Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Authors = Ryusuke Hatano ORCID = 0000-0002-2261-1799

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3788 KiB  
Article
Carbon Stock Estimation and Human Disturbance in Selected Urban Un-Conserved Forests in Entoto Mountain Forest, Addis Ababa, Ethiopia
by Lemlem Wondwossen Solomon, Noppol Arunrat, Thamarat Phutthai, Worachart Wisawapipat, Sukanya Sereenonchai and Ryusuke Hatano
Diversity 2025, 17(4), 225; https://doi.org/10.3390/d17040225 - 24 Mar 2025
Cited by 1 | Viewed by 627
Abstract
Urban forests are crucial for biodiversity and climate resilience. This study investigated the impact of human disturbances on carbon (C) stocks in un-conserved forests of Entoto Mountain, Addis Ababa, Ethiopia, focusing on forest structure: important value index (IVI), species diversity (H’), regeneration pattern [...] Read more.
Urban forests are crucial for biodiversity and climate resilience. This study investigated the impact of human disturbances on carbon (C) stocks in un-conserved forests of Entoto Mountain, Addis Ababa, Ethiopia, focusing on forest structure: important value index (IVI), species diversity (H’), regeneration pattern status, and C storage in aboveground biomass (AGB), belowground biomass (BGB), litter biomass (LB), and soil. Field data were collected from 35 quadrats across two altitudes, and human disturbances were observed, including firewood collection, tree cutting, soil excavation, and road and infrastructure inside the sample plot. Results indicate low species diversity dominated by Eucalyptus globulus Labill and Juniperus procera Hoechst. Ex Endl., with fair regeneration. Higher altitudes showed greater measured C stock (572.62 tC ha−1) than lower altitudes (495.03 tC ha−1), attributed to larger trees. C values in the upper altitude for AGB, BGB, LB, and soil (0–30 cm) were higher than at lower altitudes. The IVI showed a significant positive correlation with C in aboveground biomass, C in belowground biomass, and total C stock, whereas H’ also showed a significant (p < 0.05) positive correlation with the total number of trees. It is concluded that forest structures contribute to the C stock of this area. Given the importance of the un-conserved Entoto Mountain forest, it is recommended to prioritize the conservation of old-growth forest species in the area, as they demonstrate the highest capacity for C accumulation. Full article
Show Figures

Figure 1

15 pages, 2251 KiB  
Review
Soil Health Intensification through Strengthening Soil Structure Improves Soil Carbon Sequestration
by Ryusuke Hatano, Ikabongo Mukumbuta and Mariko Shimizu
Agriculture 2024, 14(8), 1290; https://doi.org/10.3390/agriculture14081290 - 5 Aug 2024
Cited by 6 | Viewed by 5945
Abstract
Intensifying soil health means managing soils to enable sustainable crop production and improved environmental impact. This paper discusses soil health intensification by reviewing studies on the relationship between soil structure, soil organic matter (SOM), and ecosystem carbon budget. SOM is strongly involved in [...] Read more.
Intensifying soil health means managing soils to enable sustainable crop production and improved environmental impact. This paper discusses soil health intensification by reviewing studies on the relationship between soil structure, soil organic matter (SOM), and ecosystem carbon budget. SOM is strongly involved in the development of soil structure, nutrient and water supply power, and acid buffering power, and is the most fundamental parameter for testing soil health. At the same time, SOM can be both a source and a sink for atmospheric carbon. A comparison of the ratio of soil organic carbon to clay content (SOC/Clay) is used as an indicator of soil structure status for soil health, and it has shown significantly lower values in cropland than in grassland and forest soils. This clearly shows that depletion of SOM leads to degradation of soil structure status. On the other hand, improving soil structure can lead to increasing soil carbon sequestration. Promoting soil carbon sequestration means making the net ecosystem carbon balance (NECB) positive. Furthermore, to mitigate climate change, it is necessary to aim for carbon sequestration that can improve the net greenhouse gas balance (NGB) by serving as a sink for greenhouse gases (GHG). The results of a manure application test in four managed grasslands on Andosols in Japan showed that it was necessary to apply more than 2.5 tC ha−1 y−1 of manure to avoid reduction and loss of SOC in the field. Furthermore, in order to offset the increase in GHG emissions due to N2O emissions from increased manure nitrogen input, it was necessary to apply more than 3.5 tC ha−1y−1 of manure. To intensify soil health, it is increasingly important to consider soil management with organic fertilizers that reduce chemical fertilizers without reducing yields. Full article
(This article belongs to the Special Issue Feature Review in Agricultural Soils—Intensification of Soil Health)
Show Figures

Figure 1

25 pages, 3002 KiB  
Review
Saline–Alkali Soil Reclamation Contributes to Soil Health Improvement in China
by Wei Zhu, Shiguo Gu, Rui Jiang, Xin Zhang and Ryusuke Hatano
Agriculture 2024, 14(8), 1210; https://doi.org/10.3390/agriculture14081210 - 23 Jul 2024
Cited by 15 | Viewed by 5195
Abstract
Soil salinization is a significant threat to soil health, especially to the agricultural ecosystem; it reduces vegetation biomass, destroys ecosystem diversity, and limits land use efficiency. This area of investigation has garnered extensive attention in China, especially in the arid and semi-arid areas, [...] Read more.
Soil salinization is a significant threat to soil health, especially to the agricultural ecosystem; it reduces vegetation biomass, destroys ecosystem diversity, and limits land use efficiency. This area of investigation has garnered extensive attention in China, especially in the arid and semi-arid areas, totaling 7.66 × 106 ha. A variety of theoretical research and technology developments have contributed to soil water and salt regulation and the screening of salt-tolerant varieties to improve nutrient utilization efficiency and microbial control and reduce ecological problems due to saline-based obstacles. These techniques can be classified into physical treatments, chemical treatments, biological treatments, and combined treatments; these different measures are all aimed at primarily solving saline–alkali stress. In general, the improvement and utilization of saline–alkali soil contribute to soil health improvement, concentrating on high-quality development, food security, ecological security, cultivated land protection, and agricultural upgrading. However, the risks of various technologies in the practical production process should be highlighted; green and healthy measures are still expected to be applied to saline–alkali land. Full article
(This article belongs to the Special Issue Feature Review in Agricultural Soils—Intensification of Soil Health)
Show Figures

Figure 1

21 pages, 6523 KiB  
Article
Fire-Induced Changes in Soil Properties and Bacterial Communities in Rotational Shifting Cultivation Fields in Northern Thailand
by Noppol Arunrat, Chakriya Sansupa, Sukanya Sereenonchai, Ryusuke Hatano and Rattan Lal
Biology 2024, 13(6), 383; https://doi.org/10.3390/biology13060383 - 27 May 2024
Cited by 10 | Viewed by 2001
Abstract
Fire is a common practice in rotational shifting cultivation (RSC), but little is known about the dynamics of bacterial populations and the impact of fire disturbance in northern Thailand. To fill the research gap, this study aims to investigate the dynamics of soil [...] Read more.
Fire is a common practice in rotational shifting cultivation (RSC), but little is known about the dynamics of bacterial populations and the impact of fire disturbance in northern Thailand. To fill the research gap, this study aims to investigate the dynamics of soil bacterial communities and examine how the soil’s physicochemical properties influence the bacterial communities in RSC fields over a period of one year following a fire. Surface soil samples (0–2 cm depth) were collected from sites with 6 (RSC-6Y) and 12 (RSC-12Y) years of fallow in Chiang Mai Province, northern Thailand at six different time points: before burning, 5 min after burning (summer), 3 months after burning (rainy season), 6 months after burning (rainy season), 9 months after burning (winter), and 12 months after burning (summer). The results revealed a reduction in the soil bacterial communities’ diversity and an increase in soil nutrient levels immediately after the fire. The fire significantly influenced the abundance of Firmicutes, Proteobacteria, Acidobacteria, and Planctomycetes, but not that of Actinobacteria. At the genus level, Bacillus, Conexibacter, and Chthoniobacter showed increased abundance following the fire. During the rainy season, a recovery in the abundance of the soil bacterial communities was observed, although soil nutrient availability declined. Soil physicochemical properties such as pH, organic matter, organic carbon, electrical conductivity, cation exchange capacity, nitrate-nitrogen, available phosphorus, exchangeable potassium, total nitrogen, bulk density, sand, and silt contents significantly influenced the composition of bacterial communities. Alpha diversity indices indicated a decrease in diversity immediately after burning, followed by an increase from the early rainy season until the summer season, indicating that seasonal variation affected the composition of the soil bacterial communities. After one year of burning, an increase in bacterial richness was observed, while the diversity of the bacterial communities reverted to pre-burning levels. Full article
Show Figures

Graphical abstract

22 pages, 4822 KiB  
Article
Effect of Rice Straw and Stubble Burning on Soil Physicochemical Properties and Bacterial Communities in Central Thailand
by Noppol Arunrat, Sukanya Sereenonchai, Chakriya Sansupa, Praeploy Kongsurakan and Ryusuke Hatano
Biology 2023, 12(4), 501; https://doi.org/10.3390/biology12040501 - 26 Mar 2023
Cited by 27 | Viewed by 6970
Abstract
Rice straw and stubble burning is widely practiced to clear fields for new crops. However, questions remain about the effects of fire on soil bacterial communities and soil properties in paddy fields. Here, five adjacent farmed fields were investigated in central Thailand to [...] Read more.
Rice straw and stubble burning is widely practiced to clear fields for new crops. However, questions remain about the effects of fire on soil bacterial communities and soil properties in paddy fields. Here, five adjacent farmed fields were investigated in central Thailand to assess changes in soil bacterial communities and soil properties after burning. Samples of soil prior to burning, immediately after burning, and 1 year after burning were obtained from depths of 0 to 5 cm. The results showed that the pH, electrical conductivity, NH4-N, total nitrogen, and soil nutrients (available P, K, Ca, and Mg) significantly increased immediately after burning due to an increased ash content in the soil, whereas NO3-N decreased significantly. However, these values returned to the initial values. Chloroflexi were the dominant bacteria, followed by Actinobacteria and Proteobacteria. At 1 year after burning, Chloroflexi abundance decreased remarkably, whereas Actinobacteria, Proteobacteria, Verrucomicrobia, and Gemmatimonadetes abundances significantly increased. Bacillus, HSB OF53-F07, Conexibacter, and Acidothermus abundances increased immediately after burning, but were lower 1 year after burning. These bacteria may be highly resistant to heat, but grow slowly. Anaeromyxobacter and Candidatus Udaeobacter dominated 1 year after burning, most likely because of their rapid growth and the fact that they occupy areas with increased soil nutrient levels after fires. Amidase, cellulase, and chitinase levels increased with increased organic matter levels, whereas β-glucosidase, chitinase, and urease levels positively correlated with the soil total nitrogen level. Although clay and soil moisture strongly correlated with the soil bacterial community’s composition, negative correlations were found for β-glucosidase, chitinase, and urease. In this study, rice straw and standing stubble were burnt under high soil moisture and within a very short time, suggesting that the fire was not severe enough to raise the soil temperature and change the soil microbial community immediately after burning. However, changes in soil properties due to ash significantly increased the diversity indices, which was noticeable 1 year after burning. Full article
Show Figures

Figure 1

17 pages, 3210 KiB  
Article
Soil Microbial Diversity and Community Composition in Rice–Fish Co-Culture and Rice Monoculture Farming System
by Noppol Arunrat, Chakriya Sansupa, Praeploy Kongsurakan, Sukanya Sereenonchai and Ryusuke Hatano
Biology 2022, 11(8), 1242; https://doi.org/10.3390/biology11081242 - 20 Aug 2022
Cited by 50 | Viewed by 5717
Abstract
Soil microorganisms play an important role in determining nutrient cycling. The integration of fish into rice fields can influence the diversity and structural composition of soil microbial communities. However, regarding the rice–fish co-culture (RF) farming system in Thailand, the study of the diversity [...] Read more.
Soil microorganisms play an important role in determining nutrient cycling. The integration of fish into rice fields can influence the diversity and structural composition of soil microbial communities. However, regarding the rice–fish co-culture (RF) farming system in Thailand, the study of the diversity and composition of soil microbes is still limited. Here, we aim to compare the microbial diversity, community composition, and functional structure of the bacterial communities between RF and rice monoculture (MC) farming systems and identify the environmental factors shaping bacterial community composition. Bacterial taxonomy was observed using 16s rRNA gene amplicon sequencing, and the functional structures of the bacterial communities were predicted based on their taxonomy and sequences. The results showed that soil organic carbon, total nitrogen (TN), organic matter, available phosphorous, and clay content were significantly higher in RF than in MC. The most dominant taxa across both paddy rice fields belonged to Actinobacteria, Chloroflexi, Proteobacteria, Acidobacteria, and Planctomycetes. The taxa Nitrosporae, Rokubacteria, GAL15, and Elusimicrobia were significantly different between both rice fields. At the genus level, Bacillus, Anaeromyxobacter, and HSB OF53-F07 were the predominant genera in both rice fields. The most abundant genus in MC was Anaeromyxobacter, whereas RF belonged to Bacillus. The community composition in MC was positively correlated with magnesium and sand content, while in RF was positively correlated with pH, TN, and clay content. Nitrogen fixation, aromatic compound degradation, and hydrocarbon degradation were more abundant in RF, while cellulolysis, nitrification, ureolysis, and phototrophy functional groups were more abundant in MC. The enzymes involved in paddy soil ecosystems included phosphatase, β-glucosidase, cellulase, and urease. These results provide novel insights into integrated fish in the paddy field as an efficient agricultural development strategy for enhancing soil microorganisms that increase soil fertility. Full article
Show Figures

Figure 1

20 pages, 6147 KiB  
Article
Assessing Soil Organic Carbon, Soil Nutrients and Soil Erodibility under Terraced Paddy Fields and Upland Rice in Northern Thailand
by Noppol Arunrat, Sukanya Sereenonchai, Praeploy Kongsurakan and Ryusuke Hatano
Agronomy 2022, 12(2), 537; https://doi.org/10.3390/agronomy12020537 - 21 Feb 2022
Cited by 21 | Viewed by 5105
Abstract
Terracing is the oldest technique for water and soil conservation on natural hilly slopes. In Northern Thailand, terraced paddy fields were constructed long ago, but scientific questions remain on how terraced paddy fields and upland rice (non-terraced) differ for soil organic carbon (SOC) [...] Read more.
Terracing is the oldest technique for water and soil conservation on natural hilly slopes. In Northern Thailand, terraced paddy fields were constructed long ago, but scientific questions remain on how terraced paddy fields and upland rice (non-terraced) differ for soil organic carbon (SOC) stocks, soil nutrients and soil erodibility. Therefore, this study aims to evaluate and compare SOC stocks, soil nutrients and soil erodibility between terraced paddy fields and upland rice at Ban Pa Bong Piang, Chiang Mai Province, Thailand. Topsoil (0–10 cm) was collected from terraced paddies and upland rice fields after harvest. Results showed that SOC stocks were 21.84 and 21.61 Mg·C·ha−1 in terraced paddy and upland rice fields, respectively. There was no significant difference in soil erodibility between terraced paddies (range 0.2261–0.2893 t·h·MJ−1·mm−1) and upland rice (range 0.2238–0.2681 t·h·MJ−1·mm−1). Most soil nutrients (NH4-N, NO3-N, available K, available Ca and available Mg) in the terraced paddy field were lower than those in the upland rice field. It was hypothesized that the continuous water flows from plot-to-plot until lowermost plot caused dissolved nutrients to be washed and removed from the flat surface, leading to a short period for accumulating nutrients into the soil. An increase in soil erodibility was associated with decreasing SOC stock at lower toposequence points. This study suggested that increasing SOC stock is the best strategy to minimize soil erodibility of both cropping systems, while proper water management is crucial for maintaining soil nutrients in the terraced paddy field. Full article
(This article belongs to the Special Issue Resilience in Soils and Land Use)
Show Figures

Figure 1

20 pages, 1894 KiB  
Article
Carbon, Nitrogen and Water Footprints of Organic Rice and Conventional Rice Production over 4 Years of Cultivation: A Case Study in the Lower North of Thailand
by Noppol Arunrat, Sukanya Sereenonchai, Winai Chaowiwat, Can Wang and Ryusuke Hatano
Agronomy 2022, 12(2), 380; https://doi.org/10.3390/agronomy12020380 - 3 Feb 2022
Cited by 56 | Viewed by 7728
Abstract
An integrated method is required for comprehensive assessment of the environmental impacts and economic benefits of rice production systems. Therefore, the objective of this study was to apply different footprinting approaches (carbon footprint (CF), nitrogen footprint (NF), water footprint (WF)) and determine the [...] Read more.
An integrated method is required for comprehensive assessment of the environmental impacts and economic benefits of rice production systems. Therefore, the objective of this study was to apply different footprinting approaches (carbon footprint (CF), nitrogen footprint (NF), water footprint (WF)) and determine the economic return on organic rice farming (OF) and conventional rice farming (CVF) at the farm scale. Over the 4-year study period (2018–2021), the results showed lower net greenhouse gas (GHG) emissions in OF (3289.1 kg CO2eq ha−1 year−1) than in CVF (4921.7 kg CO2eq ha−1 year−1), indicating that the use of OF can mitigate the GHG emissions from soil carbon sequestration. However, there was a higher CF intensity in OF (1.17 kg CO2eq kg−1 rice yield) than in CVF (0.93 kg CO2eq kg−1 rice yield) due to the lower yield. The NF intensities of OF and CVF were 0.34 and 11.94 kg Neq kg−1 rice yield, respectively. The total WF of CVF (1470.1 m3 ton−1) was higher than that in OF (1216.3 m3 ton−1). The gray water in CVF was significantly higher than that in OF due to the use of chemical fertilizers, herbicides, and pesticides. Although the rice yield in OF was nearly two times lower than that in CVF, the economic return was higher due to lower production costs and higher rice prices. However, more field studies and long-term monitoring are needed for future research. Full article
Show Figures

Figure 1

14 pages, 4450 KiB  
Article
Effects of Long-Term Nitrogen Fertilization and Ground Water Level Changes on Soil CO2 Fluxes from Oil Palm Plantation on Tropical Peatland
by Auldry Chaddy, Lulie Melling, Kiwamu Ishikura, Kah Joo Goh, Yo Toma and Ryusuke Hatano
Atmosphere 2021, 12(10), 1340; https://doi.org/10.3390/atmos12101340 - 13 Oct 2021
Cited by 8 | Viewed by 3936
Abstract
A long-term study on the effect of nitrogen (N) fertilization on soil carbon dioxide (CO2) fluxes in tropical peatland was conducted to (1) quantify the annual CO2 emissions from an oil palm plantation under different N application rates and (2) [...] Read more.
A long-term study on the effect of nitrogen (N) fertilization on soil carbon dioxide (CO2) fluxes in tropical peatland was conducted to (1) quantify the annual CO2 emissions from an oil palm plantation under different N application rates and (2) evaluate the temporal effects of groundwater level (GWL) and water-filled pore space (WFPS) on soil organic carbon (SOC) and CO2 fluxes. Monthly measurement of soil CO2 fluxes using a closed chamber method was carried out from January 2010 until December 2013 and from January 2016 to December 2017 in an oil palm plantation on tropical peat in Sarawak, Malaysia. Besides the control (T1, without N fertilization), there were three N treatments: low N (T2, 31.1 kg N ha−1 year−1), moderate N (T3, 62.2 kg N ha−1 year−1), and high N (T4, 124.3 kg N ha−1 year−1). The annual CO2 emissions ranged from 7.7 ± 1.2 (mean ± SE) to 16.6 ± 1.0 t C ha−1 year−1, 9.8 ± 0.5 to 14.8 ± 1.4 t C ha−1 year−1, 10.5 ± 1.8 to 16.8 ± 0.6 t C ha−1 year−1, and 10.4 ± 1.8 to 17.1 ± 3.9 t C ha−1 year−1 for T1, T2, T3, and T4, respectively. Application of N fertilizer had no significant effect on annual cumulative CO2 emissions in each year (p = 0.448), which was probably due to the formation of large quantities of inorganic N when GWL was temporarily lowered from January 2010 to June 2010 (−80.9 to −103.4 cm below the peat surface), and partly due to low soil organic matter (SOM) quality. A negative relationship between GWL and CO2 fluxes (p < 0.05) and a positive relationship between GWL and WFPS (p < 0.001) were found only when the oil palm was young (2010 and 2011) (p < 0.05), indicating that lowering of GWL increased CO2 fluxes and decreased WFPS when the oil palm was young. This was possibly due to the fact that parameters such as root activity might be more predominant than GWL in governing soil respiration in older oil palm plantations when GWL was maintained near or within the rooting zone (0–50 cm). This study highlights the importance of roots and WFPS over GWL in governing soil respiration in older oil palm plantations. A proper understanding of the interaction between the direct or indirect effect of root activity on CO2 fluxes and balancing its roles in nutrient and water management strategies is critical for sustainable use of tropical peatland. Full article
(This article belongs to the Special Issue Agricultural Greenhouse Gas Emissions)
Show Figures

Figure 1

17 pages, 4724 KiB  
Article
Evaluation of CH4 Emission in Two Paddy Field Areas, Khonkaen and Ayutthaya, in Thailand
by Pongsathorn Sukdanont, Noppol Arunrat, Suphachai Amkha and Ryusuke Hatano
Agriculture 2021, 11(5), 467; https://doi.org/10.3390/agriculture11050467 - 20 May 2021
Cited by 1 | Viewed by 4493
Abstract
It is well known that submerged soils emit high levels of methane (CH4) due to oxygen deprivation and free iron oxide causing a quick reduction. However, there are other soil properties that control the reduction processes in soil, especially the amount [...] Read more.
It is well known that submerged soils emit high levels of methane (CH4) due to oxygen deprivation and free iron oxide causing a quick reduction. However, there are other soil properties that control the reduction processes in soil, especially the amount of soil organic carbon (SOC). This study aimed to investigate the major factors controlling CH4 production potential (CH4PP) in Thai paddy fields. Two provinces, Ayutthaya, a clay soil region, and Khonkaen, a sandy soil region, were selected to represent a wide range of soil textures. Soil characteristic analysis pre- and post-incubation, and weekly gas detection in an incubation experiment over two months, was conducted. Stepwise multiple regression analysis was employed to analyze major soil factors controlling CH4PP. For the regional prediction of CH4PP, a map dataset of Ayutthaya and Khonkaen by the Land Development Department, Thailand, and a soil texture map (with intersected point data using the soil property map in ArcGIS) by OpenLandMap, were used. CH4PP was correlated with 1:10 pH, Fe2+, and water-soluble organic carbon (WSOC) measured after incubation. Although CH4PP showed no significant correlation with any soil properties measured before incubation, CH4PP was correlated with SOC, 1:10 electrical conductivity (EC), exchangeable ammonium (ExNH4), and sand content. It was thought that SOC and ExNH4 were related to organic matter decomposition, 1:10 EC was related to SO42− reduction and sand content was related to free oxides. Predicted regional CH4PP was similar in Ayutthaya and Khonkaen, although SOC, ExNH4 and 1:10 EC was higher, and sand content was lower in Ayutthaya than in Khonkaen. In both regions, the distribution of CH4PP corresponded to SOC, and CH4PP was lower with lower sand content and higher 1:10 EC. In clayey Ayutthaya, higher CH4PP was observed in the area with higher ExNH4. This indicates that soil properties other than soil texture and SOC influence CH4PP in the paddy fields in Thailand. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 32783 KiB  
Article
Spatial Evaluation of Greenhouse Gas Fluxes in a Sasa (Dwarf Bamboo) Invaded Wetland Ecosystem in Central Hokkaido, Japan
by Akane Kagemoto, Fumiaki Takakai, Osamu Nagata, Masayuki Takada and Ryusuke Hatano
Atmosphere 2021, 12(4), 448; https://doi.org/10.3390/atmos12040448 - 31 Mar 2021
Cited by 3 | Viewed by 3027
Abstract
To evaluate the effect of vegetation change on greenhouse gas (GHG) budget from a wetland ecosystem, the CO2, CH4 and N2O budgets from whole area (21.5 ha) of the Bibai Wetland, where dwarf bamboo (Sasa) or [...] Read more.
To evaluate the effect of vegetation change on greenhouse gas (GHG) budget from a wetland ecosystem, the CO2, CH4 and N2O budgets from whole area (21.5 ha) of the Bibai Wetland, where dwarf bamboo (Sasa) or Ilex has invaded into original Sphagnum dominated vegetation, located in Hokkaido, Japan were estimated. The original Sphagnum-dominated vegetation was changed from a sink to a source of CO2 by invasion of short-Sasa (50 cm > height), while the invasion of tall-Sasa (50 cm < height < 150 cm) or Ilex increased CO2 uptake. Annual CH4 emission was decreased by the invasion of Sasa or Ilex. The annual N2O emission was slightly increased by invasion of Ilex only. These GHG budgets were correlated with the environmental factors related to the water table depth. The distribution of vegetation and environmental factors was estimated from satellite image bands, and the GHG budget of the entire wetland was estimated. The whole wetland area was considered to be a sink for GHG (−113 Mg CO2-eq y−1) and CO2 uptake by tall-Sasa occupied 71% of the GHG budget. The vegetation change due to the lowering of the water table depth currently increases the rate of carbon accumulation in the ecosystem by about 5 times. Full article
(This article belongs to the Special Issue Climate-Ecosystem Interaction in Northern Wetlands)
Show Figures

Figure 1

15 pages, 1772 KiB  
Review
Managing Soils for Recovering from the COVID-19 Pandemic
by Rattan Lal, Eric C. Brevik, Lorna Dawson, Damien Field, Bruno Glaser, Alfred E. Hartemink, Ryusuke Hatano, Bruce Lascelles, Curtis Monger, Thomas Scholten, Bal Ram Singh, Heide Spiegel, Fabio Terribile, Angelo Basile, Yakun Zhang, Rainer Horn, Takashi Kosaki and Laura Bertha Reyes Sánchez
Soil Syst. 2020, 4(3), 46; https://doi.org/10.3390/soilsystems4030046 - 28 Jul 2020
Cited by 67 | Viewed by 16616
Abstract
The COVID-19 pandemic has disrupted the global food supply chain and exacerbated the problem of food and nutritional insecurity. Here we outline soil strategies to strengthen local food production systems, enhance their resilience, and create a circular economy focused on soil restoration through [...] Read more.
The COVID-19 pandemic has disrupted the global food supply chain and exacerbated the problem of food and nutritional insecurity. Here we outline soil strategies to strengthen local food production systems, enhance their resilience, and create a circular economy focused on soil restoration through carbon sequestration, on-farm cycling of nutrients, minimizing environmental pollution, and contamination of food. Smart web-based geospatial decision support systems (S-DSSs) for land use planning and management is a useful tool for sustainable development. Forensic soil science can also contribute to cold case investigations, both in providing intelligence and evidence in court and in ascertaining the provenance and safety of food products. Soil can be used for the safe disposal of medical waste, but increased understanding is needed on the transfer of virus through pedosphere processes. Strengthening communication between soil scientists and policy makers and improving distance learning techniques are critical for the post-COVID restoration. Full article
Show Figures

Figure 1

25 pages, 3134 KiB  
Review
Soil Organic Carbon in Sandy Paddy Fields of Northeast Thailand: A Review
by Noppol Arunrat, Praeploy Kongsurakan, Sukanya Sereenonchai and Ryusuke Hatano
Agronomy 2020, 10(8), 1061; https://doi.org/10.3390/agronomy10081061 - 22 Jul 2020
Cited by 91 | Viewed by 10857
Abstract
Soil organic carbon (SOC) improvement has become a sustainable strategy for enhancing soil resilience and reducing greenhouse gas (GHG) emissions in the rice cropping system. For tropical soils, the SOC accumulation was limited by the unfavorable environment, likely the sandy soil area in [...] Read more.
Soil organic carbon (SOC) improvement has become a sustainable strategy for enhancing soil resilience and reducing greenhouse gas (GHG) emissions in the rice cropping system. For tropical soils, the SOC accumulation was limited by the unfavorable environment, likely the sandy soil area in Northeast (NE) Thailand. This review aims to quantify and understand SOC in sandy paddy fields of NE Thailand. The existing research gap for alternative management practices is also highlighted to increase ecological and agronomic values. We review previous studies to determine the factors affecting SOC dynamics in sandy paddy fields, in order to enhance SOC and sustain rice yields. High sand content, up to 50% sand, was found in 70.7% of the observations. SOC content has ranged from 0.34 to 31.2 g kg−1 for the past four decades in paddy rice soil of NE Thailand. The conventional and alternative practice managements were chosen based on either increasing rice crop yield or improving soil fertility. The lack of irrigation water during the mild dry season would physically affect carbon sequestration as the soil erosion accelerates. Meanwhile, soil chemical and microbial activity, which directly affect SOC accumulation, would be influenced by nutrient and crop residue management, including chemical fertilizer, manure and green manure, unburned rice straw, and biochar application. Increasing SOC content by 1 g kg−1 can increase rice yield by 302 kg ha−1. The predicted carbon saturation varied tremendously, from 4.1% to 140.6% (52% in average), indicating that the sandy soil in this region has the potential for greater SOC sequestration. Our review also suggests that broadening the research of rice production influenced by sandy soil is still required to implement adaptive management for sustainable agriculture and future food security. Full article
(This article belongs to the Special Issue Effects of Agricultural Management on Soil Properties and Health)
Show Figures

Graphical abstract

18 pages, 1414 KiB  
Article
Carbon Sequestration and Contribution of CO2, CH4 and N2O Fluxes to Global Warming Potential from Paddy-Fallow Fields on Mineral Soil Beneath Peat in Central Hokkaido, Japan
by Habib Mohammad Naser, Osamu Nagata, Sarmin Sultana and Ryusuke Hatano
Agriculture 2020, 10(1), 6; https://doi.org/10.3390/agriculture10010006 - 27 Dec 2019
Cited by 28 | Viewed by 9243
Abstract
Since each greenhouse gas (GHG) has its own radiative capacity, all three gasses (CO2, CH4 and N2O) must be accounted for by calculating the net global warming potential (GWP) in a crop production system. To compare the impact [...] Read more.
Since each greenhouse gas (GHG) has its own radiative capacity, all three gasses (CO2, CH4 and N2O) must be accounted for by calculating the net global warming potential (GWP) in a crop production system. To compare the impact of GHG fluxes from the rice growing and the fallow season on the annual gas fluxes, and their contribution to the GWP and carbon sequestration (CS) were evaluated. From May to April in Bibai (43°18′ N, 141°44′ E), in central Hokkaido, Japan, three rice paddy fields under actual management conditions were investigated to determine CS and the contribution of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes to GWP. Methane and N2O fluxes were measured by placing the chamber over the rice plants covering four hills and CO2 fluxes from rice plants root free space in paddy fields were taken as an indicator of soil microbial respiration (Rm) using the closed chamber method. Soil CS was calculated as the difference between net primary production (NPP) and loss of carbon (C) through Rm, emission of CH4 and harvest of crop C. Annual cumulative Rm ranged from 422 to 519 g C m−2 yr−1; which accounted for 54.7 to 55.5% of the rice growing season in particular. Annual cumulative CH4 emissions ranged from 75.5 to 116 g C m−2 yr−1 and this contribution occurred entirely during the rice growing period. Total cumulative N2O emissions ranged from 0.091 to 0.154 g N m−2 yr−1 and from 73.5 to 81.3% of the total N2O emissions recorded during the winter-fallow season. The CS ranged from −305 to −365 g C m−2 yr−1, suggesting that C input by NPP may not be compensate for the loss of soil C. The loss of C in the winter-fallow season was much higher (62 to 66%) than in the growing season. The annual net GWP from the investigated paddy fields ranged from 3823 to 5016 g CO2 equivalent m−2 yr−1. Annual GWPCH4 accounted for 71.9 to 86.1% of the annual net GWP predominantly from the rice growing period. These results indicate that CH4 dominated the net GWP of the rice paddy. Full article
(This article belongs to the Special Issue Greenhouse Gas Emissions in Agroecosystems)
Show Figures

Figure 1

18 pages, 2422 KiB  
Article
Soil N2O Emissions under Different N Rates in an Oil Palm Plantation on Tropical Peatland
by Auldry Chaddy, Lulie Melling, Kiwamu Ishikura and Ryusuke Hatano
Agriculture 2019, 9(10), 213; https://doi.org/10.3390/agriculture9100213 - 1 Oct 2019
Cited by 23 | Viewed by 5959
Abstract
(1) Background: Nitrogen (N) fertilization on drained tropical peatland will likely stimulate peat decomposition and mineralization, enhancing N2O emission from the peat soil. (2) Methods: A field experiment was conducted to quantify the N2O emissions from soil in an [...] Read more.
(1) Background: Nitrogen (N) fertilization on drained tropical peatland will likely stimulate peat decomposition and mineralization, enhancing N2O emission from the peat soil. (2) Methods: A field experiment was conducted to quantify the N2O emissions from soil in an oil palm plantation (Elaeis guineensis Jacq.) located in a tropical peatland in Sarawak, Malaysia, under different rates of N fertilizers. The study was conducted from January 2010 to December 2013 and resumed from January 2016 to December 2017. Nitrous oxide (N2O) flux was measured every month using a closed chamber method for four different N rates; control—without N (T1), 31.1 kg N ha−1 yr−1 (T2), 62.2 kg N ha−1 yr−1 (T3), and 124.3 kg N ha−1 yr−1 (T4); (3) Results: Application of the N fertilizer significantly increased annual cumulative N2O emissions for T4 only in the years 2010 (p = 0.017), 2011 (p = 0.012), 2012 (p = 0.007), and 2016 (p = 0.048). The highest average annual cumulative N2O emissions were recorded for T4 (41.5 ± 28.7 kg N ha−1 yr−1), followed by T3 (35.1 ± 25.7 kg N ha−1 yr−1), T1 (25.2 ± 17.8 kg N ha−1 yr−1), and T2 (25.1 ± 15.4 kg N ha−1 yr−1), indicating that the N rates of 62.2 kg N ha−1 yr−1 and 124.3 kg N ha−1 yr−1 increased the average annual cumulative N2O emissions by 39% and 65%, respectively, as compared to the control. The N fertilization had no significant effect on annual oil palm yield (p = 0.994). Alternating between low (deeper than −60 cm) and high groundwater level (GWL) (shallower than −60 cm) enhanced nitrification during low GWL, further supplying NO3 for denitrification in the high GWL, and contributing to higher N2O emissions in high GWL. The emissions of N2O ranged from 17 µg N m−2 hr−1 to 2447 µg N m−2 hr−1 and decreased when the water-filled pore space (WFPS) was between 70% and 96%, suggesting the occurrence of complete denitrification. A positive correlation between N2O emissions and NO3 at 70–96% WFPS indicated that denitrification increased with increased NO3 availability. Based on their standardized regression coefficients, the effect of GWL on N2O emissions increased with increased N rate (p < 0.001). Furthermore, it was found that annual oil palm yields negatively correlated with annual N2O emission and NO3 for all treatments. Both nitrification and denitrification increased with increased N availability, making both processes important sources of N2O in oil palm cultivation on tropical peatland.; and (4) Conclusions: To improve understanding of N2O mitigation strategies, further studies should consider plant N uptake on N2O emissions, at least until the completion of the planting. Full article
(This article belongs to the Special Issue Greenhouse Gas Emissions in Agroecosystems)
Show Figures

Figure 1

Back to TopTop