Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Authors = Stefania De Pascale

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2988 KiB  
Article
Effect of Biostimulant Formulation on Yield, Quality, and Nitrate Accumulation in Diplotaxis tenuifolia Cultivars Under Different Weather Conditions
by Alessio Vincenzo Tallarita, Rachael Simister, Lorenzo Vecchietti, Eugenio Cozzolino, Vasile Stoleru, Otilia Cristina Murariu, Roberto Maiello, Giuseppe Cozzolino, Stefania De Pascale and Gianluca Caruso
Appl. Sci. 2025, 15(15), 8620; https://doi.org/10.3390/app15158620 (registering DOI) - 4 Aug 2025
Viewed by 24
Abstract
Perennial wall rocket (Diplotaxis tenuifolia L.—DC.) exhibits genotype-dependent responses to biostimulant applications, which have not yet been deeply investigated. A two-year greenhouse factorial experiment was carried out to assess the interactions between five cultivars (Mars, Naples, Tricia, Venice, and Olivetta), three biostimulant [...] Read more.
Perennial wall rocket (Diplotaxis tenuifolia L.—DC.) exhibits genotype-dependent responses to biostimulant applications, which have not yet been deeply investigated. A two-year greenhouse factorial experiment was carried out to assess the interactions between five cultivars (Mars, Naples, Tricia, Venice, and Olivetta), three biostimulant formulations (Cystoseira tamariscifolia L. extract; a commercial legume-derived protein hydrolysate, “Dynamic”; and Spirulina platensis extract) plus an untreated control, and three crop cycles (autumn, autumn–winter, and winter) on leaf yield and dry matter, organic acids, colorimetric parameters, hydrophilic and lipophilic antioxidant activities, nitrate concentration, nitrogen use efficiency, and mineral composition, using a split plot design with three replicates. Protein hydrolysate significantly enhanced yield and nitrogen use efficiency in Mars (+26%), Naples (+25.6%), Tricia (+25%), and Olivetta (+26%) compared to the control, while Spirulina platensis increased the mentioned parameters only in Venice (+36.2%). Nitrate accumulation was reduced by biostimulant application just in Venice, indicating genotype-dependent nitrogen metabolism responses. The findings of the present research demonstrate that the biostimulant efficacy in perennial wall rocket is mainly ruled by genotypic factors, and the appropriate combinations between the two mentioned experimental factors allow for optimization of leaf yield and quality while maintaining nitrate concentration under the regulation thresholds. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

15 pages, 683 KiB  
Article
Differential Effects of Non-Microbial Biostimulants on Secondary Metabolites and Nitrate Content in Organic Arugula Leaves
by Michele Ciriello, Luana Izzo, Abel Navarré Dopazo, Emanuela Campana, Giuseppe Colla, Giandomenico Corrado, Stefania De Pascale, Youssef Rouphael and Christophe El-Nakhel
Foods 2025, 14(14), 2489; https://doi.org/10.3390/foods14142489 - 16 Jul 2025
Viewed by 290
Abstract
Arugula leaves (Diplotaxis tenuifolia L. and Eruca sativa L.) are a must-have ingredient in ready-to-eat salads, as they are prized for their appearance, taste, and flavor. The nutraceutical properties of this leafy vegetable are attributed to the presence of valuable secondary metabolites, [...] Read more.
Arugula leaves (Diplotaxis tenuifolia L. and Eruca sativa L.) are a must-have ingredient in ready-to-eat salads, as they are prized for their appearance, taste, and flavor. The nutraceutical properties of this leafy vegetable are attributed to the presence of valuable secondary metabolites, such as phenolic acids and glucosinolates. Using UHPLC-Q-Orbitrap HRMS analysis and ion chromatography, we characterized the content of phenolic acids, glucosinolates, nitrates, and organic acids in organic arugula [Diplotaxis tenuifolia (L.) DC] and evaluated how the foliar application of three different non-microbial biostimulants (a seaweed extract, a vegetable protein hydrolysate, and a tropical plant extract) modulated the expression of these. Although the application of vegetable protein hydrolysate increased, compared to control plants, the nitrate content, the application of the same biostimulant increased the total content of glucosinolates and phenolic acid derivatives by 5.2 and 17.2%. Specifically, the foliar application of the plant-based biostimulant hydrolyzed protein significantly increased the content of glucoerucin (+22.9%), glucocheirolin (+76.8%), and ferulic acid (+94.1%). The highest values of flavonoid derivatives (173.03 μg g−1 dw) were recorded from plants subjected to the exogenous application of seaweed extract. The results obtained underscore how biostimulants, depending on their origin and composition, can be exploited not only to improve agronomic performance but also to enhance the nutraceutical content of vegetables, guaranteeing end consumers a product with premium quality characteristics. Full article
(This article belongs to the Special Issue Health Benefits of Bioactive Compounds from Vegetable Sources)
Show Figures

Figure 1

16 pages, 302 KiB  
Article
Effect of Cooking and in vitro Digestion on the Polyphenols and Antioxidant Properties of Asparagus officinalis L. cultivars
by Angela Di Matteo, Antonio Paolillo, Lidia Ciriaco, Juliane Lima da Silva, Stefania De Pascale and Luana Izzo
Foods 2025, 14(13), 2367; https://doi.org/10.3390/foods14132367 - 3 Jul 2025
Viewed by 337
Abstract
Asparagus (Asparagus officinalis L.) is widely recognized for its nutritional and functional properties, attributed to its rich content of polyphenols and antioxidant compounds. However, the content of compounds that remains bioaccessible following typical domestic preparation and digestion remains unclear. This study assessed [...] Read more.
Asparagus (Asparagus officinalis L.) is widely recognized for its nutritional and functional properties, attributed to its rich content of polyphenols and antioxidant compounds. However, the content of compounds that remains bioaccessible following typical domestic preparation and digestion remains unclear. This study assessed the polyphenolic profile and antioxidant capacity of the edible portion of two A. officinalis cultivars (Placoseps and Darlise), harvested in different seasons, in edible form, cooked (using boiling on an induction cooktop), and cooked-digested extracts. Rutin emerged as the most abundant in all analyzed samples; its concentration in the edible part reached 1770.72 in Placoseps and 995.20 mg/kg in Darlise. Cooking increased rutin content in April-harvested asparagus to 1966.00 in Placoseps and 2042.44 mg/kg in Darlise, reflecting an increase of more than 2.5-fold compared to the respective values observed at the earlier harvest. Despite the substantial reduction in bioactive compounds observed during in vitro gastrointestinal digestion, a total of 146.95 to 454.58 mg/kg of bioaccessible compounds remaining available for potential intestinal absorption after digestion across both cultivars and harvest periods. These results provide a greater understanding of the behavior of polyphenol-rich vegetables and underscore the importance of simulating gastrointestinal processes when assessing the health-promoting potential of bioactive compounds. Full article
(This article belongs to the Special Issue Health Benefits of Bioactive Compounds from Vegetable Sources)
Show Figures

Graphical abstract

16 pages, 940 KiB  
Article
Effects of Seedling Substrate and Hydroponic Versus Aquaponic Nutrient Solution on Growth, Nutrient Uptake, and Eco-Physiological Response of Lemon Basil (Ocimum × citriodorum)
by Linda Signorini, Giuseppe Carlo Modarelli, Prospero Di Pierro, Antonio Luca Langellotti, Chiara Cirillo, Stefania De Pascale and Paolo Masi
Plants 2025, 14(13), 1929; https://doi.org/10.3390/plants14131929 - 23 Jun 2025
Viewed by 529
Abstract
Lemon basil (Ocimum × citriodorum) is a highly valued aromatic plant renowned for its distinct citrus aroma. This study aimed to evaluate sustainable substrates and cultivation systems for its production. Two complementary and sequential experiments were conducted: an initial experiment designed [...] Read more.
Lemon basil (Ocimum × citriodorum) is a highly valued aromatic plant renowned for its distinct citrus aroma. This study aimed to evaluate sustainable substrates and cultivation systems for its production. Two complementary and sequential experiments were conducted: an initial experiment designed to compare coconut fiber mixed in varying proportions with perlite to rock wool, evaluating their effectiveness during germination and early growth (experiment 1), and a subsequent experiment aimed at assessing plant performance in a decoupled aquaponic system relative to hydroponics utilizing the best-performing coconut fiber-perlite mixture from the first phase along with rock wool as substrates (experiment 2). The substrate with 70% coconut fiber and 30% perlite (F70:P30) significantly improved seed germination, leaf number, and total leaf area of seedlings. The decoupled aquaponic cultivation system resulted in a 52.5% increase in flavonoid content, accompanied by higher calcium and magnesium uptake in stems and roots compared to hydroponics. These findings clearly underscore the potential of coconut fiber substrates mixed with perlite as sustainable alternatives to rock wool, reducing environmental impact, disposal costs, and health risks. Similarly, aquaponic cultivation emerges as a valuable strategy for sustainable lemon basil (Ocimum × citriodorum) production, offering comparable yields to hydroponics while improving plant nutritional and phytochemical quality through beneficial plant-microbe interactions. These results provide practical evidence supporting the adoption of environmentally friendly substrates and cultivation practices, thus contributing significantly toward sustainable intensive vegetable production systems. Full article
Show Figures

Figure 1

27 pages, 1771 KiB  
Review
Sustainable Agriculture Through Compost Tea: Production, Application, and Impact on Horticultural Crops
by Emanuela Campana, Michele Ciriello, Matteo Lentini, Youssef Rouphael and Stefania De Pascale
Horticulturae 2025, 11(4), 433; https://doi.org/10.3390/horticulturae11040433 - 18 Apr 2025
Cited by 3 | Viewed by 2264
Abstract
As part of the European Green Deal, the Farm to Fork strategy was introduced with the idea that environment, agriculture and food are interconnected topics. Reducing the use of synthetic fertilizers by 20% before 2030 through the adoption of circular economy principles is [...] Read more.
As part of the European Green Deal, the Farm to Fork strategy was introduced with the idea that environment, agriculture and food are interconnected topics. Reducing the use of synthetic fertilizers by 20% before 2030 through the adoption of circular economy principles is one of the goals to be achieved. There are several bioproducts that can be obtained from the valorization of agro-industrial wastes used to increase crop yields under low-fertilizer applications. However, the aim of this review is to describe production methods and the use of compost tea on horticultural crops to understand its real potential in providing plant growth support. The effects of compost tea on crops can vary widely depending on the waste material used, compost quality, compost tea production process and parameters, and the interaction between horticultural species and compost tea application dose. Therefore, because of this heterogeneity, it is possible that we would achieve real, positive impacts on the environment and horticultural production if there were more collaboration between the research sector and private farms. This collaboration would allow the development of protocols for compost tea production and customized use according to real farm needs. This would reduce both the costs associated with the disposal of waste produced on the farm and reduce the costs associated with the supply of synthetic fertilizers. The adoption of on-farm guidelines for compost tea use would achieve a balanced trade-off between agricultural productivity and environmental sustainability. The literature review shows that the most-used dilution ratios, regardless of the type of starting compost, range from 1:5 to 1:10 compost–water (v/v). Although a complete understanding of the biostimulatory mechanisms activated by compost tea is lacking, the application of this bioproduct would improve the physiological and productive performance of many horticultural species of interest, especially under suboptimal conditions such as organic production. Full article
(This article belongs to the Special Issue 10th Anniversary of Horticulturae—Recent Outcomes and Perspectives)
Show Figures

Graphical abstract

21 pages, 2506 KiB  
Article
Integrated Gel Electrophoresis and Mass Spectrometry Approach for Detecting and Quantifying Extraneous Milk in Protected Designation of Origin Buffalo Mozzarella Cheese
by Sabrina De Pascale, Giuseppina Garro, Silvia Ines Pellicano, Andrea Scaloni, Stefania Carpino, Simonetta Caira and Francesco Addeo
Foods 2025, 14(7), 1193; https://doi.org/10.3390/foods14071193 - 28 Mar 2025
Cited by 1 | Viewed by 531
Abstract
Ensuring the authenticity of Mozzarella di Bufala Campana (MdBC), a Protected Designation of Origin (PDO) cheese, is essential for regulatory enforcement and consumer protection. This study evaluates a multi-technology analytical platform developed to detect adulteration due to the addition of non-buffalo milk or [...] Read more.
Ensuring the authenticity of Mozzarella di Bufala Campana (MdBC), a Protected Designation of Origin (PDO) cheese, is essential for regulatory enforcement and consumer protection. This study evaluates a multi-technology analytical platform developed to detect adulteration due to the addition of non-buffalo milk or non-PDO buffalo milk in PDO dairy buffalo products. Peripheral laboratories use gel electrophoresis combined with polyclonal antipeptide antibodies for initial screening, enabling the detection of foreign caseins, including those originating outside the PDO-designated regions. For more precise identification, Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) differentiates species by detecting proteotypic peptides. In cases requiring confirmation, nano-liquid chromatography coupled to electrospray tandem mass spectrometry (nano-LC-ESI-MS/MS) is used in central state laboratories for the highly sensitive detection of extraneous milk proteins in PDO buffalo MdBC cheese. On the other hand, analysis of the pH 4.6 soluble fraction from buffalo blue cheese identified 2828 buffalo-derived peptides and several bovine specific peptides, confirming milk adulteration. Despite a lower detection extent in the pH 4.6 insoluble fraction following tryptic hydrolysis, the presence of bovine peptides was still sufficient to verify fraud. This integrated proteomic approach, which combines electrophoresis and mass spectrometry technologies, significantly improves milk adulteration detection, providing a robust tool to face increasingly sophisticated fraudulent practices. Full article
Show Figures

Figure 1

19 pages, 1156 KiB  
Article
Effects of Selenium/Iodine Foliar Application and Seasonal Conditions on Yield and Quality of Perennial Wall Rocket
by Alessio Vincenzo Tallarita, Nadezhda Golubkina, Stefania De Pascale, Agnieszka Sękara, Robert Pokluda, Otilia Cristina Murariu, Eugenio Cozzolino, Vincenzo Cenvinzo and Gianluca Caruso
Horticulturae 2025, 11(2), 211; https://doi.org/10.3390/horticulturae11020211 - 17 Feb 2025
Cited by 1 | Viewed by 830
Abstract
The biofortification of leafy vegetables with selenium (Se) and iodine (I) provides the basis for the Se/I status optimization and preservation of human health. The effect of foliar Se, I, and Se + I supply in three different crop cycles (autumn, autumn–winter, and [...] Read more.
The biofortification of leafy vegetables with selenium (Se) and iodine (I) provides the basis for the Se/I status optimization and preservation of human health. The effect of foliar Se, I, and Se + I supply in three different crop cycles (autumn, autumn–winter, and winter) on yield, quality, and mineral composition of wall rocket leaves was investigated using biochemical and ICP-MS methods of analysis. Joint foliar supply with selenate/iodide increased yield, antioxidant activity, total phenolic, ascorbic acid, and protein levels by 1.63, 1.24, 1.22, 1.25, and 1.50 times, respectively, and the content of Ca, Mg, P, K, Fe, Cu, and Zn by 1.27, 1.24, 1.35, 1.46, 3.67, 2.76, and 1.44 times, respectively. High correlations between Se, antioxidants, P, Mg, and Ca (r > 0.80) as well as between yield and K/protein content were recorded. Despite a significant decrease in yield, protein, and K, Fe, Cu, and Mn contents in the third crop cycle, compared to the first one, 50 g of wall rocket biofortified with Se/I may provide up to 100% of the Se adequate consumption level, 34.3% of I, 9% of K, 24% of Fe, and 17.7% Ca. The results of the present research confirm the high efficiency of Se/I supply to produce D. tenuifolia leaves as a new functional food. Full article
Show Figures

Figure 1

22 pages, 1637 KiB  
Review
Harnessing Biochar for Sustainable Horticulture: Strategies to Cope with Abiotic Stress
by Matteo Lentini, Michele Ciriello, Youssef Rouphael, Emanuela Campana, Francesco Primo Vaccari and Stefania De Pascale
Horticulturae 2025, 11(1), 73; https://doi.org/10.3390/horticulturae11010073 - 11 Jan 2025
Cited by 1 | Viewed by 1106
Abstract
Biochar, an important by-product of the waste biomass pyrolysis process, shows great potential to reduce the environmental impact of and address the serious problems related to climate change as well as to define an efficient circular economy model. Its use as a soil [...] Read more.
Biochar, an important by-product of the waste biomass pyrolysis process, shows great potential to reduce the environmental impact of and address the serious problems related to climate change as well as to define an efficient circular economy model. Its use as a soil conditioner has increased the interest in biochar in agriculture over time. This review investigates how critical aspects such as starting material, temperature, and the presence or absence of oxygen during the pyrolysis process influence the yield and quality of this valuable soil conditioner. Considering the horticultural sector, this review also provides a comprehensive and detailed overview of how biochar positively influences growth, development, and yield by explaining the mechanisms and modes of action under both optimal growth conditions and unfavorable contexts (salt and water stress and the presence of heavy metals). The main mechanisms highlighted by this literature review are improvement in soil aeration and water-holding capacity, microbial activity, and nutritional status of soil and plants, as well as alterations in some important soil chemical properties. This in-depth review of the literature highlights how the interaction between biochar types, dose, crop species, and growing conditions (optimal or nonoptimal) result in nonunique responses. The heterogeneity of the results reported in the literature confirms how many of the topics discussed deserve further investigation, with particular attention to identifying the right dose of biochar in relation to the different preharvest factors considered. Full article
(This article belongs to the Special Issue Sustainable Strategies and Practices for Soil Fertility Management)
Show Figures

Figure 1

16 pages, 2329 KiB  
Article
Combined Effects of Microgravity and Chronic Low-Dose Gamma Radiation on Brassica rapa Microgreens
by Sara De Francesco, Isabel Le Disquet, Veronica Pereda-Loth, Lenka Tisseyre, Stefania De Pascale, Chiara Amitrano, Eugénie Carnero Diaz and Veronica De Micco
Plants 2025, 14(1), 64; https://doi.org/10.3390/plants14010064 - 28 Dec 2024
Cited by 1 | Viewed by 1227
Abstract
Plants in space face unique challenges, including chronic ionizing radiation and reduced gravity, which affect their growth and functionality. Understanding these impacts is essential to determine the cultivation conditions and protective shielding needs in future space greenhouses. While certain doses of ionizing radiation [...] Read more.
Plants in space face unique challenges, including chronic ionizing radiation and reduced gravity, which affect their growth and functionality. Understanding these impacts is essential to determine the cultivation conditions and protective shielding needs in future space greenhouses. While certain doses of ionizing radiation may enhance crop yield and quality, providing “functional food” rich in bioactive compounds, to support astronaut health, the combined effects of radiation and reduced gravity are still unclear, with potential additive, synergistic, or antagonistic interactions. This paper investigates the combined effect of chronic ionizing radiation and reduced gravity on Brassica rapa seed germination and microgreens growth. Four cultivation scenarios were designed: standard Earth conditions, chronic irradiation alone, simulated reduced gravity alone, and a combination of irradiation and reduced gravity. An analysis of the harvested microgreens revealed that growth was moderately reduced under chronic irradiation combined with altered gravity, likely due to oxidative stress, primarily concentrated in the roots. Indeed, an accumulation of reactive oxygen species (ROS) was observed, as well as of polyphenols, likely to counteract oxidative damage and preserve the integrity of essential structures, such as the root stele. These findings represent an important step toward understanding plant acclimation in space to achieve sustainable food production on orbital and planetary platforms. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

14 pages, 319 KiB  
Article
Growth, Ecophysiological Responses, and Leaf Mineral Composition of Lettuce and Curly Endive in Hydroponic and Aquaponic Systems
by Lucia Vanacore, Christophe El-Nakhel, Giuseppe Carlo Modarelli, Youssef Rouphael, Antonio Pannico, Antonio Luca Langellotti, Paolo Masi, Chiara Cirillo and Stefania De Pascale
Plants 2024, 13(20), 2852; https://doi.org/10.3390/plants13202852 - 11 Oct 2024
Cited by 1 | Viewed by 2078
Abstract
Against the backdrop of climate change, soil loss, and water scarcity, sustainable food production is a pivotal challenge for humanity. As the global population grows and urbanization intensifies, innovative agricultural methods are crucial to meet rising food demand, while mitigating environmental degradation. Hydroponic [...] Read more.
Against the backdrop of climate change, soil loss, and water scarcity, sustainable food production is a pivotal challenge for humanity. As the global population grows and urbanization intensifies, innovative agricultural methods are crucial to meet rising food demand, while mitigating environmental degradation. Hydroponic and aquaponic systems, has emerged as one of these solutions by minimizing land use, reducing water consumption, and enabling year-round crop production in urban areas. This study aimed at assessing the yield, ecophysiological performance, and nutritional content of Lactuca sativa L. and Cichorium endivia L. var. crispum grown in hydroponic and aquaponic floating raft systems, with Oreochromis niloticus L. integrated into the aquaponic system. Both species exhibited higher fresh biomass and canopy/root ratios in hydroponics compared to aquaponics. Additionally, hydroponics increased the leaf number in curly endive by 18%. Ecophysiological parameters, such as the leaf net photosynthesis rate, actual yield of PSII, and linear electron transport rate, were also higher in hydroponics for both species. However, the nutritional profiles varied between the two cultivation systems and between the two species. Given that standard fish feed often lacks sufficient potassium levels for optimal plant growth, potassium supplementation could be a viable strategy to enhance plant development in aquaponic systems. In conclusion, although aquaponic systems may demonstrate lower productivity compared to hydroponics, they offer a more sustainable and potentially healthier product with fewer harmful compounds due to the reduced use of synthetic fertilizers, pesticides, and the absence of chemical residue accumulation. However, careful system management and monitoring are crucial to minimize potential contaminants. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
14 pages, 1524 KiB  
Article
Mitigating Salt Stress with Biochar: Effects on Yield and Quality of Dwarf Tomato Irrigated with Brackish Water
by Matteo Lentini, Michele Ciriello, Youssef Rouphael, Petronia Carillo, Giovanna Marta Fusco, Letizia Pagliaro, Francesco Primo Vaccari and Stefania De Pascale
Plants 2024, 13(19), 2801; https://doi.org/10.3390/plants13192801 - 6 Oct 2024
Cited by 2 | Viewed by 1307
Abstract
The increase in the frequency and magnitude of environmental stresses poses a significant risk to the stability of food supplies. In coastal areas of the Mediterranean, brackish water has long been considered a limitation on horticultural production. In this scenario, the use of [...] Read more.
The increase in the frequency and magnitude of environmental stresses poses a significant risk to the stability of food supplies. In coastal areas of the Mediterranean, brackish water has long been considered a limitation on horticultural production. In this scenario, the use of biochar in agriculture could be considered a valuable tool to cope with the deleterious effects of salt stress. This work aimed to investigate, in a protected environment, the effects of different concentrations of biochar (0, 1, and 2% v/v) obtained from poplar (Populus L.) biomass on the yield and quality of dwarf San Marzano ecotype tomatoes irrigated with saline water at different concentrations of NaCl (0, 40 and 80 mM). The increase in salt concentration from 0 to 80 mM NaCl reduced the total yield (−63%) and the number of fruits (−25%), but improved the main quality parameters such as dry matter (+75%), total soluble solids (+56%), and polyphenol content (+43%). Compared to control conditions, biochar supplementation improved the total yield (+23%) and number of fruits (+26%) without altering the functional and organoleptic characteristics of the fruits. The promising results underscore the potential of biochar as a sustainable solution to amend soils in order to improve tomato production under unfavorable conditions such as high salinity. However, there is a need to clarify which adaptation mechanisms triggered by biochar amending improve production responses even and especially under suboptimal growing conditions. Full article
(This article belongs to the Special Issue Effect of Growing Media on Plant Performance)
Show Figures

Figure 1

17 pages, 1489 KiB  
Article
Predictors of Mortality and Orotracheal Intubation in Patients with Pulmonary Barotrauma Due to COVID-19: An Italian Multicenter Observational Study during Two Years of the Pandemic
by Nardi Tetaj, Gennaro De Pascale, Massimo Antonelli, Joel Vargas, Martina Savino, Francesco Pugliese, Francesco Alessandri, Giovanni Giordano, Pierfrancesco Tozzi, Monica Rocco, Anna Maria Biava, Luigi Maggi, Raffaella Pisapia, Francesco Maria Fusco, Giulia Valeria Stazi, Gabriele Garotto, Maria Cristina Marini, Pierluca Piselli, Alessia Beccacece, Andrea Mariano, Maria Letizia Giancola, Stefania Ianniello, Francesco Vaia, Enrico Girardi, Andrea Antinori, Maria Grazia Bocci, Luisa Marchioni and Emanuele Nicastriadd Show full author list remove Hide full author list
J. Clin. Med. 2024, 13(6), 1707; https://doi.org/10.3390/jcm13061707 - 15 Mar 2024
Cited by 1 | Viewed by 1893
Abstract
Introduction: Coronavirus disease 2019 (COVID-19) is a significant and novel cause of acute respiratory distress syndrome (ARDS). During the COVID-19 pandemic, there has been an increase in the incidence of cases involving pneumothorax and pneumomediastinum. However, the risk factors associated with poor outcomes [...] Read more.
Introduction: Coronavirus disease 2019 (COVID-19) is a significant and novel cause of acute respiratory distress syndrome (ARDS). During the COVID-19 pandemic, there has been an increase in the incidence of cases involving pneumothorax and pneumomediastinum. However, the risk factors associated with poor outcomes in these patients remain unclear. Methods: This observational study collected clinical and imaging data from COVID-19 patients with PTX and/or PNM across five tertiary hospitals in central Italy between 1 March 2020 and 1 March 2022. This study also calculated the incidence of PTX and PNM and utilized multivariable regression analysis and Kaplan–Meier curve analysis to identify predictor factors for 28-day mortality and 3-day orotracheal intubation after PTX/PNM. This study also considered the impact of the three main variants of concern (VoCs) (alfa, delta, and omicron) circulating during the study period. Results: During the study period, a total of 11,938 patients with COVID-19 were admitted. This study found several factors independently associated with a higher risk of death in COVID-19 patients within 28 days of pulmonary barotrauma. These factors included a SOFA score ≥ 4 (OR 3.22, p = 0.013), vasopressor/inotropic therapy (OR 11.8, p < 0.001), hypercapnia (OR 2.72, p = 0.021), PaO2/FiO2 ratio < 150 mmHg (OR 10.9, p < 0.001), and cardiovascular diseases (OR 7.9, p < 0.001). This study also found that a SOFA score ≥ 4 (OR 3.10, p = 0.015), PCO2 > 45 mmHg (OR 6.0, p = 0.003), and P/F ratio < 150 mmHg (OR 2.9, p < 0.042) were factors independently associated with a higher risk of orotracheal intubation (OTI) within 3 days from PTX/PNM in patients with non-invasive mechanical ventilation. SARS-CoV-2 VoCs were not associated with 28-day mortality or the risk of OTI. The estimated cumulative probability of OTI in patients after pneumothorax was 44.0% on the first day, 67.8% on the second day, and 68.9% on the third day, according to univariable survival analysis. In patients who had pneumomediastinum only, the estimated cumulative probability of OTI was 37.5%, 46.7%, and 57.7% on the first, second, and third days, respectively. The overall incidence of PTX/PNM among hospitalized COVID-19 patients was 1.42%, which increased up to 4.1% in patients receiving invasive mechanical ventilation. Conclusions: This study suggests that a high SOFA score (≥4), the need for vasopressor/inotropic therapy, hypercapnia, and PaO2/FiO2 ratio < 150 mmHg in COVID-19 patients with pulmonary barotrauma are associated with higher rates of intubation, ICU admission, and mortality. Identifying these risk factors early on can help healthcare providers anticipate and manage these patients more effectively and provide timely interventions with appropriate intensive care, ultimately improving their outcomes. Full article
(This article belongs to the Special Issue Critical Care during COVID-19 Pandemic)
Show Figures

Figure 1

18 pages, 1437 KiB  
Article
Assessment of Fertility Dynamics and Nutritional Quality of Potato Tubers in a Compost-Amended Mars Regolith Simulant
by Antonio Giandonato Caporale, Roberta Paradiso, Mario Palladino, Nafiou Arouna, Luana Izzo, Alberto Ritieni, Stefania De Pascale and Paola Adamo
Plants 2024, 13(5), 747; https://doi.org/10.3390/plants13050747 - 6 Mar 2024
Cited by 4 | Viewed by 1894
Abstract
Mars exploration will foresee the design of bioregenerative life support systems (BLSSs), in which the use/recycle of in situ resources might allow the production of food crops. However, cultivation on the poorly-fertile Mars regolith will be very challenging. To pursue this goal, we [...] Read more.
Mars exploration will foresee the design of bioregenerative life support systems (BLSSs), in which the use/recycle of in situ resources might allow the production of food crops. However, cultivation on the poorly-fertile Mars regolith will be very challenging. To pursue this goal, we grew potato (Solanum tuberosum L.) plants on the MMS-1 Mojave Mars regolith simulant, pure (R100) and mixed with green compost at 30% (R70C30), in a pot in a cold glasshouse with fertigation. For comparison purposes, we also grew plants on a fluvial sand, pure (S100) and amended with 30% of compost (S70C30), a volcanic soil (VS) and a red soil (RS). We studied the fertility dynamics in the substrates over time and the tuber nutritional quality. We investigated nutrient bioavailability and fertility indicators in the substrates and the quality of potato tubers. Plants completed the life cycle on R100 and produced scarce but nutritious tubers, despite many critical simulant properties. The compost supply enhanced the MMS-1 chemical/physical fertility and determined a higher tuber yield of better nutritional quality. This study demonstrated that a compost-amended Mars simulant could be a proper substrate to produce food crops in BLSSs, enabling it to provide similar ecosystem services of the studied terrestrial soils. Full article
Show Figures

Figure 1

12 pages, 576 KiB  
Review
Implications of Vegetal Protein Hydrolysates for Improving Nitrogen Use Efficiency in Leafy Vegetables
by Michele Ciriello, Emanuela Campana, Stefania De Pascale and Youssef Rouphael
Horticulturae 2024, 10(2), 132; https://doi.org/10.3390/horticulturae10020132 - 30 Jan 2024
Cited by 7 | Viewed by 2575
Abstract
Climate change and the degradation of ecosystems is an urgent issue to which the agricultural sector contributes through the overuse of productive inputs such as chemical fertilizers. A disproportionate use of nitrogenous fertilizers combined with low efficiency inevitably results in worsening environmental problems [...] Read more.
Climate change and the degradation of ecosystems is an urgent issue to which the agricultural sector contributes through the overuse of productive inputs such as chemical fertilizers. A disproportionate use of nitrogenous fertilizers combined with low efficiency inevitably results in worsening environmental problems (greenhouse gas emissions, soil degradation, water eutrophication, and groundwater pollution). Nevertheless, increasing population growth puts additional pressure on the already struggling agricultural world. Awareness of these problems has pushed the world of research towards the development of more sustainable but equally efficient strategies in terms of production. The use of biostimulant substances and/or micro-organisms promoting yield, resilience to abiotic stresses in plants, and increasing the functional quality of products have been indicated as a valid strategy to improve the sustainability of agricultural practices. In modern horticulture, the use of vegetable–protein hydrolysates (V-PHs) is gaining more and more interest. These biostimulants could influence plants directly by stimulating carbon and nitrogen metabolism and interfering with hormonal activity, but also indirectly as V-PHs could improve nutrient availability in plant growth substrates and increase nutrient uptake and utilization efficiency. By exploiting this aspect, it would be possible to reduce the use of chemical fertilizers without affecting potential yields. After a brief introduction to the issues related to the intensive use of nitrogen fertilizers, this review focuses on the use of V-PHs as a strategy to increase nitrogen use efficiency (NUE). Starting with their heterogeneous origins and compositions, their effects on nitrogen metabolism, as well as the physiological and biochemical processes involved in these products, this review concludes with an in-depth discussion of the effects of V-PHs on major leafy vegetables. Full article
(This article belongs to the Special Issue Sustainable Strategies and Practices for Soil Fertility Management)
Show Figures

Figure 1

14 pages, 1317 KiB  
Article
Metabolic Profiling in Tuberous Roots of Ranunculus asiaticus L. as Influenced by Vernalization Procedure
by Giovanna Marta Fusco, Petronia Carillo, Rosalinda Nicastro, Letizia Pagliaro, Stefania De Pascale and Roberta Paradiso
Plants 2023, 12(18), 3255; https://doi.org/10.3390/plants12183255 - 13 Sep 2023
Cited by 3 | Viewed by 1395
Abstract
Ranunculus asiaticus L. is an ornamental geophyte. In commercial practice, it is mainly propagated by rehydrated tuberous roots. Vernalization before planting is a common practice to overcome the natural dormancy of tuberous roots; however, little is known about the mechanisms underlying the plant’s [...] Read more.
Ranunculus asiaticus L. is an ornamental geophyte. In commercial practice, it is mainly propagated by rehydrated tuberous roots. Vernalization before planting is a common practice to overcome the natural dormancy of tuberous roots; however, little is known about the mechanisms underlying the plant’s response to low temperatures. We investigated the influence of three preparation procedures of tuberous roots, only rehydration (control, C), and rehydration plus vernalization at 3.5 °C for 2 weeks (V2) and for 4 weeks (V4), on plant growth, leaf photosynthesis, flowering, and metabolism in plants of two hybrids, MBO (early flowering, pale orange flower) and MDR (medium earliness, bright orange flower), grown in pots in an unheated greenhouse. We reported the responses observed in the aerial part in a previous article in this journal. In this paper, we show changes in the underground organs in carbohydrate, amino acids, polyphenols, and protein levels throughout the growing cycle in the different plant stages: pre-planting, vegetative growth, and flowering. The metabolic profile revealed that the two hybrids had different responses to the root preparation procedure. In particular, MBO synthesized GABA and alanine after 2 weeks and sucrose after 4 weeks of vernalization. In contrast, MDR was more sensitive to vernalization; in fact, a higher synthesis of polyphenols was observed. However, both hybrids synthesized metabolites that could withstand exposure to low temperatures. Full article
Show Figures

Figure 1

Back to TopTop