Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (2,309)

Search Parameters:
Authors = Tao Wu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6272 KiB  
Article
An Analysis of the Different Salt-Tolerance Mechanisms in Rice Cultivars Induced by Cerium Oxide Nanoparticles
by Chunmei Yang, Qing Bu, Tao Su, Tian Wang, Zaid Khan, Mingwei Li, Juntian Wu, Xiaodan Di, Yong Chen and Jing An
Antioxidants 2025, 14(8), 994; https://doi.org/10.3390/antiox14080994 - 13 Aug 2025
Abstract
Cerium oxide nanoparticles (CeO2NPs) can boost crops’ salt tolerance, yet their regulatory mechanisms in rice cultivars with contrasting salt tolerance remain unclear. This study investigated the regulatory differences in poly (acrylic acid)-coated nanoceria (PNC)-primed in salt-sensitive (Huanghuazhan, H) and salt-tolerant (Xiangliangyou900, [...] Read more.
Cerium oxide nanoparticles (CeO2NPs) can boost crops’ salt tolerance, yet their regulatory mechanisms in rice cultivars with contrasting salt tolerance remain unclear. This study investigated the regulatory differences in poly (acrylic acid)-coated nanoceria (PNC)-primed in salt-sensitive (Huanghuazhan, H) and salt-tolerant (Xiangliangyou900, X) rice. The results showed that PNC priming improved salt tolerance in two cultivars, but the underlying mechanisms differed. In the H cultivar, the enhanced tolerance was primarily attributed to enhanced photosynthesis (net photosynthesis and transpiration rates were 53.27% and 20.52% higher than the X cultivar); increased abscisic acid (ABA) content (up by 18.80% compared to the X cultivar), and activated stress-responsive signaling. Metabolomics further revealed that the differential metabolites were enriched in galactose metabolism, ascorbate, and aldarate metabolism, synergistically maintaining intracellular redox balance. In the X cultivar, PNC boosted reactive oxygen species’ (ROS) scavenging capacity (catalase (CAT) increased 36.07%, H2O2 and malondialdehyde (MDA) decreased 27.31% and 48.61% compared to H); elevated endogenous indole-3-acetic acid (IAA) and gibberellic acid3 (GA3) levels by 9.55% and 9.08%; and specifically activated cellular defense response and glutathione metabolism. Transcriptome analysis further revealed that the expression of IAA/GA3 signal-responsive genes (OsARGOS/OsGASR2) and antioxidant genes (OsCatA, OsAPX1) were significantly higher in the X cultivar than the H cultivar (p < 0.05), whereas the H cultivar showed higher expression of GST and ABA-related genes. This study provides a new perspective for the mechanism of PNC-enhanced salt tolerance in rice. Full article
16 pages, 5296 KiB  
Article
The Effect of the Fresh Latex Ratio on the Composition and Properties of Bio-Coagulated Natural Rubber
by Jianwei Li, Honghai Huang, Li Ding, Tuo Dai, Haoran Geng, Tao Zhao, Liguang Zhao, Fan Wu and Hongxing Gui
Polymers 2025, 17(16), 2211; https://doi.org/10.3390/polym17162211 - 13 Aug 2025
Abstract
By proportionally blending fresh latex from PR107, Reyan 72059, and Reyan 73397, and employing both acid- and enzyme-assisted microbial coagulation methods, this study analyzed the effects of the specific latex formulation on the following: physicochemical properties, non-rubber components, molecular weight and distribution, vulcanization [...] Read more.
By proportionally blending fresh latex from PR107, Reyan 72059, and Reyan 73397, and employing both acid- and enzyme-assisted microbial coagulation methods, this study analyzed the effects of the specific latex formulation on the following: physicochemical properties, non-rubber components, molecular weight and distribution, vulcanization characteristics of compounded rubber, and physical–mechanical properties of vulcanized natural rubber. The results indicate that, compared to acid-coagulated natural rubber, enzyme-assisted microbial coagulated natural rubber exhibits slightly lower levels of volatile matter, impurities, plasticity retention index (PRI), nitrogen content, calcium ions (Ca2+), iron ions (Fe3+), and fatty acid content. Conversely, it demonstrates higher values in ash content, initial plasticity (P0), Mooney viscosity (ML(1+4)), acetone extract, magnesium ions (Mg2+), copper ions (Cu2+), manganese ions (Mn2+), gel content, molecular weight and distribution, and glass transition temperature (Tg). With the increase in the proportion of PR107 and Reyan 72059 fresh latex, the ash content, volatile matter content, fatty acid content, gel content, and dispersion coefficient (PDI) of natural rubber gradually decrease, while the impurity content, PRI, nitrogen content, weight-average molecular weight (Mw), and number-average molecular weight (Mn) gradually increase. Compared to acid-coagulated natural rubber compounds, enzyme-assisted microbial-coagulated natural rubber compounds exhibit higher minimum torque (ML) and maximum torque (MH), but shorter scorch time (t10) and optimum cure time (t90). Furthermore, as the proportion of PR107 and Reyan 72059 fresh latex increases, the ML of the compounds gradually decreases. In pure rubber formulations, enzyme-assisted microbial-coagulated natural rubber vulcanizates demonstrate higher tensile strength, tear strength, modulus at 300%, and Shore A hardness compared to acid-coagulated natural rubber vulcanizates. When the fresh latex ratio of PR107, Reyan 72059, and Reyan 73397 is 1:1:3, the tensile strength and 300% modulus of the natural rubber vulcanizates reach their maximum values. In carbon black formulations, the tensile strength and tear strength of enzyme-assisted microbial-coagulated natural rubber vulcanizates are significantly higher than those of acid-coagulated natural rubber vulcanizates in pure rubber formulations, with the increase exceeding that of other samples. Full article
(This article belongs to the Special Issue Additive Agents for Polymer Functionalization Modification)
Show Figures

Figure 1

16 pages, 3813 KiB  
Article
Identification and Characterization of the StCPAI Gene Family in Potato
by Zhiqi Wang, Wenbo Wu, Tao Liu, Wenting Shi, Kai Ma, Zhouwen He, Lixuan Chen, Chong Du, Chaonan Wang and Zhongmin Yang
Plants 2025, 14(16), 2472; https://doi.org/10.3390/plants14162472 - 9 Aug 2025
Viewed by 220
Abstract
Carboxypeptidase A inhibitor (CPAI) is a globular polypeptide that specifically inhibits carboxypeptidase A activity in the insect gut, playing a vital role in plant defense against external stimuli. To date, this gene family has not been systematically characterized in potatoes. In this study, [...] Read more.
Carboxypeptidase A inhibitor (CPAI) is a globular polypeptide that specifically inhibits carboxypeptidase A activity in the insect gut, playing a vital role in plant defense against external stimuli. To date, this gene family has not been systematically characterized in potatoes. In this study, we identified the CPAI gene family using the potato DM v6.1 genome and analyzed genomic and amino acid sequence features. Results demonstrated that eight CPAI members in potatoes share high homology with orthologs in tomatoes, eggplants, and peppers. Their promoter regions contain predicted cis-acting elements associated with defense and stress responses. Additionally, qRT-PCR analysis revealed elevated expression of specific members in tubers and aerial tubers, with concurrent responses to auxin treatment. These findings provide a foundation for elucidating the roles of StCPAI genes in potato development. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 2848 KiB  
Article
Biodegradable Quercetin-Incorporated Poly(Lactic Acid)/Chitosan Functional Films: A Study of the Properties and Application in Enhancing Fish Preservation
by Xiaolu Li, Si Wu, Tao Feng, Shijing Wu, Weiwen Xu, Qingmiao Wang, Yu Wang, Ning Hu and Xiaowen Shi
Foods 2025, 14(16), 2771; https://doi.org/10.3390/foods14162771 - 9 Aug 2025
Viewed by 298
Abstract
Traditional plastic packaging materials have brought serious environmental pollution and a number of health risks; so the development of biodegradable polymers as an alternative has received increasing attention. Here, active packaging materials with antioxidant, antimicrobial, and biodegradable properties were prepared using poly(lactic acid) [...] Read more.
Traditional plastic packaging materials have brought serious environmental pollution and a number of health risks; so the development of biodegradable polymers as an alternative has received increasing attention. Here, active packaging materials with antioxidant, antimicrobial, and biodegradable properties were prepared using poly(lactic acid) (PLA) and chitosan loaded with quercetin. The experimental results demonstrate that the PLA/chitosan/quercetin film achieved an impressive ABTS radical scavenging rate of up to 98.2%, and the inhibition rates against Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria were 87.60% and 80.45%, respectively. Furthermore, the composite film exhibited excellent oxygen barrier properties and biodegradability. Shelf life tests demonstrate that the PLA/chitosan/quercetin film retarded fish spoilage by 2 days compared to commercial polyethylene film. Additionally, the color changes in the film showed significant correlation with fish freshness, serving as an effective freshness indicator. Therefore, the PLA/chitosan composite film containing quercetin has a good application prospect in fish preservation and intelligent monitoring of fish freshness. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

13 pages, 982 KiB  
Article
Effects of Different Planting Environments on the Fragrance of Dalixiang (Oryza sativa L.)
by Tao Que, Yanlong Gong, Qian Wang, Zhongni Wang, Wuhua Long, Xian Wu and Susong Zhu
Appl. Sci. 2025, 15(16), 8781; https://doi.org/10.3390/app15168781 - 8 Aug 2025
Viewed by 153
Abstract
In addition to being governed by genetic factors, environmental factors also play a crucial role in influencing the fragrance of rice. In this research, the high-quality rice variety Dalixiang was selected as the experimental material to investigate the impacts of soil nutrients in [...] Read more.
In addition to being governed by genetic factors, environmental factors also play a crucial role in influencing the fragrance of rice. In this research, the high-quality rice variety Dalixiang was selected as the experimental material to investigate the impacts of soil nutrients in Guiyang and Meitan on its fragrance. The results indicated that the levels of ammonium nitrogen, organic matter, total nitrogen, available nitrogen, and the pH value in the soil of Meitan were lower compared to those in Guiyang. Conversely, the contents of total potassium, available phosphorus, and available potassium were higher in Meitan. Specifically, the concentrations of 2-acetyl-1-pyrroline (2AP) in the leaves of Dalixiang at the heading stage and in the grains at the maturity stage at the Meitan planting site were 0.13 mg/kg and 0.56 mg/kg, respectively. These values were significantly lower than the 0.17 mg/kg and 0.64 mg/kg measured at the Guiyang planting site. This phenomenon is associated with the higher expression levels of the betaine aldehyde dehydrogenase (OsBadh2) gene, enhanced enzyme activities, and a greater content of γ-aminobutyric acid (GABA) in the leaves of Dalixiang at the Meitan planting site. In contrast, the expression levels of genes related to triose phosphate isomerase (OsTPI), proline dehydrogenase (OsProDH), ornithine aminotransferase (OsOAT), and Delta1-pyrroline-5-carboxylic acid synthetase (OsP5CS), along with their corresponding enzyme activities, as well as the contents of methylglyoxal, proline, and ornithine, were lower. In conclusion, due to the influence of the Guiyang environment, the biosynthesis of Dalixiang 2AP was promoted, which made the Dalixiang planted in Guiyang stronger than that planted in Meitan. This study provides a theoretical basis for the selection of the best planting area of Dalixiang and the improvement of Dalixiang flavor through agronomic cultivation techniques. Full article
Show Figures

Figure 1

15 pages, 3847 KiB  
Article
Dietary Supplementation with Probiotics Alleviates Intestinal Injury in LPS-Challenged Piglets
by Di Zhao, Junmei Zhang, Dan Yi, Tao Wu, Maoxin Dou, Lei Wang and Yongqing Hou
Int. J. Mol. Sci. 2025, 26(15), 7646; https://doi.org/10.3390/ijms26157646 - 7 Aug 2025
Viewed by 203
Abstract
This study aimed to assess whether dietary supplementation with probiotics could alleviate intestinal injury in lipopolysaccharide (LPS)-challenged piglets. Healthy weaned piglets were randomly allocated to four individual groups (n = 6): (1) a control group; (2) an LPS group; (3) an LPS [...] Read more.
This study aimed to assess whether dietary supplementation with probiotics could alleviate intestinal injury in lipopolysaccharide (LPS)-challenged piglets. Healthy weaned piglets were randomly allocated to four individual groups (n = 6): (1) a control group; (2) an LPS group; (3) an LPS + Lactobacillus group; and (4) an LPS + Bacillus group. The control and LPS groups received a basal diet, while the probiotic groups were provided with the same basal diet supplemented with 6 × 106 cfu/g of Lactobacillus casei (L. casei) or a combination of Bacillus subtilis (B. subtilis) and Bacillus licheniformis (B. licheniformis) at a dosage of 3 × 106 cfu/g, respectively. On day 31 of the trial, overnight-fasted piglets were killed following the administration of either LPS or 0.9% NaCl solution. Blood samples and intestinal tissues were obtained for further analysis several hours later. The results indicate that dietary supplementation with probiotics significantly exhibited health-promoting effects compared with the control group and effectively reduced LPS-induced histomorphological damage to the small intestine, impairments in barrier function, and dysregulated immune responses via modulation of enzyme activity and the expression of relevant genes, such as nuclear factor-kappa B (NF-κB), interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 10 (IL-10), claudin-1, nuclear-associatedantigenki-67 (Ki-67), and β-defensins-1 (pBD-1). Collectively, these results suggest that dietary supplementation with probiotics could alleviate LPS-induced intestinal injury by enhancing the immunity and anti-inflammatory responses in piglets. Our research provides a theoretical basis for the rational application of probiotics in the future. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

13 pages, 3998 KiB  
Article
Promoting Surface Energy and Osteoblast Viability on Zirconia Implant Abutments Through Glass–Ceramic Spray Deposition Technology
by Wen-Chieh Hsu, Tao-Yu Cha, Yu-Chin Yao, Chien-Ming Kang, Sheng-Han Wu, Yuichi Mine, Chien-Fu Tseng, I-Ta Lee, Dan-Jae Lin and Tzu-Yu Peng
J. Funct. Biomater. 2025, 16(8), 288; https://doi.org/10.3390/jfb16080288 - 7 Aug 2025
Viewed by 423
Abstract
Zirconia is used widely for high-precision custom abutments; however, stress concentration can compromise osseointegration. Although glass–ceramic spray deposition (GCSD) can enhance the surface properties of zirconia, its biological effects remain unclear. In this study, the biological responses of human osteoblast-like (MG-63) cells to [...] Read more.
Zirconia is used widely for high-precision custom abutments; however, stress concentration can compromise osseointegration. Although glass–ceramic spray deposition (GCSD) can enhance the surface properties of zirconia, its biological effects remain unclear. In this study, the biological responses of human osteoblast-like (MG-63) cells to GCSD-modified zirconia surfaces were evaluated to assess the potential application in zirconia abutments. Disk-shaped zirconia and titanium alloy samples were prepared; titanium served as the control (Ti). Zirconia was subjected to polishing (NT), airborne-particle abrasion (AB), or GCSD with (GE) or without (GC) hydrofluoric acid (HF) etching. Surface characteristics, including wettability, surface energy (SE), and surface potential (SP), were analyzed. Cytotoxicity and MG-63 cell adhesion were assessed using the PrestoBlue assay, scanning electron microscopy (SEM), viability staining, and confocal laser scanning microscopy (CLSM). Statistical analysis was performed with a significance level of 0.05. GCSD produced a dense glass–ceramic coating on the zirconia surface, which significantly enhanced hydrophilicity as indicated by reduced water contact angles and increased SE in the GC and GE groups (p < 0.05). HF etching increased SP (p < 0.05). No cytotoxicity was observed in any group. SEM, viability staining, and CLSM revealed enhanced MG-63 cell attachment on Ti and GE surfaces and the highest viability ratio in the GE group. The NT group exhibited the lowest cell attachment and viability at all time points. GCSD effectively improved zirconia abutment surface properties by enhancing hydrophilicity and promoting MG-63 cell adhesion, with biocompatibility comparable to or better than that of titanium. Full article
Show Figures

Figure 1

15 pages, 5141 KiB  
Article
Efficient Copper Biosorption by Rossellomorea sp. ZC255: Strain Characterization, Kinetic–Equilibrium Analysis, and Genomic Perspectives
by Hao-Tong Han, Han-Sheng Zhu, Jin-Tao Zhang, Xin-Yun Tan, Yan-Xin Wu, Chang Liu, Xin-Yu Liu and Meng-Qi Ye
Microorganisms 2025, 13(8), 1839; https://doi.org/10.3390/microorganisms13081839 - 7 Aug 2025
Viewed by 319
Abstract
Heavy metal pollution, particularly copper contamination, threatens the ecological environment and human survival. In response to this pressing environmental issue, the development of innovative remediation strategies has become imperative. Bioremediation technology is characterized by remarkable advantages, including its ecological friendliness, cost-effectiveness, and operational [...] Read more.
Heavy metal pollution, particularly copper contamination, threatens the ecological environment and human survival. In response to this pressing environmental issue, the development of innovative remediation strategies has become imperative. Bioremediation technology is characterized by remarkable advantages, including its ecological friendliness, cost-effectiveness, and operational efficiency. In our previous research, Rossellomorea sp. ZC255 demonstrated substantial potential for environmental bioremediation applications. This study investigated the removal characteristics and underlying mechanism of strain ZC255 and revealed that the maximum removal capacity was 253.4 mg/g biomass under the optimal conditions (pH 7.0, 28 °C, and 2% inoculum). The assessment of the biosorption process followed pseudo-second-order kinetics, while the adsorption isotherm may fit well with both the Langmuir and Freundlich models. Cell surface alterations on the Cu(II)-treated biomass were observed through scanning electron microscopy (SEM). Cu(II) binding functional groups were determined via Fourier transform infrared spectroscopy (FTIR) analysis. Simultaneously, the genomic analysis of strain ZC255 identified multiple genes potentially involved in heavy metal resistance, transport, and metabolic processes. These studies highlight the significance of strain ZC255 in the context of environmental heavy metal bioremediation research and provide a basis for using strain ZC255 as a copper removal biosorbent. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

26 pages, 10877 KiB  
Article
Analysis of Mechanical Properties of Crumb Rubber Tires Mixed with Silty Sand of Various Sizes and Percentages
by Sindambiwe Theogene, Jianxiu Sun, Yanzi Wang, Run Xu, Jie Sun, Yuchen Tao, Changyong Zhang, Qingshuo Sun, Jiandong Wu, Hongya Yue and Hongbo Zhang
Polymers 2025, 17(15), 2144; https://doi.org/10.3390/polym17152144 - 5 Aug 2025
Viewed by 371
Abstract
Every year, a billion tires are discarded worldwide, with only a small percentage being recycled. This leads to significant environmental hazards, such as fire risks and improper disposal. Silty sand also presents technical challenges due to its poor shear strength, susceptibility to erosion, [...] Read more.
Every year, a billion tires are discarded worldwide, with only a small percentage being recycled. This leads to significant environmental hazards, such as fire risks and improper disposal. Silty sand also presents technical challenges due to its poor shear strength, susceptibility to erosion, and low permeability. This study explores the incorporation of crumb rubber derived from waste tires into silty sand to enhance its mechanical properties. Crumb rubber particles of varying sizes (3–6 mm, 5–10 mm, and 10–20 mm) were mixed with silty sand at 0%, 3%, 6%, and 9% percentages, respectively. Triaxial compression tests of unconsolidated and consolidated undrained tests with cell pressures of 100, 300, and 500 kPa were conducted. The deviatoric stress, shear stress, and stiffness modulus were investigated. The results revealed that the addition of crumb rubber significantly increased the deviatoric and shear stresses, especially at particle sizes of 5–10 mm, with contents of 3%, 6%, and 9%. Additionally, the stiffness modulus was notably reduced in the mixture containing 6% crumb rubber tire. These findings suggest that incorporating crumb rubber tires into silty sand not only improves silty sand performance but also offers an environmentally sustainable approach to tire waste recycling, making it a viable strategy for silty sand stabilization in construction and geotechnical engineering performance. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

23 pages, 4501 KiB  
Article
The Effect of SO2 Fumigation, Acid Dipping, and SO2 Combined with Acid Dipping on Metabolite Profile of ‘Heiye’ Litchi (Litchi chinensis Sonn.) Pericarp
by Feilong Yin, Zhuoran Li, Tingting Lai, Libing Long, Yunfen Liu, Dongmei Han, Zhenxian Wu, Liang Shuai and Tao Luo
Horticulturae 2025, 11(8), 923; https://doi.org/10.3390/horticulturae11080923 - 5 Aug 2025
Viewed by 219
Abstract
Sulfur fumigation (SF), acid dipping (HCl treatment, HAT), and their combination (SF+HAT) are common methods for long-term preservation and color protection of litchi. However, their effects on the metabolic profile of the litchi pericarp have not been investigated. SF resulted in a yellowish-green [...] Read more.
Sulfur fumigation (SF), acid dipping (HCl treatment, HAT), and their combination (SF+HAT) are common methods for long-term preservation and color protection of litchi. However, their effects on the metabolic profile of the litchi pericarp have not been investigated. SF resulted in a yellowish-green pericarp by up-regulating lightness (L*), b*, C*, and but down-regulating total anthocyanin content (TAC) and a*, while HAT resulted in a reddish coloration by up-regulating a*, b*, and C* but down-regulating L*, h°, and TAC. SF+HAT recovered reddish color with similar L*, C* to SF but a*, b*, h°, and TAC between SF and HAT. Differential accumulated metabolites (DAMs) detected in HAT (vs. control) were more than those in SF (vs. control), but similar to those in SF+HAT (vs. control). SF specifically down-regulated the content of cyanidin-3-O-rutinoside, sinapinaldehyde, salicylic acid, and tyrosol, but up-regulated 6 flavonoids (luteolin, kaempferol-3-O-(6″-malonyl)galactoside, hesperetin-7-O-glucoside, etc.). Five pathways (biosynthesis of phenylpropanoids, flavonoid biosynthesis, biosynthesis of secondary metabolites, glutathione metabolism, and cysteine and methionine metabolism) were commonly enriched among the three treatments, which significantly up-regulated sulfur-containing metabolites (mainly glutathione, methionine, and homocystine) and down-regulated substrates for browning (mainly procyanidin B2, C1, and coniferyl alcohol). These results provide metabolic evidence for the effect of three treatments on coloration and storability of litchi. Full article
Show Figures

Figure 1

19 pages, 14190 KiB  
Article
A Comprehensive Evaluation Method for Cement Slurry Systems to Enhance Zonal Isolation: A Case Study in Shale Oil Well Cementing
by Xiaoqing Zheng, Weitao Song, Xiutian Yang, Jian Liu, Tao Jiang, Xuning Wu and Xin Liu
Energies 2025, 18(15), 4138; https://doi.org/10.3390/en18154138 - 4 Aug 2025
Viewed by 280
Abstract
Due to post-cementing hydraulic fracturing and other operational stresses, inadequate mechanical properties or suboptimal design of the cement sheath can lead to tensile failure and microcrack development, compromising both hydrocarbon recovery and well integrity. In this study, three field-deployed cement slurry systems were [...] Read more.
Due to post-cementing hydraulic fracturing and other operational stresses, inadequate mechanical properties or suboptimal design of the cement sheath can lead to tensile failure and microcrack development, compromising both hydrocarbon recovery and well integrity. In this study, three field-deployed cement slurry systems were compared on the basis of their basic mechanical properties such as compressive and tensile strength. Laboratory-scale physical simulations of hydraulic fracturing during shale oil production were conducted, using dynamic permeability as a quantitative indicator of integrity loss. The experimental results show that evaluating only basic mechanical properties is insufficient for cement slurry system design. A more comprehensive mechanical assessment is re-quired. Incorporation of an expansive agent into the cement slurry system can alleviate the damage caused by the microannulus to the interfacial sealing performance of the cement sheath, while adding a toughening agent can alleviate the damage caused by tensile cracks to the sealing performance of the cement sheath matrix. Through this research, a microexpansive and toughened cement slurry system, modified with both expansive and toughening agents, was optimized. The expansive agent and toughening agent can significantly enhance the shear strength, the flexural strength, and the interfacial hydraulic isolation strength of cement stone. Moreover, the expansion agents mitigate the detrimental effects of microannulus generation on the interfacial sealing, while the toughening agents alleviate the damage caused by tensile cracking to the bulk sealing performance of the cement sheath matrix. This system has been successfully implemented in over 100 wells in the GL block of Daqing Oilfield. Field application results show that the proportion of high-quality well sections in the horizontal section reached 88.63%, indicating the system’s high performance in enhancing zonal isolation and cementing quality. Full article
Show Figures

Figure 1

28 pages, 2335 KiB  
Article
Fine-Tuning Pre-Trained Large Language Models for Price Prediction on Network Freight Platforms
by Pengfei Lu, Ping Zhang, Jun Wu, Xia Wu, Yunsheng Mao and Tao Liu
Mathematics 2025, 13(15), 2504; https://doi.org/10.3390/math13152504 - 4 Aug 2025
Viewed by 351
Abstract
Various factors influence the formation and adjustment of network freight prices, including transportation costs, cargo characteristics, and policies and regulations. The interaction of these factors increases the difficulty of accurately predicting network freight prices through regressions or other machine learning models, especially when [...] Read more.
Various factors influence the formation and adjustment of network freight prices, including transportation costs, cargo characteristics, and policies and regulations. The interaction of these factors increases the difficulty of accurately predicting network freight prices through regressions or other machine learning models, especially when the amount and quality of training data are limited. This paper introduces large language models (LLMs) to predict network freight prices using their inherent prior knowledge. Different data sorting methods and serialization strategies are employed to construct the corpora of LLMs, which are then tested on multiple base models. A few-shot sample dataset is constructed to test the performance of models under insufficient information. The Chain of Thought (CoT) is employed to construct a corpus that demonstrates the reasoning process in freight price prediction. Cross entropy loss with LoRA fine-tuning and cosine annealing learning rate adjustment, and Mean Absolute Error (MAE) loss with full fine-tuning and OneCycle learning rate adjustment to train the models, respectively, are used. The experimental results demonstrate that LLMs are better than or competitive with the best comparison model. Tests on a few-shot dataset demonstrate that LLMs outperform most comparison models in performance. This method provides a new reference for predicting network freight prices. Full article
Show Figures

Figure 1

20 pages, 16128 KiB  
Article
Water-Yield Variability and Its Attribution in the Yellow River Basin of China over Four Decades
by Luying Li, Xin Chen, Yayuan Che, Hao Yang, Ziqiang Du, Zhitao Wu, Tao Liu, Zhenrong Du, Xiangcheng Li and Yaoyao Li
Land 2025, 14(8), 1579; https://doi.org/10.3390/land14081579 - 2 Aug 2025
Viewed by 355
Abstract
The water-yield function in the Yellow River Basin (YRB) of China for maintaining the basin’s ecological water balance plays a crucial role. Understanding its spatiotemporal variation and the underlying drivers in the basin is crucial for the management, utilization, and development of water [...] Read more.
The water-yield function in the Yellow River Basin (YRB) of China for maintaining the basin’s ecological water balance plays a crucial role. Understanding its spatiotemporal variation and the underlying drivers in the basin is crucial for the management, utilization, and development of water resources. Thus, we used the InVEST model to explore its spatiotemporal dynamics across multiple scales (“basin–county–pixel”). Then, we integrated socio-economic and natural factors to elucidate the driving forces and spatial heterogeneity of water-yield dynamics. Our findings indicated that water-yield trends increased in 71.76% of the YRB, and significant water-yield increases were detected in 13.9% of the basin over the past 40 years. A phase-wise comparison revealed a shift in water yield from a decreasing trend in the first two decades to a significant increasing trend in the last two decades. Hotspot analysis revealed that hotspots of increasing water-yield trends have shifted from the downstream section of the basin toward the southwest, while hotspots of decreasing water-yield trends first concentrated in the basin’s southern part and then disappeared. Both natural and socioeconomic factors have exerted positive and negative impacts on water-yield dynamics. Among them, the dynamics of water yield have been predominantly driven by natural variables. Full article
(This article belongs to the Section Landscape Ecology)
Show Figures

Figure 1

13 pages, 2303 KiB  
Article
A Stable Metal Chalcogenide Cluster-Based Framework Decorated with Transition Metal Complexes for an Efficient Electrocatalytic O2 Reduction Reaction
by Xiang Wang, Juan Li and Tao Wu
Nanomaterials 2025, 15(15), 1186; https://doi.org/10.3390/nano15151186 - 1 Aug 2025
Viewed by 218
Abstract
Highly efficient and stable non-Pt-based electrocatalysts for oxygen reduction reactions (ORRs) are highly desirable in energy conversion and storage systems. Herein, we report a hydrothermally synthesized metal chalcogenide cluster-based framework (NCF-3-Mn), which is decorated with transition metal complexes ([Mn(TEPA)]2+, TEPA = [...] Read more.
Highly efficient and stable non-Pt-based electrocatalysts for oxygen reduction reactions (ORRs) are highly desirable in energy conversion and storage systems. Herein, we report a hydrothermally synthesized metal chalcogenide cluster-based framework (NCF-3-Mn), which is decorated with transition metal complexes ([Mn(TEPA)]2+, TEPA = tetraethylenepentamine), for an electrocatalytic O2 reduction reaction (ORR). Benefitting from the abundant Mn-S bonds and Mn-N-C structures in NCF-3-Mn, it was found that NCF-3-Mn displayed a high onset potential (0.90 V) and an efficient four-electron transfer reaction pathway, which are much better than those of its analogue framework (T2-GaSbS). Moreover, NCF-3-Mn also exhibited a considerable long-term stability and methanol resistance toward ORRs. This work will present new opportunities for exploring the utilization of chalcogenide frameworks as novel non-Pt electrocatalysts for ORRs. Full article
(This article belongs to the Collection Micro/Nanoscale Open Framework Materials (OFMs))
Show Figures

Graphical abstract

16 pages, 2155 KiB  
Article
Emulsifying Properties of Oat Protein/Casein Complex Prepared Using Atmospheric Cold Plasma with pH Shifting
by Yang Teng, Mingjuan Ou, Jihuan Wu, Ting Jiang, Kaige Zheng, Yuxing Guo, Daodong Pan, Tao Zhang and Zhen Wu
Foods 2025, 14(15), 2702; https://doi.org/10.3390/foods14152702 - 31 Jul 2025
Viewed by 288
Abstract
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food [...] Read more.
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food industry. pH-shifting processing is a straightforward method to partially unfold protein structures. This study modified a mixture of an oat protein isolate (OPI) and casein by combining a pH adjustment (adjusting the pH of two solutions to 12, mixing them at a 3:7 ratio, and maintaining the pH at 12 for 2 h) with an atmospheric cold plasma (ACP) treatment to improve the emulsifying properties. The results demonstrated that the ACP treatment significantly enhanced the solubility of the OPI/casein mixtures, with a maximum solubility of 82.63 ± 0.33%, while the ζ-potential values were approximately −40 mV, indicating that all the samples were fairly stable. The plasma-induced increase in surface hydrophobicity supported greater protein adsorption and redistribution at the oil/water interface. After 3 min of treatment, the interfacial pressure peaked at 8.32 mN/m. Emulsions stabilized with the modified OPI/casein mixtures also exhibited a significant droplet size reduction upon extending the ACP treatment to 3 min, decreasing from 5.364 ± 0.034 μm to 3.075 ± 0.016 μm. The resulting enhanced uniformity in droplet size distribution signified the formation of a robust interfacial film. Moreover, the ACP treatment effectively enhanced the emulsifying activity of the OPI/casein mixtures, reaching (179.65 ± 1.96 m2/g). These findings highlight the potential application value of OPI/casein mixtures in liquid dairy products. In addition, dairy products based on oat protein are more conducive to sustainable development than traditional dairy products. Full article
(This article belongs to the Special Issue Food Proteins: Innovations for Food Technologies)
Show Figures

Figure 1

Back to TopTop