Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Authors = Weifei Zhang

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6103 KiB  
Article
Development of Certified Reference Material of L-Thyroxine by Using Mass Balance and Quantitative Nuclear Magnetic Resonance
by Qiang Zhao, Weifei Zhang, Dan Song, Xirui Zhou, Xianjiang Li, Huan Yao, Wenjing Xing, Hongmei Li, Jian Ma and Peng Xiao
Molecules 2025, 30(13), 2840; https://doi.org/10.3390/molecules30132840 - 2 Jul 2025
Viewed by 368
Abstract
L-thyroxine (T4) is an important hormone for diagnosing and evaluating thyroid function disorders. As outlined in ISO17511, having a certified reference material (CRM) is crucial for ensuring that the results of clinical tests are traceable to the SI-unit. This study employed two principal [...] Read more.
L-thyroxine (T4) is an important hormone for diagnosing and evaluating thyroid function disorders. As outlined in ISO17511, having a certified reference material (CRM) is crucial for ensuring that the results of clinical tests are traceable to the SI-unit. This study employed two principal methods to evaluate the purity of T4, mass balance (MB) and quantitative nuclear magnetic resonance (qNMR), both of which are SI-traceable (International System of Units) approaches. The MB method involved a detailed analysis of impurities, including water, structurally related compounds, and volatile and non-volatile substances. A variety of techniques were employed to characterize T4 and its impurities, including liquid-phase tandem high-resolution mass spectrometry, ultraviolet spectrophotometry, infrared spectroscopy, and both 1H-NMR and 13C-NMR. Additionally, impurities were quantified using Karl Fischer coulometric titration, ion chromatography, gas chromatography–mass spectrometry, and inductively coupled plasma–mass spectrometry. In qNMR, ethylparaben was used as the internal standard for direct value assignment. The results showed T4 purities of 94.92% and 94.88% for the MB and qNMR methods, respectively. The water content was determined to be 3.563% (n = 6), representing the highest impurity content. Ten structurally related organic impurities were successfully separated, and five of them were quantified. Ultimately, a purity of 94.90% was assigned to T4 CRM, with an expanded uncertainty of 0.34% (k = 2). Full article
Show Figures

Figure 1

12 pages, 9594 KiB  
Article
An Electrochemical Sensor Based on AuNPs@Cu-MOF/MWCNTs Integrated Microfluidic Device for Selective Monitoring of Hydroxychloroquine in Human Serum
by Xuanlin Feng, Jiaqi Zhao, Shiwei Wu, Ying Kan, Honemei Li and Weifei Zhang
Chemosensors 2025, 13(6), 200; https://doi.org/10.3390/chemosensors13060200 - 1 Jun 2025
Viewed by 742
Abstract
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their [...] Read more.
Hydroxychloroquine (HCQ), a cornerstone therapeutic agent for autoimmune diseases, requires precise serum concentration monitoring due to its narrow therapeutic window. Current HCQ monitoring methods such as HPLC and LC-MS/MS are sensitive but costly and complex. While electrochemical sensors offer rapid, cost-effective detection, their large chambers and high sample consumption hinder point-of-care use. To address these challenges, we developed a microfluidic electrochemical sensing platform based on a screen-printed carbon electrode (SPCE) modified with a hierarchical nanocomposite of gold nanoparticles (AuNPs), copper-based metal–organic frameworks (Cu-MOFs), and multi-walled carbon nanotubes (MWCNTs). The Cu-MOF provided high porosity and analyte enrichment, MWCNTs established a 3D conductive network to enhance electron transfer, and AuNPs further optimized catalytic activity through localized plasmonic effects. Structural characterization (SEM, XRD, FT-IR) confirmed the successful integration of these components via π-π stacking and metal–carboxylate coordination. Electrochemical analyses (CV, EIS, DPV) revealed exceptional performance, with a wide linear range (0.05–50 μM), a low detection limit (19 nM, S/N = 3), and a rapid response time (<5 min). The sensor exhibited outstanding selectivity against common interferents, high reproducibility (RSD = 3.15%), and long-term stability (98% signal retention after 15 days). By integrating the nanocomposite-modified SPCE into a microfluidic chip, we achieved accurate HCQ detection in 50 μL of serum, with recovery rates of 95.0–103.0%, meeting FDA validation criteria. This portable platform combines the synergistic advantages of nanomaterials with microfluidic miniaturization, offering a robust and practical tool for real-time therapeutic drug monitoring in clinical settings. Full article
(This article belongs to the Special Issue Feature Papers on Luminescent Sensing (Second Edition))
Show Figures

Figure 1

24 pages, 10349 KiB  
Article
Simulation of a Tidal Current-Powered Freshwater and Energy Supply System for Sustainable Island Development
by Yajing Gu, He Ren, Hongwei Liu, Yonggang Lin, Weifei Hu, Tian Zou, Liyuan Zhang and Luoyang Huang
Sustainability 2024, 16(20), 8792; https://doi.org/10.3390/su16208792 - 11 Oct 2024
Cited by 1 | Viewed by 1723
Abstract
Sustainable development of islands cannot be achieved without the use of renewable energy to address energy and freshwater supply issues. Utilizing the widely distributed tidal current energy in island regions can enhance local energy and water supply security. To achieve economic and operational [...] Read more.
Sustainable development of islands cannot be achieved without the use of renewable energy to address energy and freshwater supply issues. Utilizing the widely distributed tidal current energy in island regions can enhance local energy and water supply security. To achieve economic and operational efficiency, it is crucial to fully account for the unique periodicity and intermittency of tidal current energy. In this study, a tidal current-powered freshwater and energy supply system is proposed. The marine current turbine adopts a direct-drive configuration and will be able to directly transfer the power of the turbine rotation to the seawater pump to improve the energy efficiency. Additionally, the system incorporates batteries for short-term energy storage, aimed at increasing the capacity factor of the electrolyzer. A simulation is conducted using measured inflow velocity data from a full 12 h tidal cycle. The results show that the turbine’s average power coefficient reaches 0.434, the electrolyzer’s average energy efficiency is 60.9%, the capacity factor is 70.1%, and the desalination system’s average specific energy consumption is 6.175 kWh/m3. The feasibility of the system design has been validated. Full article
(This article belongs to the Special Issue Innovative Technologies for Sustainable Offshore Renewable Energy)
Show Figures

Figure 1

16 pages, 3306 KiB  
Article
Percolation Transitions in Edge-Coupled Interdependent Networks with Reinforced Inter-Layer Links
by Junjie Zhang, Caixia Liu, Shuxin Liu, Kai Wang and Weifei Zang
Entropy 2024, 26(8), 693; https://doi.org/10.3390/e26080693 - 16 Aug 2024
Cited by 1 | Viewed by 1187
Abstract
Prior research on cascading failures within interdependent networks has predominantly emphasized the coupling of nodes. Nevertheless, in practical networks, interactions often exist not just through the nodes themselves but also via the connections (edges) linking them, a configuration referred to as edge-coupled interdependent [...] Read more.
Prior research on cascading failures within interdependent networks has predominantly emphasized the coupling of nodes. Nevertheless, in practical networks, interactions often exist not just through the nodes themselves but also via the connections (edges) linking them, a configuration referred to as edge-coupled interdependent networks. Past research has shown that introducing a certain percentage of reinforced nodes or connecting edges can prevent catastrophic network collapses. However, the effect of reinforced inter-layer links in edge-coupled interdependent networks has yet to be addressed. Here, we develop a theoretical framework for studying percolation models in edge-coupled interdependent networks by introducing a proportion of reinforced inter-layer links and deriving detailed expressions for the giant and finite components and the percolation phase transition threshold. We find that there exists a required minimum proportion of the reinforced inter-layer links to prevent abrupt network collapse, which serves as a boundary to distinguish different phase transition types of a network. We provide both analytical and numerical solutions for random and scale-free networks, demonstrating that the proposed method exhibits superior reinforcement efficiency compared to intra-layer link reinforcement strategies. Theoretical analysis, simulation results, and real network systems validate our model and indicate that introducing a specific proportion of reinforced inter-layer links can prevent abrupt system failure and enhance network robustness in edge-coupled interdependent networks. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

18 pages, 705 KiB  
Review
Recent Advances in Small Molecule Inhibitors for the Treatment of Osteoarthritis
by Jianjing Lin, Shicheng Jia, Weifei Zhang, Mengyuan Nian, Peng Liu, Li Yang, Jianwei Zuo, Wei Li, Hui Zeng and Xintao Zhang
J. Clin. Med. 2023, 12(5), 1986; https://doi.org/10.3390/jcm12051986 - 2 Mar 2023
Cited by 19 | Viewed by 4900
Abstract
Osteoarthritis refers to a degenerative disease with joint pain as the main symptom, and it is caused by various factors, including fibrosis, chapping, ulcers, and loss of articular cartilage. Traditional treatments can only delay the progression of osteoarthritis, and patients may need joint [...] Read more.
Osteoarthritis refers to a degenerative disease with joint pain as the main symptom, and it is caused by various factors, including fibrosis, chapping, ulcers, and loss of articular cartilage. Traditional treatments can only delay the progression of osteoarthritis, and patients may need joint replacement eventually. As a class of organic compound molecules weighing less than 1000 daltons, small molecule inhibitors can target proteins as the main components of most drugs clinically. Small molecule inhibitors for osteoarthritis are under constant research. In this regard, by reviewing relevant manuscripts, small molecule inhibitors targeting MMPs, ADAMTS, IL-1, TNF, WNT, NF-κB, and other proteins were reviewed. We summarized these small molecule inhibitors with different targets and discussed disease-modifying osteoarthritis drugs based on them. These small molecule inhibitors have good inhibitory effects on osteoarthritis, and this review will provide a reference for the treatment of osteoarthritis. Full article
(This article belongs to the Special Issue Osteoarthritis: Diagnosis and Therapeutic Approaches)
Show Figures

Figure 1

17 pages, 4810 KiB  
Review
MOFs-Modified Electrochemical Sensors and the Application in the Detection of Opioids
by Jiaqi Zhao, Ying Kan, Zhi Chen, Hongmei Li and Weifei Zhang
Biosensors 2023, 13(2), 284; https://doi.org/10.3390/bios13020284 - 16 Feb 2023
Cited by 24 | Viewed by 5272
Abstract
Opioids are widely used in clinical practice, but drug overdoses can lead to many adverse reactions, and even endanger life. Therefore, it is essential to implement real-time measurement of drug concentrations to adjust the dosage given during treatment, keeping drug levels within therapeutic [...] Read more.
Opioids are widely used in clinical practice, but drug overdoses can lead to many adverse reactions, and even endanger life. Therefore, it is essential to implement real-time measurement of drug concentrations to adjust the dosage given during treatment, keeping drug levels within therapeutic levels. Metal-Organic frameworks (MOFs) and their composite materials modified bare electrode electrochemical sensors have the advantages of fast production, low cost, high sensitivity, and low detection limit in the detection of opioids. In this review, MOFs and MOFs composites, electrochemical sensors modified with MOFs for the detection of opioids, as well as the application of microfluidic chips in combination with electrochemical methods are all reviewed, and the potential for the development of microfluidic chips electrochemical methods with MOFs surface modifications for the detection of opioids is also prospected. We hope that this review will provide contributions to the study of electrochemical sensors modified with MOFs for the detection of opioids. Full article
(This article belongs to the Special Issue Microfluidics for Detection and Analysis)
Show Figures

Figure 1

21 pages, 10836 KiB  
Review
Contributing Factors of Dielectric Properties for Polymer Matrix Composites
by Quan Wang, Junbo Che, Weifei Wu, Zhendong Hu, Xueqing Liu, Tianli Ren, Yuwei Chen and Jianming Zhang
Polymers 2023, 15(3), 590; https://doi.org/10.3390/polym15030590 - 24 Jan 2023
Cited by 64 | Viewed by 6343
Abstract
Due to the trend of multi-function, integration, and miniaturization of electronics, traditional dielectric materials are difficult to satisfy new requirements, such as balanced dielectric properties and good designability. Therefore, high dielectric polymer composites have attracted wide attention due to their outstanding processibility, good [...] Read more.
Due to the trend of multi-function, integration, and miniaturization of electronics, traditional dielectric materials are difficult to satisfy new requirements, such as balanced dielectric properties and good designability. Therefore, high dielectric polymer composites have attracted wide attention due to their outstanding processibility, good designability, and dielectric properties. A number of polymer composites are employed in capacitors and sensors. All these applications are directly affected by the composite’s dielectric properties, which are highly depended on the compositions and internal structure design, including the polymer matrix, fillers, structural design, etc. In this review, the influences of matrix, fillers, and filler arrangement on dielectric properties are systematically and comprehensively summarized and the regulation strategies of dielectric loss are introduced as well. Finally, the challenges and prospects of high dielectric polymer composites are proposed. Full article
(This article belongs to the Special Issue Novel Nanoparticles and Their Enhanced Polymer Composites)
Show Figures

Graphical abstract

9 pages, 636 KiB  
Review
The Possible Role of Electrical Stimulation in Osteoporosis: A Narrative Review
by Weifei Zhang, Yuanrui Luo, Jixuan Xu, Chuan Guo, Jing Shi, Lu Li, Xiao Sun and Qingquan Kong
Medicina 2023, 59(1), 121; https://doi.org/10.3390/medicina59010121 - 8 Jan 2023
Cited by 17 | Viewed by 6572
Abstract
Osteoporosis is mainly a geriatric disease with a high incidence, and the resulting spinal fractures and hip fractures cause great harm to patients. Anti-osteoporosis drugs are the main treatment for osteoporosis currently, but these drugs have potential clinical limitations and side effects, so [...] Read more.
Osteoporosis is mainly a geriatric disease with a high incidence, and the resulting spinal fractures and hip fractures cause great harm to patients. Anti-osteoporosis drugs are the main treatment for osteoporosis currently, but these drugs have potential clinical limitations and side effects, so the development of new therapies is of great significance to patients with osteoporosis. Electrical stimulation therapy mainly includes pulsed electromagnetic fields (PEMF), direct current (DC), and capacitive coupling (CC). Meanwhile, electrical stimulation therapy is clinically convenient without side effects. In recent years, many researchers have explored the use of electrical stimulation therapy for osteoporosis. Based on this, the role of electrical stimulation therapy in osteoporosis was summarized. In the future, electrical stimulation might become a new treatment for osteoporosis. Full article
Show Figures

Figure 1

10 pages, 630 KiB  
Systematic Review
The Role of Sympathetic Nerves in Osteoporosis: A Narrative Review
by Weifei Zhang, Yuheng Liu, Jixuan Xu, Chen Fan, Bin Zhang, Pin Feng, Yu Wang and Qingquan Kong
Biomedicines 2023, 11(1), 33; https://doi.org/10.3390/biomedicines11010033 - 23 Dec 2022
Cited by 5 | Viewed by 3279
Abstract
Osteoporosis, a systemic bone disease, is characterized by decreased bone density due to various reasons, destructed bone microstructure, and increased bone fragility. The incidence of osteoporosis is very high among the elderly, and patients with osteoporosis are prone to suffer from spine fractures [...] Read more.
Osteoporosis, a systemic bone disease, is characterized by decreased bone density due to various reasons, destructed bone microstructure, and increased bone fragility. The incidence of osteoporosis is very high among the elderly, and patients with osteoporosis are prone to suffer from spine fractures and hip fractures, which cause great harm to patients. Meanwhile, osteoporosis is mainly treated with anti-osteoporosis drugs that have side effects. Therefore, the development of new treatment modalities has a significant clinical impact. Sympathetic nerves play an important role in various physiological activities and the regulation of osteoporosis as well. Therefore, the role of sympathetic nerves in osteoporosis was reviewed, aiming to provide information for future targeting of sympathetic nerves in osteoporosis. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

13 pages, 6650 KiB  
Article
Effect and Mechanism of Solidified Microstructure on Deformation Behavior, Mechanical Properties, and Residual Stress of Cu-Ni-Si Alloy
by Wanneng Liao, Chenxing Zhang, Hui Qiang, Weifei Song and Hongwen Ren
Materials 2022, 15(24), 8724; https://doi.org/10.3390/ma15248724 - 7 Dec 2022
Cited by 5 | Viewed by 1823
Abstract
Cu-Ni-Si alloy is the key raw material for the lead frame of large integrated circuits. The disordered grain orientation of alloy billet, high hardening rate, residual stress, and poor surface quality of cold working strips seriously affect its processability. In order to improve [...] Read more.
Cu-Ni-Si alloy is the key raw material for the lead frame of large integrated circuits. The disordered grain orientation of alloy billet, high hardening rate, residual stress, and poor surface quality of cold working strips seriously affect its processability. In order to improve the cold-working properties of Cu-Ni-Si alloy, two kinds of C70250 copper alloy strips were produced through hot mold continuous casting (HMCC) and cold mold continuous casting (CMCC) technology. The effects of solidified microstructure on the cold-working deformation behavior, mechanical properties, and residual stress of the alloy were studied. The results show that C70250 copper alloys with columnar grain and equiaxed grain were prepared through HMCC and CMCC. After a 98% reduction in cold rolling, columnar grain strip surface quality was very good, and the elongation was still as high as 3.2%, which is 2.9 times that of equiaxed grain alloy. The residual stress of equiaxed grain strips reached 363 MPa, which is 2.7 times that of columnar grain strips. During the cold rolling process, equiaxed grain strips are prone to cause intersecting plane dislocations, stacking faults, shear bands, and grain breakage during large deformation cold rolling. The columnar grain strip causes parallel plane dislocations, stacking faults, and shearbands. Furthermore, the deformation structure was found to be uniform, and, ultimately, the alloy formed a fibrous structure. Therefore, the elongation and latter distortion of columnar grain strips improved after being put through large deformation cold rolling, which greatly reduced residual stress. Full article
Show Figures

Figure 1

14 pages, 788 KiB  
Review
The Role of Extracellular Vesicles in Osteoporosis: A Scoping Review
by Weifei Zhang, Pengzhou Huang, Jianjing Lin and Hui Zeng
Membranes 2022, 12(3), 324; https://doi.org/10.3390/membranes12030324 - 14 Mar 2022
Cited by 18 | Viewed by 4929
Abstract
As an insidious metabolic bone disease, osteoporosis plagues the world, with high incidence rates. Patients with osteoporosis are prone to falls and becoming disabled, and their cone fractures and hip fractures are very serious, so the diagnosis and treatment of osteoporosis is very [...] Read more.
As an insidious metabolic bone disease, osteoporosis plagues the world, with high incidence rates. Patients with osteoporosis are prone to falls and becoming disabled, and their cone fractures and hip fractures are very serious, so the diagnosis and treatment of osteoporosis is very urgent. Extracellular vesicles (EVs) are particles secreted from cells to the outside of the cell and they are wrapped in a bilayer of phospholipids. According to the size of the particles, they can be divided into three categories, namely exosomes, microvesicles, and apoptotic bodies. The diameter of exosomes is 30–150 nm, the diameter of microvesicles is 100–1000 nm, and the diameter of apoptotic bodies is about 50–5000 nm. EVs play an important role in various biological process and diseases including osteoporosis. In this review, the role of EVs in osteoporosis is systematically reviewed and some insights for the prevention and treatment of osteoporosis are provided. Full article
Show Figures

Figure 1

17 pages, 3186 KiB  
Article
Source and Mobilization Mechanism of Iron, Manganese and Arsenic in Groundwater of Shuangliao City, Northeast China
by Zhihao Zhang, Changlai Xiao, Oluwafemi Adeyeye, Weifei Yang and Xiujuan Liang
Water 2020, 12(2), 534; https://doi.org/10.3390/w12020534 - 14 Feb 2020
Cited by 104 | Viewed by 7098
Abstract
Excessive levels of Fe, Mn and As are the main factors affecting groundwater quality in Songliao plain, northeast China. However, there are few studies on the source and mobilization mechanisms of Fe, Mn and As in the groundwater of Northeastern China. This study [...] Read more.
Excessive levels of Fe, Mn and As are the main factors affecting groundwater quality in Songliao plain, northeast China. However, there are few studies on the source and mobilization mechanisms of Fe, Mn and As in the groundwater of Northeastern China. This study takes Shuangliao city in the middle of Songliao plain as an example, where the source and mobilization mechanisms of iron, manganese and arsenic in groundwater in the study area were analyzed by statistical methods and spatial analysis. The results show that the source of Fe and Mn in the groundwater of the platform is the iron and manganese nodules in the clay layer, while, in the river valley plain, it originates from the soil and the whole aquifer. The TDS, fluctuation in groundwater levels and the residence time are the important factors affecting the content of Fe and Mn in groundwater. The dissolution of iron and manganese minerals causes arsenic adsorbed on them to be released into groundwater. This study provides a basis for the rational utilization of groundwater and protection of people’s health in areas with high iron, manganese and arsenic contents. Full article
(This article belongs to the Special Issue Geochemistry of Water and Sediment)
Show Figures

Figure 1

11 pages, 3844 KiB  
Article
Application of Silicon Oxide on High Efficiency Monocrystalline Silicon PERC Solar Cells
by Shude Zhang, Yue Yao, Dangping Hu, Weifei Lian, Hongqiang Qian, Jiansheng Jie, Qingzhu Wei, Zhichun Ni, Xiaohong Zhang and Lingzhi Xie
Energies 2019, 12(6), 1168; https://doi.org/10.3390/en12061168 - 26 Mar 2019
Cited by 27 | Viewed by 5564
Abstract
In the photovoltaic industry, an antireflection coating consisting of three SiNx layers with different refractive indexes is generally adopted to reduce the reflectance and raise the efficiency of monocrystalline silicon PERC (passivated emitter and rear cell) solar cells. However, for SiNx [...] Read more.
In the photovoltaic industry, an antireflection coating consisting of three SiNx layers with different refractive indexes is generally adopted to reduce the reflectance and raise the efficiency of monocrystalline silicon PERC (passivated emitter and rear cell) solar cells. However, for SiNx, a refractive index as low as about 1.40 cannot be achieved, which is the optimal value for the third layer of a triple-layer antireflection coating. Therefore, in this report the third layer is replaced by SiOx, which possesses a more appropriate refractive index of 1.46, it and can be easily integrated into the SiNx deposition process with the plasma-enhanced chemical vapor deposition (PECVD) method. Through simulation and analysis with SunSolve, three different thicknesses were selected to construct the SiOx third layer. The replacement of 15 nm SiNx with 30 nm SiOx as the third layer of antireflection coating can bring about an efficiency gain of 0.15%, which originates from the reflectance reduction and spectral response enhancement below about 550 nm wavelength. However, because the EVA encapsulation material of the solar module absorbs light in short wavelengths, the spectral response advantage of solar cells with 30 nm SiOx is partially covered up, resulting in a slightly lower cell-to-module (CTM) ratio and an output power gain of only 0.9 W for solar module. Full article
Show Figures

Graphical abstract

9 pages, 1388 KiB  
Article
The Impact of Thermal Treatment on Light-Induced Degradation of Multicrystalline Silicon PERC Solar Cell
by Shude Zhang, Jiaqi Peng, Hongqiang Qian, Honglie Shen, Qingzhu Wei, Weifei Lian, Zhichun Ni, Jiansheng Jie, Xiaohong Zhang and Lingzhi Xie
Energies 2019, 12(3), 416; https://doi.org/10.3390/en12030416 - 29 Jan 2019
Cited by 15 | Viewed by 4668
Abstract
Multicrystalline silicon (mc-Si) PERC (passivated emitter and rear cell) solar cells suffer from severe light-induced degradation (LID), which mainly consists of two mechanisms, namely, BO-LID (boron–oxygen complex-related LID) and LeTID (light and elevated temperature induced degradation). The impact of thermal treatment on the [...] Read more.
Multicrystalline silicon (mc-Si) PERC (passivated emitter and rear cell) solar cells suffer from severe light-induced degradation (LID), which mainly consists of two mechanisms, namely, BO-LID (boron–oxygen complex-related LID) and LeTID (light and elevated temperature induced degradation). The impact of thermal treatment on the LID of a mc-Si PERC solar cell is investigated in this work. The LID of mc-Si PERC solar cells could be alleviated by lowering the peak temperature of thermal treatment (namely sintering), perhaps because fewer impurities present in mc-Si tended to dissolve into interstitial atoms, which have the tendency to form LeTID-related recombination active complexes. The LID could also be effectively restrained by partially replacing the boron dopant with gallium, which is ascribed to the decreased amount of boron–oxygen (B–O) complexes. This work provides a facile way to solve the severe LID problem in mc-Si PERC solar cells in mass production. Full article
Show Figures

Graphical abstract

Back to TopTop