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Abstract: Osteoporosis is mainly a geriatric disease with a high incidence, and the resulting spinal
fractures and hip fractures cause great harm to patients. Anti-osteoporosis drugs are the main
treatment for osteoporosis currently, but these drugs have potential clinical limitations and side
effects, so the development of new therapies is of great significance to patients with osteoporosis.
Electrical stimulation therapy mainly includes pulsed electromagnetic fields (PEMF), direct current
(DC), and capacitive coupling (CC). Meanwhile, electrical stimulation therapy is clinically convenient
without side effects. In recent years, many researchers have explored the use of electrical stimulation
therapy for osteoporosis. Based on this, the role of electrical stimulation therapy in osteoporosis was
summarized. In the future, electrical stimulation might become a new treatment for osteoporosis.

Keywords: electrical stimulation; osteoporosis

1. Introduction

Osteoporosis, a systemic bone disease, can cause fractures due to a decrease in bone
density and bone quality for various reasons, the destruction of bone microstructure, and an
increase in bone fragility [1–3]. The diagnosis of osteoporosis mainly relies on dual energy
X-ray absorptiometry, and the main measurement sites are the lumbar spine, proximal
femur, and distal radius. Generally speaking, the measurement value is less than −2.5 [4,5],
and the incidence of osteoporosis is very high. In a community survey of 5585 people with
an average age of 77 years old in the UK, it was found that the incidence of osteoporosis
was more than 50% [6]. In osteoporosis patients, spine fractures and hip fractures are
common; they affect the quality of life of patients, threaten the health of elderly patients,
and can cause fatal complications [7–9]. Osteoporosis treatments include bisphosphonates,
selective estrogen receptor modulators, estrogens, and parathyroid hormones. However,
some of these drugs are clinically inconvenient to use, and most of them have side effects,
so it is clinically meaningful to develop new osteoporosis treatments [10–14].

Electrical stimulation therapy mainly includes pulsed electromagnetic fields (PEMFs),
direct current (DC), and capacitive coupling (CC) [15–17] (Figure 1). The main working
principle of a PEMF is to convert electric current into electromagnetic wave signal, and
a PEMF has curative effect on nonunion and delayed fracture healing [18–20]. DC is an
invasive technique that delivers constant direct current through an implanted electrical
stimulator [21–23]. CC is a non-invasive technology that applies an electric field, and two
skin electrodes are aimed at the treatment site. Therefore, electrical energy is induced from
one electrode to the other electrode through frequency changes to stimulate the treatment
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site and achieve the purpose of treatment [24–26]. Studies have reported that a PEMF, DC,
and CC have therapeutic effects on osteoporosis. Based on this, the relevant literature was
reviewed to provide information for new treatment options for osteoporosis.

Medicina 2023, 59, x FOR PEER REVIEW 2 of 9 
 

 

and two skin electrodes are aimed at the treatment site. Therefore, electrical energy is in-
duced from one electrode to the other electrode through frequency changes to stimulate 
the treatment site and achieve the purpose of treatment [24–26]. Studies have reported 
that a PEMF, DC, and CC have therapeutic effects on osteoporosis. Based on this, the rel-
evant literature was reviewed to provide information for new treatment options for oste-
oporosis. 

 
Figure 1. PRISMA flowchart showing the process of study selection. 

2. Methods 
We used “electrical stimulation”, “osteoporosis”, “pulsed electromagnetic fields”, 

and “osteoporosis“ as keywords and searched all the articles from 1968 to 2022 in PUB-
MED and MEDLINE articles. We included only publications published in English and 
selected those findings that were, in our opinion, the most important. We further analyzed 
these articles, mainly selected papers from the past 5 years, but also included well-re-
spected older publications (Figure 1). 

3. PEMFs for Osteoporosis 
The main mechanism of a PEMF is to convert electric current into a magnetic field 

that can activate the biological current of the organism to achieve the purpose of treat-
ment. A PEMF has good effects on nonunion and delayed fracture healing, and there are 
also many reports that a PEMF can treat osteoporosis [27–29]. The clinical research into 
PEMFs in osteoporosis, the effects of a PEMF on osteogenesis and its mechanism, and the 
effects of a PEMF on osteoclasts and its mechanism will be discussed. 

3.1. The Clinical Research into PEMFs in Osteoporosis 
The improvement of osteoporotic bone pain and osteoporosis using PEMFs have 

been reported on many times (Table 1). 
At present, there is clinical evidence that PEMFs could relieve osteoporotic bone pain 

[30]. Many clinical trials have proved that PEMFs can promote the recovery of 
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2. Methods

We used “electrical stimulation”, “osteoporosis”, “pulsed electromagnetic fields”, and
“osteoporosis” as keywords and searched all the articles from 1968 to 2022 in PUBMED
and MEDLINE articles. We included only publications published in English and selected
those findings that were, in our opinion, the most important. We further analyzed these
articles, mainly selected papers from the past 5 years, but also included well-respected
older publications (Figure 1).

3. PEMFs for Osteoporosis

The main mechanism of a PEMF is to convert electric current into a magnetic field
that can activate the biological current of the organism to achieve the purpose of treatment.
A PEMF has good effects on nonunion and delayed fracture healing, and there are also
many reports that a PEMF can treat osteoporosis [27–29]. The clinical research into PEMFs
in osteoporosis, the effects of a PEMF on osteogenesis and its mechanism, and the effects of
a PEMF on osteoclasts and its mechanism will be discussed.

3.1. The Clinical Research into PEMFs in Osteoporosis

The improvement of osteoporotic bone pain and osteoporosis using PEMFs have been
reported on many times (Table 1).

At present, there is clinical evidence that PEMFs could relieve osteoporotic bone
pain [30]. Many clinical trials have proved that PEMFs can promote the recovery of
osteoporotic bone mass. Antonino Catalano et al. conducted a randomized controlled
clinical trial of 43 people and revealed that a PEMF may play a role in restoring osteoporosis
and bone mass through RANKL/OPG and Wnt/β-catenin pathways [31]. Of course, other
clinical studies have come to similar conclusions [32,33]. Although the FDA (Food and
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Drug Administration) has not yet approved PEMFs for the treatment of osteoporosis, the
above clinical trials have indicated that PEMFs are a non-invasive, safe, and effective
treatment for osteoporosis. We look forward to more large-scale clinical trials using PEMFs
for osteoporosis in the future. Through further trials, PEMFs would be approved by the
FDA for osteoporosis treatment in the future, which will benefit patients; however, this
technology is not mature enough for clinical use and needs more research

Table 1. The clinical research of PEMFs in osteoporosis.

Researchers Contents Patients References

Antonino Catalano
et al. restoring osteoporosis and bone mass 43 [31]

Hui-Fang Liu et al. as effective as alendronate 44 [32]
F Tabrah et al. prevention and treatment of osteoporosis 20 [33]

3.2. The Effects of a PEMF on Osteogenesis and Its Mechanism

A PEMF inhibits osteoporosis progression mainly through primary cilia, H-type
angiogenesis, and WNT signaling pathways (Table 2).

Cilia are hair-like organelles protruding from the cell surface and are composed of
microtubules to form axons. Furthermore, cilia play an important role in the basic life
activities of cells. Immobile cilia are also commonly referred to as primary cilia; they sense
changes in the microenvironment surrounding the cell and mediate a variety of important
signal transductions within the cell [34–36]. Wen-Fang He et al. revealed that PEMFs
promote osteogenic differentiation through nitric oxide signaling within primary cilia,
thus inhibiting osteoporosis progression [37]. According to Yan-Fang Xie et al., PEMFs
stimulated osteoblast differentiation and mineralization in a primary cilia-dependent
manner and inhibited osteoporosis progression [38]. Juan-Li Yan et al. illustrated that
PEMFs promote osteoblast mineralization and maturation through primary cilia as a
potential treatment for osteoporosis [39]. Therefore, it can be said that primary cilia play an
important role in the mechanism of PEMF treatment of osteoporosis.

There are special capillaries in the bone—H-type blood vessels—that are CD31 protein-
positive vessels, and H-type angiogenesis is also considered as a key factor in osteoporo-
sis [40–43]. Qian Wang et al. found that PEMFs promote osteogenesis by promoting
the formation of H-type blood vessels which inhibits the occurrence of osteoporosis [44].
Tiantian Wang et al. also found that, as a potential treatment for glucocorticoid-induced
osteoporosis, PEMFs maintain H-type angiogenesis and osteogenesis [45].

The WNT pathway is an evolutionarily conserved signaling pathway that is involved
in various biological activities. It can be divided into a canonical Wnt/β-catenin signal-
ing pathway, planar cell polarity pathway, Wnt/Ca+ pathway, and spindle regulation
pathway [46–50]. The WNT signaling pathway plays an important role in promoting osteo-
genesis and inhibiting osteoporosis as well [51–53]. Based on evidence from Xi Shao et al.,
PEMFs treat osteoporosis in type 2 diabetic mice by activating Wnt/β-catenin signaling [54].
Shaoyu Wu et al. found that PEMFs promote the osteogenic differentiation of mesenchymal
stem cells through the Wnt/Ca+ pathway and inhibit the progression of osteoporosis [55].
Xi Shao et al. discovered that PEMFs enhance canonical Wnt signaling-mediated bone for-
mation in spinal cord injured rats [56]. In addition, other researchers have also revealed that
PEMFs inhibit the progression of osteoporosis through the WNT signaling pathway [57,58].
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Table 2. The effects of a PEMF on osteogenesis and its mechanism.

Researchers Outcome Mechanism References

Wen-Fang He et al. osteogenic differentiation primary cilia [37]
Yan-Fang Xie et al. osteoblast mineralization primary cilia-dependent [38]
Juan-Li Yan et al. osteoblast maturation primary cilia [39]
Qian Wang et al. osteogenesis H-type blood vessels [44]

Tiantian Wang et al. osteogenesis H-type angiogenesis [45]
Xi Shao et al. osteogenesis Wnt/β-catenin [54]

Shaoyu Wu et al. osteogenic differentiation Wnt/Ca+ [55]
Xi Shao et al. bone formation Wnt/β-catenin [56]
Da Jing et al. bone formation Wnt/β-catenin [57]

Jun Zhou et al. osteogenesis Wnt/β-catenin [58]

3.3. The Effects of a PEMF on Osteoclasts and Its Mechanism

PEMFs can also inhibit the progression of osteoporosis by affecting osteoclasts (Table 3).
Pan Wang et al. found that PEMFs inhibit osteoclast formation by regulating the ratio of
RANKL/OPG through primary cilia, thus inhibiting the progression of osteoporosis [59].
Ying Pi et al. found that a low-frequency PEMF inhibits osteoclast differentiation by scav-
enging reactive oxygen species, and it is a potential treatment for osteoporosis [60]. Yutian
Lei et al. found that PEMFs inhibit osteoclast differentiation and inhibit the progression of
osteoporosis by regulating the Akt/mTOR signaling pathway [61]. Moreover, many other
researchers have found that PEMFs inhibit the progression of osteoporosis by inhibiting
osteoclast formation and differentiation [62–66].

Table 3. PEMFs inhibit the progression of osteoporosis by affecting osteoclasts.

Researchers Outcome Mechanism References

Pan Wang et al. osteoclast formation RANKL/OPG [59]
Ying Pi et al. osteoclast differentiation reactive oxygen [60]

Yutian Lei et al. osteoclast differentiation Akt/mTOR [61]
Zhiming He et al. osteoclast formation TGF-β [62]
Pan Wang et al. osteoclast formation RANKL [63]
Jie Zhang et al. osteoclast differentiation Ca2+ [64]

Jianquan He et al. osteoclast formation NFATc1 [65]
Kyle Chang et al. osteoclast formation apoptotic rate [66]

4. DC for Osteoporosis

DC is an invasive technique that provides a constant direct current by implanting
an electrical stimulator and implanting the cathode and anode into the repair site for
continuous electrical stimulation to treat diseases. In addition, DC also has a therapeutic
effect on fracture nonunion [67,68]. At present, many animal experiments have confirmed
that DC has a therapeutic effect on osteoporosis (Table 4). Kaori Iimura et al. discovered
that chronic stimulation of the superior roaring nerve in rats with implanted electrodes
stimulated the thyroid to release calcitonin and partially ameliorated bone loss in OVX
(ovariectomy) rats [69]. Roy Yuen-Chi Lau et al. illustrated that electrical stimulation of
the dorsal root ganglion of rats using an implantable micro-electrical stimulation system
can stimulate the secretion of calcitonin gene-related peptides and inhibit osteoporosis
as well [70]. Y-C Lau et al. also demonstrated that DC can be used to stimulate dorsal
root nerve energy-saving treatment for osteoporosis in rats [71]. However, at present, DC
has a more important problem, which is the potential infectivity of implanted electrical
stimulation devices for patients, and researchers should take this factor into consideration
in future studies.
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Table 4. Animal experiments using DC for osteoporosis.

Researchers Animal Position References

Kaori Iimura et al. rats superior roaring nerve [69]
Roy Yuen-Chi Lau et al. rats dorsal root ganglion [70]

Y-C Lau et al. rats dorsal root ganglion [71]

5. CC for Osteoporosis

CC is a non-invasive technology that applies an electric field; two skin electrodes
are aimed at the treatment site so that the electric energy is induced from one electrode
to the other electrode through frequency changes, thereby stimulating the treatment site
and achieving the purpose of treatment. Furthermore, the current therapeutic role of CC
in fractures and bone pain has also been reported [72,73]. The therapeutic effects of CC
in osteoporosis are also limited to animal experiments (Table 5). Jayanand Manjhi et al.
found that low-level capacitively coupled pulsed electric field stimulation has a therapeutic
effect on osteoporosis in rats [74]. Jayanand Behari et al. revealed that capacitively coupled
stimulation of rat legs can inhibit the progression of osteoporosis [75]. C T Brighton et al.
proved that the stimulation of vertebrae at the paraspinal level using capacitively coupled
electrodes on the dorsal skin surface of the 11th thoracic and 4th lumbar vertebrae treats
osteoporosis [76]. Other researchers have also obtained similar conclusions [77,78]. In
general, CC is a promising treatment modality, with good efficacy in animal models, and
more clinical trials are needed to confirm this.

Table 5. Animal experiments using CC for osteoporosis.

Researchers Animal Position References

Jayanand Manjhi et al. rats leg [74]
Jayanand Behari et al. rats leg [75]

C T Brighton et al. rats vertebrae [76]
C T Brighton et al. rats tibia [77]
C T Brighton et al. rats sciatic nerve [78]

6. Conclusions

Electrical stimulation might be a good, non-invasive, and effective treatment for
osteoporosis. A PEMF is the treatment method with the most research and many clinical
trials. Many clinical trials have also shown its efficacy, but the specific treatment parameters
of frequency and treatment time are not yet conclusive. Meanwhile, the FDA has not
approved the treatment for osteoporosis, and even though PEMFs have huge potential,
PEMFs need more large-scale clinical trials in the future to investigate the optimal frequency
and duration of treatment for osteoporosis. DC is an invasive therapy. At present, only
animal experiments have proved its efficacy, and researchers need to solve the potential
infection problems of DC before going to clinical trials. CC is also a promising treatment
for osteoporosis, and multiple animal experiments have confirmed its efficacy; however, it
still needs clinical trials to confirm its effects on osteoporosis patients.

Our study has limitations. The first is the small number of cases included in the study,
and the conclusions drawn may have limitations. The second is that the exact magnitude
and frequency of the effects of PEMFs, CC, and DC were not determined, which might
pose difficulties for future applications in the clinic.
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