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Abstract: Opioids are widely used in clinical practice, but drug overdoses can lead to many adverse
reactions, and even endanger life. Therefore, it is essential to implement real-time measurement
of drug concentrations to adjust the dosage given during treatment, keeping drug levels within
therapeutic levels. Metal-Organic frameworks (MOFs) and their composite materials modified bare
electrode electrochemical sensors have the advantages of fast production, low cost, high sensitivity,
and low detection limit in the detection of opioids. In this review, MOFs and MOFs composites,
electrochemical sensors modified with MOFs for the detection of opioids, as well as the application of
microfluidic chips in combination with electrochemical methods are all reviewed, and the potential
for the development of microfluidic chips electrochemical methods with MOFs surface modifications
for the detection of opioids is also prospected. We hope that this review will provide contributions to
the study of electrochemical sensors modified with MOFs for the detection of opioids.
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1. Introduction

Chronic pain is a major public problem, with it being estimated more than 1 in 5 adults
in America experienced chronic pain, and with a higher prevalence associated with ad-
vancing age [1,2]. Patients of various ages and vocations may experience substantial effects
from pain on their physical, mental, and quality of life. Opioids are powerful analgesics
that have been used for many years in clinical settings to control and decrease pain.

Opioids are substances, either naturally occurring or synthetically produced, that
bind to certain receptors in the brain and body and dampen the strength of pain signals.
It has been used as a class of drugs for moderate or severe pain, coughs, and diarrhea
for hundreds of years. Additionally, because opioids can lessen short-term pain, they are
also successfully utilized for pain relief in patients with active cancer, end-of-life care, and
other pain relief treatments [3,4]. Opioids that are used often in clinical settings include
morphine, fentanyl, oxycodone, buprenorphine, methadone, codeine, and others. Even
though opioids are frequently used in clinical practice, real-time opioid concentration
monitoring is crucial for clinical counseling about the safe use of opioids because opioids
can result in drug addiction, physical and psychological dependence, and even death.

Opioid detection techniques include fluorescence [5], colorimetry [6], chromatogra-
phy [7], surface-enhanced Raman spectroscopy [8], mass spectrometry [9], and liquid
chromatography-tandem mass spectrometry [10]. Despite the fact that these techniques
have shown good selectivity and accuracy in the detection of opioids, they have several po-
tential limitations, such as complicated pre-treatment, specialist personnel, time-consuming,
and expensive tests. The electrochemical detection method [11,12] has the advantages of
being inexpensive, simple to use, sensitive and accurate, and quick. Furthermore, these
sensors can also be integrated into microfluidic chips and employed as dependable portable
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or tiny devices for detecting requirements which can better match the needs of portable and
rapid detection of opioids in judicial judgment and clinical application. However, issues
like peak potential overlap, a high detection limit, and a constrained linear range may arise
when using the unaltered bare electrode [13,14]. By modifying the bare electrode with
materials that have high performance and safeguard the environment, the aforementioned
issues can be resolved. Electrochemical sensors for opioid detection are now built using a
variety of new materials, including metal and metal oxide nanoparticles, carbon nanotubes
(MWCNTs), graphene, and MOFs [15]. MOFs have a wide variety of applications in the pro-
duction of electronic equipment [16], sensors [17], energy storage [18], gas separation [19],
supercapacitors [20], medication delivery [21], environmental purification [22], and other
disciplines due to their high porosity, large surface area, and other benefits.

Electrochemical sensors with modified MOF electrodes for the detection of opioids
have been demonstrated with a low detection line, a broad linear range, and excellent
selectivity. Due to the high integration achieved by microfluidic chips and electrochemistry,
as well as their low sample and reagent consumption, microfluidic-based electrochemical
sensors have been rapidly developed and applied in recent years, which enable the construc-
tion of small devices for rapid detection. Based on these findings, this review introduced
the application of MOFs and MOFs complexes, their surface modified electrochemical
sensors for the detection of opioids, as well as the application of microfluidic chips in
combination with electrochemical methods. Besides this, the potential for the development
of microfluidic chips electrochemical methods with MOFs surface modifications for the
detection of opioids was also prospected, as shown in Figure 1.
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Figure 1. Schematic overview of the review.

2. MOFs Materials
2.1. Classification of MOFs

Yaghi et al. synthesized the first MOFs in 1995 [23]. MOFs have progressively entered
the spotlight as a new functional material, which has been widely explored and employed
in a variety of fields. Currently, with the development of a large number of different kinds
of MOFs, there is a need to rationally classify them. MOFs can be classified in a variety of
ways, as illustrated in Table 1. Here, we mainly review the first two classification methods.
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Table 1. Classification of MOFs.

No. Classification Method Common Material

1 Skeleton space
composition One-dimensional (1D) [24,25], Two-dimensional (2D) [26], Three-dimensional (3D) [27]

2 Ligand Isoreticular metal-organic frameworks (IRMOFs) [28], Zeolitic imidazolate frameworks (ZIFs)
[29], Materials of institut lavoisier (MIL) [30], Porous coordination network (PCN) [31]

3 Organic bridging ligands Nitrogen-containing heterocyclic [32], Carboxyl-containing [33],
Nitrogen-containing heterocyclic and carboxyl-containing [34]

4 Composition of materials Metal-organic framework (MOF-n), Rare-earth polymeric framework (RPF-n) [35], Metal
peptide framework (MPF-n) [36]

There is a strong connection between the properties of MOFs and the spatial composition
of the skeleton. Chen et al. investigated the electrical conductivity of a group of nickel-
based MOFs with the same metal ligands and found that the one-dimensional hybrid (1D)
MOFs material had superior electrical conductivity [24]. Yu et al. obtained well-defined
one-dimensional hybrid MOF nanotubes by using polydopamine (PDA) for the first time to
regulate the reverse diffusion synthesis of the 1D MOF superstructure, as Figure 2a shows.
A well-defined one-dimensional hybrid MOF nanotube was successfully obtained [25]. Li
et al. utilized bottom-up template generation technique to manufacture continuous 2D MOF
nanosheet coatings. These coatings have a vertical arrangement, which improves permeability
and selectivity, like Figure 2b [26]. Liu et al. used a binder-free ultrafast laser to forge 3D MOF.
The high strain rate of the laser enhanced MOF’s molding capabilities overcame brittleness
and allowed the creation of arbitrary 3D nanostructures with a 100% higher mechanical
strength than powdered nanoparticles. These structures can be used in separation, bio-
medical applications, and motors, as in Figure 2c [27]. On the basis of the above, it is certain
that the categorization of MOF structural properties by skeleton spatial structure is a clear
classification approach that is advantageous to the use of MOFs in a variety of fields.

However, the skeleton space composition of the framework structure alone cannot
provide information about core ions and organic ligands. The limitations of the classifica-
tion methods are also expanded by the method based on ligands, which also clarifies the
properties of various MOFs series. According to the different ligands, MOFs are divided
into isoreticular metal-organic frameworks (IRMOFs), zeolitic imidazolate frameworks
(ZIFs), materials of institut lavoisier (MIL), and porous coordination networks (PCN).
Yaghi et al. used the extended network technique to successfully produce a new type of
porous crystalline material known as IRMOFs-1 (also known as MOF-5), which involved
coupling reticulated metal ions with organic hydroxylates. A metal-organic framework
with similar network topology areIRMOFs The pore size and function of these materials
can be altered according to the design system [28]. IRMOFs have been used in a diverse
array of applications, including adsorption [29], catalysis, [30,31] drug delivery [32], and
sensors [33], because of their unique qualities, such as a huge surface area and chemical
stability. Park et al. synthesized ZIF-1 to ZIF-12 by co-polymerizing zinc or cobalt ions with
imidazolate-type chains. The crystal structure of ZIFs is based on the non-jointed network
structure of seven different aluminosilicate zeolites. Both ZIF-8 and ZIF-11 were subjected
to in-depth research, and the results of this research showed that ZIF-8 and ZIF-11 have
high thermal stability owing to the fact that their guests are released without breaking the
skeleton. Furthermore, the results of gas adsorption research demonstrated unequivocally
that ZIF-8 and ZIF-11 have a permanent void fraction [34]. They have a wide range of
potential uses in a variety of scientific disciplines, including adsorption [35], catalysis [36],
supercapacitors [37] and the treatment of diseases [38]. Additionally, Férey et al. synthe-
sized MIL-100 by combining Cr3+ and trimeric acid under hydrothermal conditions. MIL
was a porous metal phosphate prepared with trivalent cations of different elements, such as
Fe3+, Al3+, Ga3+, In3+, V3+, Cr3+, and phosphate ligands. MIL-53’s framework is extremely
flexible and may adopt various geometries depending on the intense host-guest interaction.
These materials were characterized by high stability, large pores, uniform and permanent
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porosity, and large specific surface area [39,40]. In recent years, MIL has received increasing
attention for applications in chemical substance adsorption [41], photocatalysis [42,43], sen-
sors [44,45], etc. A porous coordination network (PCN) contained multiple cubic octahedral
nanopore cages, and its application in storage devices has been intensively investigated
due to its properties such as stable pore structure and adjustable pore size [46,47].
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Figure 2. (a) Illustration of surface chemistry directed template synthesis of MOF superstructures
using a contra diffusion method in pristine and PDA modified polycarbonate track-etched mem-
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In addition, according to the different types of organic ligand, it can be divided into
nitrogen-containing heterocyclic [48], carboxyl-containing [49], and nitrogen-containing
heterocyclic and carboxyl-containing [50]. Considering the different compositions of ma-
terials, they can be divided into metal-organic framework (MOF-n), rare-earth polymeric
framework (RPF-n) [51], and metal peptide framework (MPF-n) [52].

2.2. MOFs Composites

On the basis of MOFs, various materials may be loaded into and doped into to create
new materials with variable compositions and sizes. These new materials are referred to
as MOFs composites. MOFs composites contain unique optical, electrical, magnetic, and
catalytic capabilities in comparison to plain MOFs. These characteristics compensate for the
shortcomings of single MOFs and make MOFs composites more desirable. The common
binary composites mainly include MOFs-carbon, MOFs-metal nanoparticles, MOFs-metal
complexes, and MOFs-polymers.

2.2.1. MOFs-Carbon

One of the reasons why MOFs-carbon complexes are more common in MOFs com-
plexes is that, since there is still room to improve the stability and conductivity of MOFs,
compounding carbon materials with stable structure and strong conductivity complement
pure MOFs and enhance the sensing capability of both materials. Carbon materials exist in
various forms with different properties, and also show different advantages in combination
with MOFs in detection.

Li et al. synthesized UiO-66-NH2 by the hydrothermal method and prepared UiO-
66-NH2/CNTs nanocomposites. CNTs and UiO-66-NH2/CNTs maintained tubular and
octahedral structures, respectively, so UiO-66-NH2/CNTs composites have a large surface
area, abundant active sites, and good electrical conductivity. The composites were modified
on the glassy carbon electrode (GCE) surface to achieve simultaneous detection of dopamine
(DA) and acetaminophen (AC) under the synergistic effect of UiO-66-NH2 and CNTs, and
the results indicated detection limits of 15 nM and 9 nM, respectively, but the current peaks
differed greatly when DA and AC were detected simultaneously, as in Figure 3a [53]. Manoj
et al. prepared Cu-MOF-based nanocomposites by using a one-pot hydrothermal method.
They compared the electrochemical properties of Cu-MOF/HNTs or Cu-MOF/HNTs/rGO
nanocomposites modified on the GCE surface and found that the latter had a further
reduced charge transfer resistance, which indicated that reduced graphene oxide (rGO)
provided more conduction pathways in the composites, as in Figure 3b. The composites
overcome the disadvantages of pure MOFs with poor electrical conductivity and particle
aggregation. With the synergistic effect of active metal sites and high porosity of Cu-MOF,
high conductivity of rGO, and large surface area of halloysite nanotubes (HNTs), the
composite exhibited good electrochemical performance in the detection of DA and AC,
with detection limits of 0.03 µM and 0.15 µM, respectively, and excellent separation of the
anodic peaks of DA and AC [54].

2.2.2. MOFs-Metal Nanoparticles

Common metal nanoparticles (MNPs), such as AuNPs, AgNPs, and PtNPs, are utilized
extensively in the fields of catalysis, biomedicine, and environmental science, due to their
high electrical conductivity and exceptional catalytic capabilities [55–58]. The development
of MNPs, on the other hand, is primarily restricted to simple agglomeration. It is possible
to successfully overcome the agglomeration problem of MNPs by using MOFs as carriers
for encapsulating or loading MNPs. This can also improve the specific surface area of the
composites, which in turn broadens the application fields of both materials.

Chen et al. deposited AgNPs on 2D Zn-MOFs and 3D Zn-MOFs by electrodeposi-
tion and compared them. According to the findings, Ag/2D Zn-MOFs had a superior
electrocatalytic activity compared to Ag/3D Zn-MOFs. Furthermore, the 2D MOFs in-
creased the dispersion and stability of the active metal components, had a bigger specific
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surface area, and a higher conductivity, as in Figure 4a. When detecting H2O2, the linear
range of the Ag/2D Zn-MOFs modified GCE was 5.0 µM–70 mM with a detection limit
of 1.67 µM. More notably, the modified electrode could detect the response of live cells
to H2O2 during specific drug stimulation in real time [59]. Gordillo et al. induced the
reduction of percolated Au3+ ions to AuNPs by MOF and polymer, then transformed
the porous but electrically insulating NU-1000 pure MOF material into NU-1000/AuNP
and NU-1000/polydopamine/AuNP composites. Although the porosity of the compos-
ites was lower than that of the pure MOF material NU-1000, the large porosity was still
maintained, whilst at the same time, the composites obtained significant electrical con-
ductivity (~10−7 S/cm), which was 104 times higher than the electrical conductivity of the
MOF/MNPs composites under the same conditions so far, as in Figure 4b [60]. In the future,
it may be used in the fields of electronics, electrocatalysis, and energy storage devices.
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2.2.3. MOFs-Metal Compounds

The numerous types of metal compounds each have their own unique properties, and
the complexes that these metal compounds form with MOFs also have their own special
features and are employed in a broad variety of diverse fields.

Zhang et al. synthesized Fe/Fe3O4@C composites by using Fe-MOF as the precursor
template and compared the sensing performance of the detection of DA by three elec-
trochemical detection methods, cyclic voltammetry (CV), differential pulse voltammetry
(DPV), and amperometric when the composites were modified on GCE. CV and DPV were
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superior to the amperometric method in terms of sensitivity and linear range. Furthermore,
CV was more selective for DA in complex matrices such as in the presence of multiple
sugars, urea, ascorbic, and Na+ and K+. Meanwhile, the sensor demonstrated a high level of
stability as well as reproducibility, As in Figure 5a [61]. Hua et al. proposed a colorimetric
sensor with ZIF-8 film encapsulated PdO/ZnO (PdO/ZnO@ZIF-8) to cope with the prob-
lem of naked-eye readable detection of hydrogen leakage. The yellow pigment of PdONPs
could be oxidized by hydrogen to black Pd, which was an irreversible sensing material.
The advantages of MOFs lead to superior performance in the selectivity, sensitivity, and
detection speed of their encapsulation materials. Compared with bare PdO/ZnO, the
composite material had a shorter response time (less than 1 min) to H2O2, with improved
sensitivity and enhanced selectivity, as shown in Figure 5b [62].
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Figure 4. (a) Schematic diagram of the major steps for fabricating MNPs/Zn-MOF modified electrodes
and the H2O2 sensor used for in situ monitor of living cells-released H2O2 from the stimulation
of drug and transfer data to the electrochemical station. Reprinted from [59] with permission;
(b) Transformation of NU-1000 to NU-1000/AuNP, NU-1000/PDA, and NU-1000/PDA/AuNP
composites and representative I-V plots of NU-1000/AuNP (orange) and NU-1000/PDA/AuNP
(blue). Reprinted from [60] with permission.

2.2.4. MOFs-Polymers

The combination of polymers and MOFs can achieve functional complementarity and
compensate for the poor conductivity and stability of MOFs materials. Some applications
of MOFs-polymers in the field of electrochemical detection are presented as an example of
complexes composed of chitosan, Molecular Imprint Polymers (MIPs), and MOFs.

Chitosan, a polysaccharide containing N-acetyl-D-glucosamine and D-glucosamine
units, is a polymer with the advantages of non-toxicity, high permeability, low cost, and
stable covalent bonds [63,64]. Suk Choi et al. synthesized Co-hemin MOF from cobalt
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and heme, used porphyrin as an organic linker, coated Co-hemin MOF with chitosan by
ultrasound, and surface modified GCE with Co-hemin MOF/chitosan by electrodeposition,
thus the amino and hydroxyl groups in the chitosan structure could immobilize the enzyme
with good application value. Thus, phanerochaete chrysosporium cellobiose dehydroge-
nase (CHD) was immobilized on the surface, and an electrochemical biosensor for lactose
determination was established with a wide linear range of 10–100 mM and a detection limit
of 4 mM [65].
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Figure 5. (a) Synthesis diagram of the Fe/Fe3O4@C and its electrochemical detection for DA.
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MIPs are polymers obtained by the polymerization of functional monomers. Specific
recognition, high selectivity, high reproducibility and stability, and low cost are the signifi-
cant advantages of their application in analysis and detection [66,67]. Liu et al. prepared
Fe3O4 magnetic cores by a solvothermal method, and the activated M-UIO-66-COOH was
prepared by a two-step coordination method and substrate selection, which was used as a
substrate to explore the optimal synthesis conditions of MIPs composites. The MIPs were
coated with magnetic metal-organic framework M-UIO-66@MIPs modified with hydroxyl
groups, as in Figure 6, and the method was developed for the detection of five macrolide an-
tibiotics (MALs) with detection limits ranging from 3.1–44.6 µg/L. Meanwhile, the selective
and efficient adsorption of five MALs was achieved [68].
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3. MOFs-Based Electrochemical Sensors
3.1. Construction of MOFs-Based Electrochemical Sensors

With the increased application of electrochemical analysis methods in clinical, food,
and environmental monitoring, more and more research is devoted to improving the effi-
ciency, linear range, detection limit, and selectivity of electrochemical detection. Detection
with bare electrodes suffers from the problems of overlapping peak potentials, poor stabil-
ity, and an insufficiently wide linear range. Surface modification of the original working
electrode is a common means to improve the detection performance. Exploiting the various
options of modifying electrodes, the shortcomings of the bare electrode can be compensated
according to the demand, thus meeting different detection needs. MOFs are new materials,
and their composites have been well developed. Constructing MOFs based and MOFs
composite based surface modified electrodes for electrochemical sensors has numerous
application and promising future prospects.

Akhter et al. made a biosensor based on tri-metallic Co-Ni-Cu-MOF, which was
grown on nickel foam (NF) using a conventional solvothermal method, and compared
the performance to Co-MOF/NF, Ni-MOF/NF, and Cu-MOF/NF, respectively, used a
determination of an anticancer therapeutic agent, nilutamide (NLM). Co-Ni-Cu-MOF/NF
have shown a wide linear range between 0.5–70 µM and 70–900 µM and a low limit of
detection of 0.48 ± 0.02 nM [69]. Jalal et al. used a simple chemical unzipping method
to prepare graphene oxide nanoribbons (GONRs) with pristine MWCNTs and modified
them on the surface of GCE, then grew HKUST-1 onto GONRs/GCE by a deposition
method. Due to the synergic effect of the GONRs and HKUST-1 framework, HKUST-
1/GONRs/GCE demonstrated superior performance in detection toward Imatinib (IMA)
as an anticancer drug, which had two linear dynamic ranges, 0.04–1.0 µM and 1.0–80 µM,
whilst the detection limit of IMA was 0.006 µM. In the determination of IMA in urine
and serum samples, it was shown that it had a marvelous application prospect, as in
Figure 7a [70]. Yang et al. synthesized sulfur nanoparticles (SNPs), and coated cobalt
metal MOF, to obtain SNPs@MOF. At the same time, boron nanosheets (BNSs) were
prepared by ultrasonic assisted liquid phase stripping and loaded with ferrocene (Fc) to
form BNSs-Fc. The two materials were simultaneously cast on the surface of GCE to
construct a dual-channel electrochemical sensor and real-time drug release monitoring
platform, SNPs@MOF/BNSs-Fc/GCE. The detection of adriamycin (ADR) had stable Fc
signal output and content-dependent ADR signal output. The detection limit of ARD was
2 nM, and the detection effective range was 0.01–10 µM. The testing of biological fluid
samples proved the dependability, as in Figure 7b [71].

Since the properties of different drugs are different, it is necessary to explore the
pH value of the optimal conditions for the detection process. The applicable pH for the
detection of most opioids is 7, but since the oxidation peak potential of Morphine (MO) and
Codeine (CO) tends to be negative around 7, becausethe oxidation mechanism is proton
separation, and the sensitivity of the detection is highest at pH = 5. It is necessary to explore
the most appropriate electrochemical detection conditions, which can improve the accuracy
and performance of sensors in opioid detection to a certain extent.

3.2. Microfluidic Chips in MOFs-Based Electrochemical Sensors

In the meantime, electrochemical detection can also be built into a variety of portable
and reliable micro-devices for a variety of applications, which will facilitate quicker detec-
tion. In recent decades, microfluidics has been widely utilized in assay technology and
is acknowledged as one of the most promising analytical tools. It has many significant
advantages, including component miniaturization, microliter level volume, ease of oper-
ation, low cost, and automation [72]. With the rapid development of microfluidics, it is
now possible to design portable and robust detection devices by combining microfluidics
with electrochemical analysis methods. These detection devices can satisfy a wide range
of needs.
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In recent years, researchers have focused on integrating MOFs into microfluidics to
create biosensors with the advantages of both MOFs and microfluidics. Microfluidic biosen-
sors based on MOFs have a large surface area, large pore volume, and rich composition,
and, when combined with electrochemical methods, y can achieve superior detection per-
formance. Cheng et al. prepared Cr-MIL-101 composites by the hydrothermal method and
interdigitated microelectrodes (IDµE) on standard glass slides of 25 mm × 75 mm × 1 mm.
Finally, Cr-MIL-101 composites were packed in microchannels of microfluidic chips sand-
wiched between IDµE. An impedance electrochemical sensor in situ detection method
based on the synergistic MOF and the microfluidic platform was constructed. Among
them, the Cr-MIL-101 composite was used as a probe to capture perfluorooctanesulfonate
(PFOS) based on targeting affinity, and the sensitivity of detection was improved by en-
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capsulating the probe in a microfluidic platform. For in situ analysis of PFOS, this method
had a detection limit of 0.5 ng/L, which was comparable to the state-of-the-art in situ
technique, as in Figure 8a [73]. Xiao et al. prepared the metalazolate framework-7 (MAF-7)
material and encapsulated the uricase in it. Uricase@MAF-7 was modified on the surface
of activated gold electrodes. The uricase@MAF-7-based assay could detect uric acid (UA)
levels ranging from 2 µM to 70 µM. The detection limit was as low as 0.34 µM. Then a chip
with microchannel was prepared using PDMS, and a non-invasive wearable device was
constructed by integrating a uricase@MAF-7-based electrochemical sensor. Microfluidic
chips and wireless electronic readout devices were used to realize real-time, accurate, and
sensitive detection of UA in human sweat during movement, as in Figure 8b [74].
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4. Application of MOFs-Based Electrochemical Sensors for Opioid
Concentration Detection

Although opioids are effective painkillers, their clinical use is somewhat limited be-
cause of the serious side effects they cause. These side effects include addiction, respiratory
depression, and constipation. Additionally, a concentration of opioids in the blood that
is higher than their effective level can lead to death due to respiratory depression. Elec-
trochemical analysis is a relatively inexpensive method, and its detection speed is fast,
allowing it to replace traditional detection methods, whilst the performance of bare elec-
trodes for detection is also enhanced by MOFs used as surface modification materials, as
Table 2 shows.

Table 2. Application of MOFs modified electrodes in the detection of opioid drugs.

Analyte Method Electrode LOD
(µM)

Linear Range
(µM)

Real
Samples Ref.

Buprenorphine CV
DPV Zn/La3+/MOF/MIP/GCE 0.0021 0.0079–0.0992 Blood [75]

Fentanyl DPV Zn (II)-MOF/SPCE 0.3 1–100 Blood plasma
and urine [76]

Fentanyl DPV MWCNT-HA/Cu-
H3BTC/GCE

0.003 0.01–100 Blood serum [77]

Methadone
Methocarbamol

CV
DPV Cu-MOF/CPE 0.05

0.02

0.08–80; 80–800
0.09–100;
100–900

Blood
and urine [78]

Morphine
Codeine DPV Cu-hemin

MOF@MWCNTs/GCE
0.0092
0.0112 0.09–30 Urine and

injection [79]

Because of their extremely high porosity, wide surface area, and high level of stability,
MOFs are ideally suited for use as electrode modifiers for opioid medicines. Naghian
et al. prepared Zn (II)-MOF material and completed the modification of the electrode by
drop casting of Zn (II)-MOF suspension on the surface of the screen-printing electrode
(SPCE). To determine the optimal conditions for the detection of Fentanyl, the effects of
scan rate and pH on voltammetry were investigated to determine the best experimental
conditions. The detection limit of fentanyl aqueous solution was 0.3 µM in the concentration
range of 1–100 µM tested by the DPV method, and low doses of fentanyl were successfully
determined in plasma and urine [76]. Moreover, because the modified electrode was SPCE,
it could be used as a disposable sensor, which avoided the problem of cross-contamination.

Due to the diversity of MOFs composites, different MOFs composites are selected to
obtain different performance modifiers, and a reasonable selection of MOFs composites
can be made to meet different testing requirements. Yahyapou et al. synthesized Zn/La3+

MOFs with an average grain size between 30–80 nm by microwave co-precipitation, and
prepared Zn/La3+/MOF/MIP/GCE by electropolymerization in combination with MIPs to
detect buprenorphine (BUP). The optimal monomer concentration, BUP concentration, pH,
number of cycles, and applied potential conditions were explored in the system with BUP as
the template, pyrrole as the monomer, and potassium ferricyanide as the electrochemically
active tracer to obtain the optimal response parameters. The response curves were finally
obtained in the concentration range of 4–50 ng/mL in the linear range with the detection
limit as low as 1.08 ng/mL, and the determination of the BUP concentration in the actual
blood samples was achieved [75]. Akbari et al. prepared Hydroxyapatite (HA) Multi-
Walled MWCNT and Cu-H3BTC materials and then prepared MWCNT-HA/Cu-H3BTC
composite. The MWCNT-HA/Cu-H3BTC composite was characterized by X-ray diffraction,
field emission scanning electron, Fourier transform infrared spectrometer, and Raman
spectroscopy to determine the synthesis of the composites MWCNT-HA, Cu-H3BTC, and
MWCNT-HA/Cu-H3BTC. The effects of accumulation time, scan rate, pH, and the content
of the composites in suspension on the electrochemical detection were investigated. The
linear range for fentanyl detection was 0.01–100 µM, and the limit of detection was 3 nM.
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The quantitative analysis of fentanyl was also achieved in serum, and MWCNT-HA/Cu-
H3BTC/GCE also showed good stability and reproducibility [77].

The simultaneous determination of two drugs in the assay will speed up the efficiency
of the assay. Karimi et al. synthesized Cu-BTC MOF by a facile hydrothermal synthesis
method and dispersed 0.10 g them and 0.90 g graphite powder by ethanol solvent, then
mixed with appropriate paraffin oil at 70:30 w/w% to prepare a carbon paste electrode (CPE).
CV and DPV electrochemical methods were used to record the test data when methadone
and methaminophen were present together, with the detection limits of 0.05 µM and
0.02 µM, respectively, and they all had two linear ranges, methadone with both 0.08–80 µM
and 80–800 µM and methaminophen with both 0.09–100 µM and 100–900 µM. Finally, suc-
cessful experiments were conducted in blood and urine, showing that Cu-MOF/CPE can
successfully analyze both drugs in real samples [78]. Mousaabadi et al. prepared Cu-Hemin
MOF and compounded it with MWCNTs to synthesize CHM@MWCNTs composites. After
this, they successfully prepared new sandwich CHM@MWCNTs composites by various
spectroscopic and microscopic characterization methods for the surface modification of
GCE. They investigated the effects of different mass ratios of CHM and MWCTs, pH of
the detection environment, and scanning rate on the detection results during the synthesis
process. CHM@MWCNTs/GCE achieved the simultaneous determination of Morphine
(MO) and Codeine (CO), with the linear range of MO and CO detection being 0.09–30 µM
with the detection limits of 9.2 nM and 11.2 nM, respectively, under the optimized condi-
tions. The simultaneous detection of the two opioids was also achieved in human urine
and MO injection with the addition of CO, which verified its applicability in real samples,
as in Figure 9. [79].
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5. Conclusions

In this review, we discussed the use of MOFs, MOFs complexes, and surface modified
electrochemical sensors based on such materials for the detection of opioids. Electrochem-
ical sensors are notable for their speed, portability, and low cost in comparison to other
methods of detection. Different electrodes need to be selected for different detection situa-
tions. When the modified electrode is SPCE it can be used as a disposable sensor to avoid
the problem of cross-contamination, GCE cannot be used as a disposable electrode. Instead,
it can be reused by polishing and is relatively stable and reproducible. In addition, the
performance of electrodes modified with MOFs and MOFs complexes has been significantly
improved in comparison to that of bare electrodes. These improvements include a wider
linear range, lower detection limits, improved stability, and reproducibility to varying
degrees. Pure MOFs are more structurally stable than MOFs composites, while MOFs
composites have a better limit of detection for opioids concentrations than pure MOFs,
making them more suitable for opioids with lower detection lines. There are currently more
studies being conducted on electrochemical sensors in opioids, but there are fewer studies
being conducted on MOFs and MOFs complexes modified electrodes for this application.
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Furthermore, most of the current studies are focused on the optimization of the material
preparation and the conditions of electrochemical detection. However, very few studies
have been conducted on the homogeneity and robustness of MOFs and their complexes
in the modified electrodes, even though these characteristics have a significant impact
on the sensitivity, stability, and reproducibility of the modified electrodes. Additionally,
microfluidics is increasingly used in electrochemical sensors owing to its advantages of
miniaturization, integration, and high throughput, while there are still vacancies in its
application in opioid detection. In the practical detection of opioids, patient fluids are not
easy to obtain repeatedly, and the volume is small, requiring a high level of performance
in the detection of micro-samples. Furthermore, the metabolism of opioids in the body
changes in real time, so immediate detection of blood levels is required. In addition, be-
cause of the specificity of opioids, plasma concentrations are not always measured in the
laboratory, necessitating the use of highly integrated and portable devices. Because of the
growing need for rapid and accurate detection of opioid concentrations, as well as the
great capabilities that have been proven by MOFs and MOFs complexes on electrochemical
sensors, this will become a focal point of research soon.
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