Managing Soils for Recovering from the COVID-19 Pandemic
Abstract
:1. Introduction
2. Soil Health
3. Soil Health and Human Health
4. Food Security
5. Circular Economy and Urban Agriculture
6. Soil Management Beyond the COVID-19 Pandemic
7. Soil Science Beyond the COVID-19 Pandemic
8. Connecting Soil Science with Policy Makers and Stakeholders
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Torero, M. Without food, there can be no exit from the pandemic. Nature 2020, 580, 588–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPES-Food. COVID-19 and the Crisis in Food Systems: Symptoms, Causes, and Potential Solutions. 2020, pp. 1–11. Available online: http://www.ipes-food.org/_img/upload/files/COVID-19_CommuniqueEN.pdf (accessed on 21 July 2020).
- Cullen, M.T. COVID-19 and the Risk to Food Supply Chains: How to Respond; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Deaton, B.J.; Deaton, B.J. Food security and Canada’s agricultural system challenged by COVID-19. Can. J. Agric. Econ. Can. d’agroeconomie 2020. [Google Scholar] [CrossRef]
- Web Soil Survey. Suitabilities and Limitations for Use; Disaster Recovery Planning; Catastrophic Mortality, Large Animal Disposal, Trench. 2020. Available online: http://websoilsurvey.nrcs.usda.gov (accessed on 21 July 2020).
- Bernton, H. In French Fry Heaven, Spring Turns Bitter. The Seattle Times. 2020. Available online: https://www.seattletimes.com (accessed on 21 July 2020).
- Pol, E. Is Low Protein Wheat a Symptom of Low Soil Organic Matter? GRDC Communities. 2019. Available online: https://communities.grdc.com.au/crop-nutrition/low-protein-wheat-symptom-low-soil-organic-matter/ (accessed on 21 July 2020).
- Wood, S.A.; Tirfessa, D.; Baudron, F. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agric. Ecosyst. Environ. 2018, 266, 100–108. [Google Scholar] [CrossRef]
- Worthington, V. Nutritional quality of organic versus conventional fruits, vegetables, and grains. J. Altern. Complement. Med. 2001, 7, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Hoagland, L.; Reeves, P.; Jones, S. Effect of cultivar and soil characteristics on nutritional value in organic and conventional wheat. In Proceedings of the 16th IFOAM Organic World Congress 4, Modena, Italy, 16–20 June 2008. [Google Scholar]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef]
- Horn, R.; Lal, R. Soils in Agricultural Engineering: Effect of Land-use Management Systems on Mechanical Soil Processes. In Hydrogeology, Chemical Weathering, and Soil Formation; Hunt, A., Ed.; Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation as a reason for inadequate human nutrition. Food Secur. 2009, 1, 45–57. [Google Scholar] [CrossRef]
- Lal, R. Degradation and resilience of soils. Philos. Trans. R. Soc. B Biol. Sci. 1997, 352, 997–1010. [Google Scholar] [CrossRef]
- Blum, W.E.H. Basic concepts: Degradation, resilience, and rehabilitation. In Methods for Assessment of Soil Degradation. Advances in Soil Science; Lal, R., Blum, W.H., Valentine, C., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1998; pp. 1–16. [Google Scholar]
- Seybold, C.A.; Herrick, J.E.; Brejda, J.J. Soil resilience: A fundamental component of soil quality. Soil Sci. 1999, 164, 224–234. [Google Scholar] [CrossRef]
- Griffiths, B.S.; Philippot, L. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 2013, 37, 112–129. [Google Scholar] [CrossRef] [Green Version]
- FAO & ITPS. Status of the World’s Soil Resources (SWSR)—Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils; FAO: Rome, Italy, 2015. [Google Scholar]
- Vogel, H.-J.; Eberhardt, E.; Franko, U.; Lang, B.; Ließ, M.; Weller, U.; Wiesmeier, M.; Wollschläger, U. Quantitative Evaluation of Soil Functions: Potential and State. Front. Environ. Sci. 2019, 7, 164. [Google Scholar] [CrossRef]
- Moran, D.; Cossar, F.; Merkle, M.; Alexander, P. UK food system resilience tested by COVID-19. Nat. Food 2020, 1, 242. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.B. Actions now can curb food systems fallout from COVID-19. Nat. Food 2020. [Google Scholar] [CrossRef]
- Lal, R.; Horn, R.; Kosaki, T. Soil and the Sustainable Development Goals; Catena-Scheizerbart: Stuttgart, Germany, 2018. [Google Scholar]
- Rigden, A.J.; Mueller, N.D.; Holbrook, N.M.; Pillai, N.; Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 2020, 1, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Cania, B.; Vestergaard, G.; Suhadolc, M.; Mihelič, R.; Krauss, M.; Fliessbach, A.; Mäder, P.; Szumełda, A.; Schloter, M.; Schulz, S. Site-Specific Conditions Change the Response of Bacterial Producers of Soil Structure-Stabilizing Agents Such as Exopolysaccharides and Lipopolysaccharides to Tillage Intensity. Front. Microbiol. 2020, 11, 568. [Google Scholar] [CrossRef] [Green Version]
- Martin, G.; Barth, K.; Benoit, M.; Brock, C.; Destruel, M.; Dumont, B.; Grillot, M.; Hübner, S.; Magne, M.A.; Moerman, M.; et al. Potential of multi-species livestock farming to improve the sustainability of livestock farms: A review. Agric. Syst. 2020, 181, 102821. [Google Scholar] [CrossRef]
- Lal, R. Integrating Livestock with Crops and Trees. Front. Food Syst. 2020, in press. [Google Scholar]
- De Crevecoeur, J. Letters from an American Farmer (Reprinted from the Original Edition); Fox and Duffield: New York, NY, USA, 1904. [Google Scholar]
- Albrecht, A. Soil Fertility and Animal Health; Fred Hahne Printing Company: Oklahoma City, OK, USA, 1958. [Google Scholar]
- Brevik, E.C.; Steffan, J.J.; Rodrigo-Comino, J.; Neubert, D.; Burgess, L.C.; Cerdà, A. Connecting the public with soil to improve human health. Eur. J. Soil Sci. 2019, 70, 898–910. [Google Scholar] [CrossRef]
- Jones, S.D. Death in a Small Package: A Short History of Anthrax; The Johns Hopkins University Press: Baltimore, MD, USA, 2010. [Google Scholar] [CrossRef]
- Brevik, E.C.; Sauer, T.J. The past, present, and future of soils and human health studies. Soil 2015, 1, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Loynachan, T. Human Disease from Introduced and Resident Soilborne Pathogens. In Soils and Human Health; Brevik, E.C., Burgess, L.C., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 107–136. [Google Scholar] [CrossRef]
- Jeffery, S.; van der Putten, W.H. Soil Borne Diseases of Humans; Publications Office of the European Union: Luxembourg, 2011. [Google Scholar] [CrossRef]
- Oliver, M.A. Soil and human health: A review. Eur. J. Soil Sci. 1997, 48, 573–592. [Google Scholar] [CrossRef]
- Hurst, C.J.; Gerba, C.P.; Cech, I. Effects of environmental variables and soil characteristics on virus survival in soil. Appl. Environ. Microbiol. 1980, 40, 1067–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrahams, P.W. Soils: Their implications to human health. Sci. Total Environ. 2002, 291, 1–32. [Google Scholar] [CrossRef] [Green Version]
- David Walter, W.; Walsh, D.P.; Farnsworth, M.L.; Winkelman, D.L.; Miller, M.W. Soil clay content underlies prion infection odds. Nat. Commun. 2011, 2, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, G.; Li, X.; Hu, L.; Jiang, G. An Imperative Need for Research on the Role of Environmental Factors in Transmission of Novel Coronavirus (COVID-19). Environ. Sci. Technol. 2020, 54, 3730–3732. [Google Scholar] [CrossRef]
- Smith, P.; Gregory, P.J.; Van Vuuren, D.; Obersteiner, M.; Havlík, P.; Rounsevell, M.; Woods, J.; Stehfest, E.; Bellarby, J. Competition for land. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2010, 365, 2941–2957. [Google Scholar] [CrossRef] [Green Version]
- Bren d’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [Green Version]
- Olfs, H.W.; Blankenau, K.; Brentrup, F.; Jasper, J.; Link, A.; Lammel, J. Soil- and plant-based nitrogen-fertilizer recommendations in arable farming. J. Plant Nutr. Soil Sci. 2005, 168, 414–431. [Google Scholar] [CrossRef]
- Gilbert, N. The disappearing nutrient. Nature 2009, 461, 716–718. [Google Scholar] [CrossRef]
- Frossard, E.; Bünemann, E.; Jansa, J.; Oberson, A.; Feller, C. Concepts and practices of nutrient management in agro-ecosystems: Can we draw lessons from history to design future sus, tainable agricultural production systems? Bodenkultur 2009, 60, 43–60. [Google Scholar]
- Martínez-Alcántara, B.; Martínez-Cuenca, M.-R.; Bermejo, A.; Legaz, F.; Quiñones, A. Liquid Organic Fertilizers for Sustainable Agriculture: Nutrient Uptake of Organic versus Mineral Fertilizers in Citrus Trees. PLoS ONE 2016, 11, e0161619. [Google Scholar]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nacke, H.; Gonçalves, A.C.J.; Schwantes, D.; Nava, I.A.; Strey, L.; Coelho, G.F. Availability of heavy metals (Cd, Pb, And Cr) in agriculture from commercial fertilizers. Arch. Environ. Contam. Toxicol. 2013, 64, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Enti-Brown, S.; Yeboah, P.O.; Akoto-Bamford, S.; Anim, A.K.; Abole, H.; Kpattah, L.; Hanson, J.E.K.; Ahiamadjie, H.; Gyamfi, E.T. Quality control analysis of imported fertilizers used in Ghana: The macronutrients perspective. Proc. Int. Acad. Ecol. Environ. Sci. 2012, 2, 27–40. [Google Scholar]
- Gong, Q.; Chen, P.; Shi, R.; Gao, Y.; Zheng, S.-A.; Xu, Y.; Shao, C.; Zheng, X. Health Assessment of Trace Metal Concentrations in Organic Fertilizer in Northern China. Int. J. Environ. Res. Public Health 2019, 16, 1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Withers, P.J.A.; Ulén, B.; Stamm, C.; Bechmann, M. Incidental phosphorus losses—Are they significant and can they be predicted? J. Plant Nutr. Soil Sci. 2003, 166, 459–468. [Google Scholar] [CrossRef]
- Schoumans, O.F.; Chardon, W.J. Risk assessment methodologies for predicting phosphorus losses. J. Plant Nutr. Soil Sci. 2003, 166, 403–408. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Gundersen, P.; Ambus, P.; Augustin, J.; Beier, C.; Boeckx, P.; Dannenmann, M.; Sanchez Gimeno, B.; Kiese, R.; Kitzler, B.; et al. Nitrogen processes in terrestrial ecosystems. In The European Nitrogen Assessment: Sources, Effects and Policy Perspectives; Sutton, M.A., Howard, C.M., Willem Erisman, J., Billen, G., Bleeker, A., Eds.; Cambridge University Press: Cambridge, MA, USA, 2011; pp. 99–125. [Google Scholar]
- Haas, C.; Holthusen, D.; Mordhorst, A.; Lipiec, J.; Horn, R. Elastic and plastic soil deformation and its influence on emission of greenhouse gases. Int. Agrophysics 2016, 30, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.R.; Tindwa, H.; Kashem, A.M.; Panghaal, D.; Semu, E. Heavy Metals Bioavailability in Soils and Impact on Human Health. In Soil and Human Health; Lal, R., Ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Mahurpawar, M. Effects of heavy metals on human health. Int. J. Res.-Granthaalayah 2015, 2350, 2394–3629. [Google Scholar]
- Breure, A.M.; Lijzen, J.P.A.; Maring, L. Soil and land management in a circular economy. Sci. Total Environ. 2018, 624, 1125–1130. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Andersen, M.S. An introductory note on the environmental economics of the circular economy. Sustain. Sci. 2007, 2, 133–140. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Schram-Bijkerk, D.; Otte, P.; Dirven, L.; Breure, A.M. Indicators to support healthy urban gardening in urban management. Sci. Total Environ. 2018, 621, 863–871. [Google Scholar] [CrossRef]
- Glaser, B.; Birk, J.J. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de índio). Geochim. Cosmochim. Acta 2012, 82, 39–51. [Google Scholar] [CrossRef]
- Andrews, J.E.; Brimblecombe, P.; Jickells, T.D.; Liss, P.S.; Reid, B. An Introduction to Environmental Chemistry; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Mukumbuta, I.; Hatano, R. Do tillage and conversion of grassland to cropland always deplete soil organic carbon? Soil Sci. Plant Nutr. 2020, 66, 76–83. [Google Scholar] [CrossRef]
- Jin, T.; Shimizu, M.; Marutani, S.; Desyatkin, A.R.; Iizuka, N.; Hata, H.; Hatano, R. Effect of chemical fertilizer and manure application on N2O emission from reed canary grassland in Hokkaido, Japan. Soil Sci. Plant Nutr. 2010, 56, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Yamane, T.; Komada, M.; Koga, N.; Nishimura, S.; Kato, N. Effects of urea and lime nitrogen in pelleted cattle manure compost on nitrous oxide emissions from soils. Jpn. J. Soil Sci. Plant Nutr. 2017, 88, 413–419. [Google Scholar]
- Cordell, D.; White, S. Life’s Bottleneck: Sustaining the World’s Phosphorus for a Food Secure Future. Annu. Rev. Environ. Resour. 2014, 39, 161–188. [Google Scholar] [CrossRef]
- Bouma, J.; McBratney, A. Framing soils as an actor when dealing with wicked environmental problems. Geoderma 2013, 201, 130–139. [Google Scholar] [CrossRef]
- Lal, R. Managing world soils for food security and environmental quality. Adv. Agron. 2001, 74, 155–192. [Google Scholar]
- Lal, R. Sustainable Development Goals and the Intenational Union of Soil Sciences. In Soil and Sustainable Development Goals; Lal, R., Horn, R., Kosaki, T., Eds.; Catena-Scheizerbart: Stuttgart, Germany, 2018; pp. 189–196. [Google Scholar]
- Bauwens, M.; Compernolle, S.; Stavrakou, T.; Müller, J.-F.; van Gent, J.; Eskes, H.; Levelt, P.F.; van der A, R.; Veefkind, J.P.; Vlietinck, J.; et al. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophys. Res. Lett. 2020, e2020GL087978. [Google Scholar] [CrossRef]
- Shi, X.; Brasseur, G.P. The Response in Air Quality to the Reduction of Chinese Economic Activities during the COVID-19 Outbreak. Geophys. Res. Lett. 2020, e2020GL088070. [Google Scholar]
- Ogen, Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total Environ. 2020, 726, 138605. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil Science Beyond COVID-19. J. Soil Water Conserv. 2020, 75, 1–3. [Google Scholar] [CrossRef]
- Bekchanov, M.; Mirzabaev, A. Circular economy of composting in Sri Lanka: Opportunities and challenges for reducing waste related pollution and improving soil health. J. Clean. Prod. 2018, 202, 1107–1119. [Google Scholar] [CrossRef]
- Bloomfield, L.S.P.; McIntosh, T.L.; Lambin, E.F. Habitat fragmentation, livelihood behaviors, and contact between people and nonhuman primates in Africa. Landsc. Ecol. 2020, 35, 985–1000. [Google Scholar] [CrossRef]
- Yang, C.; Raskin, R.; Goodchild, M.; Gahegan, M. Geospatial Cyberinfrastructure: Past, present and future. Comput. Environ. Urban Syst. 2010, 34, 264–277. [Google Scholar] [CrossRef]
- Terribile, F.; Agrillo, A.; Bonfante, A.; Buscemi, G.; Colandrea, M.; D’Antonio, A.; De Mascellis, R.; De Michele, C.; Langella, G.; Manna, P.; et al. A Web-based spatial decision supporting system for land management and soil conservation. Solid Earth 2015, 6, 903–928. [Google Scholar] [CrossRef] [Green Version]
- Terribile, F.; Bonfante, A.; D’Antonio, A.; De Mascellis, R.; De Michele, C.; Langella, G.; Manna, P.; Mileti, F.A.; Vingiani, S.; Basile, A. A geospatial decision support system for supporting quality viticulture at the landscape scale. Comput. Electron. Agric. 2017, 140, 88–102. [Google Scholar] [CrossRef]
- Manna, P.; Bonfante, A.; Colandrea, M.; Di Vaio, C.; Langella, G.; Marotta, L.; Mileti, F.A.; Minieri, L.; Terribile, F.; Vingiani, S.; et al. A geospatial decision support system to assist olive growing at the landscape scale. Comput. Electron. Agric. 2020, 168, 105143. [Google Scholar] [CrossRef]
- Marano, G.; Langella, G.; Basile, A.; Cona, F.; De Michele, C.; Manna, P.; Teobaldelli, M.; Saracino, A.; Terribile, F. A Geospatial Decision Support System Tool for Supporting Integrated Forest Knowledge at the Landscape Scale. Forests 2019, 10, 690. [Google Scholar] [CrossRef] [Green Version]
- Piero, M.; Angelo, B.; Antonello, B.; Amedeo, D.; Carlo, D.M.; Michela, I.; Giuliano, L.; Florindo, M.A.; Paolo, P.; Simona, V.; et al. Soil Sealing: Quantifying Impacts on Soil Functions by a Geospatial Decision Support System. Land Degrad. Dev. 2017, 28, 2513–2526. [Google Scholar] [CrossRef]
- Langella, G.; Basile, A.; Giannecchini, S.; Moccia, F.D.; Mileti, F.A.; Munafó, M.; Pinto, F.; Terribile, F. SoilMonitor: An internet platformto challenge soil sealing in 3 Italy. Land Degrad. Dev. 2020, in press. [Google Scholar] [CrossRef]
- Siche, R. What is the impact of COVID-19 disease on agriculture? Sci. Agropecu. 2020, 11, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Atkeson, A. What Will Be the Economic Impact of COVID-19 in the US? Rough Estimates of Disease Scenarios (No. w26867); National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Sumner, A.; Hoy, C.; Ortiz-Juarez, E. Estimates of the Impact of COVID-19 on Global Poverty; UNU-Wider: Helsinki, Finland, 2020; pp. 800–809. [Google Scholar] [CrossRef]
- Hsiang, S.; Allen, D.; Annan-Phan, S.; Bell, K.; Bolliger, I.; Chong, T.; Druckenmiller, H.; Hultgren, A.; Huang, L.Y.; Krasovich, E.; et al. The Effect of Large-Scale Anti-Contagion Policies on the Coronavirus (COVID-19) Pandemic. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Van Lancker, W.; Parolin, Z. COVID-19, school closures, and child poverty: A social crisis in the making. Lancet Public Health 2020, 5, e243–e244. [Google Scholar] [CrossRef]
- Dunn, C.G.; Kenney, E.; Fleischhacker, S.E.; Bleich, S.N. Feeding Low-Income Children during the Covid-19 Pandemic. N. Engl. J. Med. 2020, 382, e40. [Google Scholar] [CrossRef]
- Rundle, A.G.; Park, Y.; Herbstman, J.B.; Kinsey, E.W.; Wang, Y.C. COVID-19–Related School Closings and Risk of Weight Gain Among Children. Obesity 2020, 28, 1008–1009. [Google Scholar] [CrossRef] [Green Version]
- Sajadi, M.M.; Habibzadeh, P.; Vintzileos, A.; Shokouhi, S.; Miralles-Wilhelm, F.; Amoroso, A. Temperature and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Dawson, L.A.; Hillier, S. Measurement of soil characteristics for forensic applications. Surf. Interface Anal. 2010, 42, 363–377. [Google Scholar] [CrossRef]
- Squazzoni, F.; Polhill, J.G.; Edmonds, B.; Ahrweiler, P.; Antosz, P.; Scholz, G.; Chappin, E.; Borit, M.; Verhagen, H.; Giardini, F.; et al. Computational Models That Matter During a Global Pandemic Outbreak: A Call to Action. J. Artif. Soc. Soc. Simul. 2020, 23, 10. [Google Scholar] [CrossRef] [Green Version]
- Pasternak, Z.; Luchibia, A.O.; Matan, O.; Dawson, L.; Gafny, R.; Shpitzen, M.; Avraham, S.; Jurkevitch, E. Mitigating temporal mismatches in forensic soil microbial profiles. Aust. J. Forensic Sci. 2019, 51, 685–694. [Google Scholar] [CrossRef]
- Dawson, L.A.; Macdonald, L.M.; Ritz, K. Plant wax compounds and soil microbial DNA profiles to ascertain urban land use type. Geol. Soc. Lond. Spec. Publ. 2019, 492, SP492-2018–65. [Google Scholar] [CrossRef]
- Dawson, L.A.; Auchie, D.; Parratt, D. The judicial system, reporting and giving evidence in court. In A Guide to Forensic Geology; Donnelly, L., Pirrie, D., Harrison, M., Ruffell, A., Dawson, L., Eds.; Geological Society: London, UK, 2020. [Google Scholar]
- Saadat, S.; Rawtani, D.; Hussain, C.M. Environmental perspective of COVID-19. Sci. Total Environ. 2020, 728, 138870. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Promoting “4 Per Thousand” and “Adapting African Agriculture” by south-south cooperation: Conservation agriculture and sustainable intensification. Soil Tillage Res. 2019, 188, 27–34. [Google Scholar] [CrossRef]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The Socio-Economic Implications of the Coronavirus and COVID-19 Pandemic: A Review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef]
Metal Contributing to Toxicity | Target Organs | Clinical Effects |
---|---|---|
Arsenic | Pulmonary Nervous System, Skin | Perforation of Nasal Septum, Respiratory Cancer, Peripheral Neuropathy: Dermatomes, Skin, Cancer |
Cadmium | Kidneys, Skeletal Pulmonary System | Proteinuria, Glucosuria, Osteomalacia, Aminoaciduria, Emphysema |
Lead | Nervous System, Hematopoietic System, Kidneys | Encephalopathy, Peripheral Neuropathy, Central Nervous Disorders, Anemia |
Mercury | Nervous System, Kidneys | Proteinuria |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lal, R.; Brevik, E.C.; Dawson, L.; Field, D.; Glaser, B.; Hartemink, A.E.; Hatano, R.; Lascelles, B.; Monger, C.; Scholten, T.; et al. Managing Soils for Recovering from the COVID-19 Pandemic. Soil Syst. 2020, 4, 46. https://doi.org/10.3390/soilsystems4030046
Lal R, Brevik EC, Dawson L, Field D, Glaser B, Hartemink AE, Hatano R, Lascelles B, Monger C, Scholten T, et al. Managing Soils for Recovering from the COVID-19 Pandemic. Soil Systems. 2020; 4(3):46. https://doi.org/10.3390/soilsystems4030046
Chicago/Turabian StyleLal, Rattan, Eric C. Brevik, Lorna Dawson, Damien Field, Bruno Glaser, Alfred E. Hartemink, Ryusuke Hatano, Bruce Lascelles, Curtis Monger, Thomas Scholten, and et al. 2020. "Managing Soils for Recovering from the COVID-19 Pandemic" Soil Systems 4, no. 3: 46. https://doi.org/10.3390/soilsystems4030046
APA StyleLal, R., Brevik, E. C., Dawson, L., Field, D., Glaser, B., Hartemink, A. E., Hatano, R., Lascelles, B., Monger, C., Scholten, T., Singh, B. R., Spiegel, H., Terribile, F., Basile, A., Zhang, Y., Horn, R., Kosaki, T., & Sánchez, L. B. R. (2020). Managing Soils for Recovering from the COVID-19 Pandemic. Soil Systems, 4(3), 46. https://doi.org/10.3390/soilsystems4030046