constant, T is the temperature of system, and m is the mass of the atom.
By solving the steady-state solution of Equation (3), we obtain the relationship between ρ21
and ρ41, and then the expression of the three photon coherent element ρ41 of the density
matrix in ρ21. As a result, we obtain the three-photon coherence term in ρ21 [34,38], and the
three-photon coherence part of the atomic susceptibility is

χTPC=
2N|µ12|2

h̄ε0Ωp

1√
πu

∫ +∞

−∞

iΩ2
mΩc

C5C6

1
C7

iΩm[C2Ω2
c + C1(−C2C3 −Ω2

m)] + C1
2Ω2

mΩ3
pΩc

C1ΩmΩ2
p(C2 − C4)C8 + C9

dv, (5)

where C1 = i∆m−G34, C2 = G23 + iδc, C3 = G24 + i(δc−∆m), C4 = Γ4/2+ i(δc + δp−∆m),
C5 = Γ2/2 + iδp, C6 = Γ3/2 + i(δc + δp), C7 = [(iC1C4C5C6 −Ω2

c )Ωm + iC1C5Ωm(Ω2
p −

Ω2
m)], C8 = [C1(C5C6 − Ω2

c )Ωm + C1C5(Ωm − C5Ω2
c )], C9 = [iΩm(C2Ω2

c − iC1C2C3
+C1Ω2

m) + C1Ω2
p], G34 = (Γ3 + Γ4)/2=γ34, and G24 = (Γ2 + Γ4)/2=γ24, G23 = (Γ2 +

Γ3)/2 = γ23.
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3. Results and Discussion

We first consider the TPEIA spectrum changing with the MW field in a Doppler-free
scheme, where the probe field counter-propagates with the control field (see Figure 2).
The 87Rb atomic density is N ' 107 cm−3 and spontaneous decay Γ2 = 6γ = 2π × 6 MHz,
Γ3 = 0.2γ and Γ4 = 0.01γ in the following discussion [5]. Furthermore, the following
discussion is scaled by γ for simplicity. Figure 2a shows that the TPEIA signal has one
absorption peak through the three-photon process when the lasers interact with atoms
resonantly. Here, we pay attention to the variation in TPEIA with MW fields. For a weak
MW field, the TPEIA peak increases with the strength of MW field. As shown in Figure 2a,
the absorption peak becomes stronger with an increase in the MW field strength, and the
peak linewidth becomes a little broad due to a homogeneous broadening effect. Thanks to
the three-photon coherence, the population transfers from the ground state to the Rydberg
state, and the peak value of absorption spectrum can be improved in the range of a weak
MW field. Figure 2b shows the variations in magnitude of the TPEIA peak as a function of
the MW field strength. The TPEIA peak becomes strong by increasing MW field, and the
linewidth remains narrow. While the magnitude of TPEIA peak changes nonlinearly with
the MW field strength, there are few changes in the TPEIA peak when the MW field
strength is greater than 1γ, which may be not suitable for the linear measurement of MW
electric field.

Ωm/γ
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Figure 2. (a) The TPEIA spectrum and (b) peak intensity as a function of the MW field strength,
with Ωp = 0.001γ, Ωc = 3γ, Γ3=0.2γ, Γ4=0.01γ. (γ = 2π × 1 MHz).

Generally, most of the experiments are performed at room temperature, and the
Doppler effect is obvious due to the atomic motion. Here a Doppler-averaged scheme is
adopted, where the probe and control fields counter-propagate through the atomic vapor.
The variations in the absorption spectrum are shown in Figure 3a. The TPEIA peak becomes
strong with an increase in the MW field. However, when the strength of the MW field is
further increased, the TPEIA signal is suppressed, and two transmission windows are far
away from resonance (see Figure 3b). We pay more attention to the enhanced TPEIA peak
and explore its application in precise measurement.

It is interesting to note that the magnitude of TPEIA peak varies linearly with the MW
field, as shown in Figure 4a. The numerical results show that the curve slop based on three-
photon coherence is about 4. Figure 4b shows the linear measurement of MW field based
on the common EIT method, where the frequency splitting of EIT peaks changes linearly
with the MW electric field strength. The slope of measurement curve based on EIT from the
simulation is about 1. The comparison of Figure 4a,b shows that the curve slope based on
TPEIA is about four times larger than that of EIT method. Different from the common EIT
scheme, the MW electric field strength could be estimated from changes in the magnitude
of TPEIA peaks. It is known that the larger curve slope under the same condition results in
the better detection sensitivity, just as [20,31] said. This indicates that the probe sensitivity
could be improved by about a factor of four, due to the three-photon coherence.
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Figure 3. (a) The Doppler-averaged TPEIA spectrum and (b) variation in the TPEIA spectrum with
MW field. The other parameters are the same as in Figure 2a.
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Figure 4. (a) The variations in absorption peak intensity as a function of the MW field strength on the
condition of Doppler-averaged and (b) distance of two transmission peaks ∆ f versus the MW field
strength based on the common EIT method. The other parameters are the same as in Figure 2a.

It is important to detect the minimum strength of the MW field for precise measure-
ments. Figure 5a shows the minimum detectable strength MWmin for the three-photon
resonance case. According to the Rayleigh criterion [46], the the corresponding spectrum
resolution is about 0.02γ, which means the minimum detectable strength of the MW field
is about 0.02γ, based on the EIT scheme, as shown in Figure 5b. Our simulation results
show that the minimum detectable strength of the MW field is about 0.002γ for the TPEIA
spectrum, which is about 1/10 of that based on an common EIT effect (see Figure 5a). This
indicates that the minimum detectable strength could be improved by 10 times due to the
three-photon coherence.
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Figure 5. (a) Doppler-averaged TPEIA spectrum and (b) transmission spectrum of EIT. The other
parameters are the same as in Figure 2a.

The above discussions deal with a weak MW field. In the dressed-state picture,
the probe and control transition consist of a classical Rydberg EIT scheme. There is an EIT
window around the resonant frequency, and it can be understood by the EIT theory [47].
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The coupling fields Ωc dress the states |2〉 and |3〉, and two new eigenstates appear, i.e., |+〉
and |−〉. With coupling of the probe field, two transition channels appear, |1〉 → |+〉 and
|1〉 → |−〉. When the MW field drives the Rydberg transition |3〉 → |4〉, the Rydberg-EIT is
disturbed, and an enhanced absorption peak builds up, which is referred to be as TPEIA.

Figure 6a shows the effect of a large MW field on the magnitude of the Doppler-
averaged TPEIA spectrum. For example, when the MW field strength Ωm ≤ 2.8γ, the TPEIA
peak becomes strong with an increase in the MW field, as shown Figure 6a, while the TPEIA
peak decreases with the further increase in the MW field. Thus, the TPEIA peak reaches
a maximum at Ωm = 2.8γ under the given condition. This is because the two dressed
states induced by the MW field are well separated, and the AT splitting of Rydberg EIT is
dominant over TPEIA peak in the regime of the large MW field [40]. The constructive inter-
ference for three-photon coherence gradually weakens. When the TPEIA peak decreases
with Ωm, the peak-to-peak distance of the two transmission peaks increases with Ωm,
as shown in Figure 3a. This effect can be well-understood in the dressed-state picture [48].
Then, in Figure 6b, we demonstrate the dynamic range of the TPEIA scheme by measuring
the magnitude of TPEIA peak as a function of the MW field strength. The TPEIA peak
varies linearly over an MW field range of 0.002γ to 1.5γ from simulation. The dependence
of TPEIA on the strength of the MW signal can be expressed as ∆h = 2π∆Ωmξ, where
ξ = 0.58 is the enhancement coefficient of TPEIA peak under the conditions of Figure 2a,
∆h and ∆Ωm are the changes in the TPEIA peak and MW Rabi frequency, respectively.
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Figure 6. (a) The effect of a large MW field on the intensity of the Doppler-averaged TPEIA spectrum
and (b) TPEIA peaks versus the MW field strength. The other parameters are the same as in Figure 2a.

In addition, the numerical results show that the linewidth of the absorption spectrum
is about 1.15γ. The linewidth of the TPEIA peak is broader than that of Doppler-free scheme.
This is due to the residual Doppler mismatch of the probe and coupling fields. The effect of
the control field on the intensity of the TPEIA spectrum is shown in Figure 7a. The mag-
nitude of the TPEIA peak increases when the control field becomes strong. The strong
control field induces good multi-photon coherence and contributes to a large TPEIA peak.
Of course, if the control field is too large, the Rydberg EIT evolves into Aulter–Townes
splitting, and the inter-path interference weakens, resulting in a decrease in the TPEIA
peak. Figure 7b shows the effect of the control field on the linewidth of the EIT spectrum.
In Figure 7b, the two EIT windows become wide when the control field builds up, and the
EIT dips increase with an increase in the control field, while in Figure 7a, the linewidth of
the TPEIA basically remains unchanged. This means that the TPEIA scheme shows some
robustness to changes in the control field.
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Figure 7. (a) TPEIA and (b) EIT spectra for different control fields, with Ωm = 1.5γ. The other
parameters are the same as in Figure 2a.

The above discussions are based on resonant interaction of the control field. Then,
the detuning of the control field is considered. The effect of the control field detuning on
the TPEIA and EIT spectra are shown in Figure 8. Figure 8a shows that the TPEIA peak
shifts with the control field detuning ∆c. In this process, the TPEIA peak basically remain
unchanged. This means that the TPEIA scheme has a broad detection range and some
tunability, while in Figure 8b, the two transmission peaks of the EIT scheme shift with
the control field detuning ∆c and become asymmetric with an increase in control field
detuning. For example, the linewidth of the right EIT peak increases and is greater than
the left one, and the linewidth of right peak increases as the control detuning increases. In
addition, when the control field detuning is 10γ, the shift of the TPEIA peak is 6.5γ from the
resonance, and the shift of the EIT-AT peak is 9.3γ from the resonance. Thus, the frequency
shift of the TPEIA spectrum is smaller than that of the common EIT spectrum, which means
that the TPEIA scheme improves system robustness, compared to the common EIT scheme.
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Figure 8. (a) Doppler-averaged TPEIA spectrum and (b) EIT spectrum for different control field
detuning ∆c, with Ωm = γ. The other parameters are the same as in Figure 2a.

4. Conclusions

In summary, we theoretically investigated TPEIA spectrum of Rydberg atoms and
proposed to use three-photon coherence to detect a weak MW electric field. Due to the
multi-photon coherence, there is constructive interference in the TPEIA at the resonant
frequency. It is interesting to find that the magnitude of TPEIA peaks change linearly with
the MW field, which can be used to detect the MW electric field. The numerical results
show the sensitivity based on TPEIA is about four times larger than that of the EIT scheme.
Its minimum detectable strength is about one order of magnitude smaller than that of the
EIT scheme. Moreover, the MW measurement based on TPEIA shows some robustness,
a broad detection range and some tunability. The proposed scheme may help to design
novel MW-sensing devices.
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