Spatial Evaluation of Greenhouse Gas Fluxes in a Sasa (Dwarf Bamboo) Invaded Wetland Ecosystem in Central Hokkaido, Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Fluxes of CO2 (Net Ecosystem Exchange of CO2: NEE), CH4 and N2O
2.3. Total Ecosystem Respiration and Gross Photosynthesis
2.4. Calculation of Cumulative GHG budgets
2.5. Physico-Chemical Properties of Peat and Dissolved Organic Carbon (DOC) Concentration of Groundwater at the Flux Measurement Plots
2.6. Observing the Spatial Distributions of Vegetation and Environmental Factors
2.7. Estimating the Distributions of Vegetation and Environmental Factors Using Satellite Imagery
2.7.1. Satellite Imagery
2.7.2. Estimating the Distribution of Vegetation
2.7.3. Estimating the Distributions of Environmental Factors
2.7.4. Verification of Estimation Accuracy
2.8. Statistical Analysis
3. Results
3.1. Spatio-Temporal Variation of GHG Fluxes
3.2. Estimating Cumulative NEE
3.3. Annual GHG Budgets
3.4. Relationships between Annual GHG Budgets and Environmental Factors
3.5. Estimated Distributions of Vegetation and Environmental Factors Using Satellite Imagery
3.6. Estimation of GHG Budget from the Entire Wetland
4. Discussion
4.1. Comparison with Previous GHG Flux Measurements
4.2. Spatial Variation of GHG Budgets
4.3. Sasa Invasion into the Sphagnum-Dominated Wetland
4.4. The Past, Present, and Future of the Bibai Wetland
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gorham, E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Turnen, J.; Pitkanen, A.; Tahvanainen, T.; Tolonen, K. Carbon accumulation in West Siberian mires, Russia. Glob. Biogeochem. Cycles 2001, 15, 285–296. [Google Scholar]
- Clymo, R.S. The limits of peat bog growth. Philos. Trans. R. Soc. Lond. B 1984, 303, 605–654. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). The physical science basis: Anthropogenic and natural radiative forcing. In Climate Change 2013; Myhre, G., Shindell, D., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Kasimir-Klemedtsson, A.; Klemedtsson, L.; Berglund, K.; Martikainen, P.; Silvola, J.; Oenema, O. Greenhouse gas emissions from farmed organic soils: A review. Soil Use Manag. 1997, 13, 245–250. [Google Scholar] [CrossRef]
- Schimel, D.; House, J.I.; Hibbard, K.A.; Bousquet, P.; Ciais, P.; Peylin, P.; Braswell, B.H.; Apps, M.J.; Baker, D.; Bondeau, A. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 2001, 414, 169–172. [Google Scholar] [CrossRef]
- Heikkinen, J.E.P.; Elsakov, V.; Martikainen, P.J. Carbon dioxide and methane dynamics and annual carbon balance in tundra wetland in NE Europe, Russia. Glob. Biogeochem. Cycles 2002, 16, 1115. [Google Scholar] [CrossRef]
- Bubier, J.L.; Bhatia, G.; Moore, T.R.; Roulet, N.T.; Lafleur, P.M. Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystems 2003, 6, 353–367. [Google Scholar]
- Bubier, J.L.; Frolking, S.; Crill, P.M.; Linder, E. Net ecosystem productivity and its uncertainty in a diverse boreal peatland. J. Geophys. Res. 1999, 104, 27683–27692. [Google Scholar] [CrossRef]
- Christensen, T.R.; Joabsson, A.; Ström, L.; Panikov, N.; Mastepanov, M.; Öquest, M.; Svensson, B.H.; Nykänen, H.; Martikainen, P.J.; Oskarsson, H. Factors controlling large-scale variations in methane emissions from wetlands. Geophys. Res. Lett. 2003, 30, 1414. [Google Scholar] [CrossRef]
- Shurpali, N.J.; Verma, S.B.; Clement, R.J.; Billesbach, D.P. Seasonal distribution of methane flux in a Minnesota peatland measured by eddy correlation. J. Geophys. Res. 1993, 98, 20649–20655. [Google Scholar] [CrossRef]
- Shurpali, N.J.; Verma, S.B. Micrometeorological measurements of methane flux in a Minnesota peatland during two growing seasons. Biogeochemistry 1998, 40, 1–15. [Google Scholar] [CrossRef]
- Liblik, L.K.; Moore, T.R. Methane emissions from wetlands in the zone of discontinuous permafrost: Fort Simpson, Northwest Territories, Canada. Glob. Biogeochem. Cycles 1997, 11, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Bellisario, L.M.; Bubier, J.L.; Moore, T.R.; Chanton, J.P. Controls on CH4 emissions from a northern peatland. Glob. Biogeochem. Cycles 1999, 13, 81–91. [Google Scholar] [CrossRef]
- Macdonald, J.A.; Fowler, D.; Hargreaves, K.J.; Skiba, U.; Leithe, I.D.; Murray, M.B. Methane emission rates from a northern wetland; response to temperature, water table and transport. Atmos. Environ. 1998, 32, 3219–3227. [Google Scholar] [CrossRef]
- Regina, K.; Silvola, J.; Martikainen, P.J. Short-term effects of changing water table on N2O fluxes from peat monoliths from natural and drained boreal peatlands. Glob. Chang. Biol. 1999, 5, 183–189. [Google Scholar] [CrossRef]
- Martikainen, P.J.; Nykänen, H.; Crill, P.; Silvola, J. Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 1993, 366, 51–53. [Google Scholar] [CrossRef]
- Martikainen, P.J.; Nykiinen, H.; Alm, J.; Silvola, J. Changes in fluxes on carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant Soil 1995, 168–169, 571–577. [Google Scholar] [CrossRef]
- Nykänen, H.; Alm, J.; Lang, K.; Silvola, J.; Martikainen, P.J. Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. J. Biogeogr. 1995, 22, 351–357. [Google Scholar] [CrossRef]
- Heikkinen, J.E.P.; Virtanen, T.; Huttunen, J.T.; Elsakov, V.; Martikainen, P.J. Carbon balance in East European tundra. Glob. Biogeochem. Cycles 2004, 18, GB1023. [Google Scholar] [CrossRef]
- Bubier, J.; Moore, T.; Savage, T.; Crill, T. A comparison of methane flux in a boreal landscape between a dry and a wet year. Glob. Biogeochem. Cycles 2005, 19, GB1023. [Google Scholar] [CrossRef] [Green Version]
- Armentano, T.V.; Menges, E.S. Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. J. Ecol. 1986, 74, 755–774. [Google Scholar] [CrossRef]
- Fujita, H.; Igarashi, Y.; Hotes, S.; Takada, M.; Inoue, T.; Kaneko, M. An inventory of the mires of Hokkaido, Japan—Their development, classification, decline, and conservation. Plant Ecol. 2009, 200, 9–36. [Google Scholar] [CrossRef]
- Fujimura, Y.; Fujita, H.; Kato, K.; Yanagiya, S. Vegetation dynamics related to sediment accumulation in Kushiro Mire, northeastern Japan. Plant Ecol. 2008, 199, 115–124. [Google Scholar] [CrossRef]
- Oki, K.; Awadu, T.; Oguma, H.; Omasa, K. Spatial assessment of the alder tree in Kushiro mire, Japan using remotely sensed imagery—effects of the surrounding land use on Kushiro mire. Environ. Monit. Assess. 2005, 109, 243–253. [Google Scholar] [CrossRef]
- Fujimura, Y.; Fujita, H.; Takada, M.; Inoue, T. Relationship between hydrology and vegetation change from Sphagnum lawns to vascular plant Sasa communities. Landsc. Ecol. Eng. 2012, 8, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Takada, M.; Mishima, Y.; Natsume, S. Estimation of surface soil properties in peatland using ALOS/PALSAR. Landsc. Ecol. Eng. 2009, 5, 45–58. [Google Scholar] [CrossRef]
- Takada, M.; Inoue, T.; Mishima, Y.; Fujita, H.; Hirano, T.; Fujimura, Y. Geographical assessment of factors for Sasa expansion in the Sarobetsu Mire, Japan. J. Landsc. Ecol. 2012, 5, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Kasubuchi, T.; Miyaji, N.; Kohyama, K.; Yanagiya, S. The water conditions of the Bibai wetland and the investigation of its conservation method. Jpn. J. Soil Sci. Plant Nutr. 1994, 65, 326–333, (In Japanese with English Summary). [Google Scholar]
- Miyaji, N.; Ooi, N.; Noshiro, S.; Fujine, H.; Kohyama, K.; Kasubuchi, T.; Yanagiya, S. Formation process and vegetation history of the Bibai Peatland, central Hokkaido, Japan, during the Holocene. Jpn. J. Hist. Bot. 2000, 8, 15–31, (In Japanese with English Summary). [Google Scholar]
- Nagata, O.; Takakai, F.; Hatano, R. Effect of Sasa invasion on global warming potential in Sphagnum dominated poor fen in Bibai, Japan. Phyton 2005, 45, 299–307. [Google Scholar]
- Takakai, F.; Nagata, O.; Hatano, R. Effect of Sasa invasion on CO2, CH4 and N2O fluxes in Sphagnum dominated poor fen in Bibai, Hokkaido, Japan. Phyton 2005, 45, 319–326. [Google Scholar]
- Tokida, T.; Miyazaki, T.; Mizoguchi, M.; Nagata, O.; Takakai, F.; Kagemoto, A.; Hatano, R. Falling atmospheric pressure as a trigger for methane ebullition from peatland. Glob. Biogeochem. Cycles 2007, 21, GB2003. [Google Scholar] [CrossRef]
- Tokida, T.; Mizoguchi, M.; Miyazaki, T.; Kagemoto, A.; Nagata, O.; Hatano, R. Episodic release of methane bubbles from peatland during spring thaw. Chemosphere 2007, 70, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Kondo, R.; Endo, K. Various indices for determining the degree of decomposition and some physico-chemical properties of peat soils. Pedologist 1993, 37, 41–56, (In Japanese with English Summary). [Google Scholar]
- Kaila, A. Determination of the degree of humification in peat samples. Agric. Food Sci. 1956, 28, 18–35. [Google Scholar] [CrossRef]
- Nykänen, H.; Heikkinen, J.E.P.; Pirinen, L.; Tiilikainen, K.; Martikainen, P.J. Annual CO2 exchange and CH4 fluxes on a subarctic palsa mire during climatically different years. Glob. Biogeochem. Cycles 2003, 17, 1018. [Google Scholar] [CrossRef]
- Alm, J.; Talanov, A.V.; Saarnio, S.; Silvola, J.; Ikkonen, E.; Aaltonen, H.; Nykänen, H.; Martikainen, P.J. Reconstruction of the carbon balance for microsites in a boreal oligotrophic pine fen, Finland. Oecologia 1997, 110, 423–431. [Google Scholar] [CrossRef]
- Black, T.A.; den Hartog, G.; Neumann, H.H.; Blanken, P.D.; Yang, P.C.; Russel, C.; Nesic, Z.; Lee, X.; Chen, S.G.; Staebler, R.; et al. Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Glob. Chang. Biol. 1996, 2, 219–229. [Google Scholar] [CrossRef]
- Aurela, M.; Tuovinen, J.P.; Laurila, T. Net CO2 exchange of a subarctic mountain birch ecosystem. Theor. Appl. Climatol. 2001, 70, 135–148. [Google Scholar] [CrossRef]
- Greco, S.; Baldocchi, D. Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Glob. Chang. Biol. 1996, 2, 183–197. [Google Scholar] [CrossRef]
- Whiting, G.J.; Chanton, J.P.; Bartlett, D.S.; Happell, J.D. Relationship between CH4 emission, biomass, and CO2 exchange in a subtropical grassland. J. Geophys. Res. 1991, 96, 13067–13071. [Google Scholar] [CrossRef]
- Chasar, L.S.; Chanton, J.P.; Glaser, P.H.; Siegel, D.I. Methane concentration and stable isotope distribution as evidence of rhizosphereic processes: Comparison of a fen and bog in the Glacial Lake Agassiz Peatland complex. Ann. Bot. 2000, 86, 655–663. [Google Scholar] [CrossRef] [Green Version]
- Frenzel, P.; Karofeld, E. CH4 emission from a hollow-ridge complex in a raised bog: The role of CH4 production and oxidation. Biogeochemistry 2000, 51, 91–112. [Google Scholar] [CrossRef]
- Raghoebarsing, A.A.; Smolders, A.J.P.; Schmid, M.C.; Rijpstra, W.I.C.; Wolters-Arts, M.; Derksen, J.; Jetten, M.S.; Schouten, S.; Damsté, J.S.S.; Lamers, L.P.; et al. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 2005, 436, 1153–1156. [Google Scholar] [CrossRef]
- Whiting, G.J.; Chanton, J.P. Plant-dependent CH4 emission in subarctic Canadian fen. Glob. Biogeochem. Cycles 1992, 6, 225–231. [Google Scholar] [CrossRef]
- Waddington, J.M.; Roulet, N.T.; Swanson, R.V. Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. J. Geophys. Res. 1996, 101, 22775–22785. [Google Scholar] [CrossRef]
- King, J.Y.; Reeburgh, W.S.; Regli, S.R. Methane emission and transport by arctic sedge in Alaska: Results of a vegetation removal experiment. J. Geophys. Res. 1998, 103, 29083–29092. [Google Scholar] [CrossRef]
- Joabsson, A.; Christensen, T.R.; Wallen, B. Vascular plant controls on methane emission from northern peatforming wetlands. Trends Ecol. Evol. 1999, 14, 385–388. [Google Scholar] [CrossRef]
- Christensen, T.; Panikov, N.; Mastepanov, M.; Joabsson, A.; Stewart, A.; Oquist, M.; Sommerkorn, M.; Reynaud, S.; Svensson, B. Biotic controls on CO2 and CH4 exchange in wetlands—A closed environment study. Biogeochemistry 2003, 64, 337–354. [Google Scholar] [CrossRef]
- Johnson, L.C.; Damman, A.W.H. Decay and its regulation in Sphagnum peatlands. Adv. Bryol. 1993, 5, 249–296. [Google Scholar]
- Maljanen, M.; Shurpali, N.; Hytönen, J.; Mäkiranta, P.; Aro, L.; Potila, H.; Laine, J.; Li, C.; Martikainen, P.J. Afforestation does not necessarily reduce nitrous oxide emissions from managed boreal peat soils. Biogeochemistry 2012, 108, 199–218. [Google Scholar] [CrossRef]
- Aerts, R.; van Logtestijn, R.; van Staalduinen, M.; Toet, S. Nitrogen supply effects on productivity and potential leaf litter decay of Carex species from peatlands differing in nutrient limitation. Oecologia 1995, 104, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Nadelhoffer, K.J.; Gibhn, A.E.; Shaver, G.R.; Laundre, J.A. Effects of temperature and substrate quality on element mineralization in six Arctic soils. Ecology 1991, 72, 242–253. [Google Scholar] [CrossRef]
- Freeman, C.; Lock, M.A.; Reynolds, B. Impacts of climatic change on peatland hydrochemistry: A laboratory-based experiment. Chem. Ecol. 1993, 8, 49–59. [Google Scholar] [CrossRef]
- Fujimoto, T.; Iiyama, I.; Sakai, M.; Nagata, O.; Hasegawa, S. Comparison of evapotranspiration between indigenous vegetation and invading vegetation in a bog. Jpn. Soc. Soil Phys. 2006, 103, 39–47, (In Japanese with English Summary). [Google Scholar]
- Vitt, D.H.; Chee, W.L. The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetation 1990, 89, 87–106. [Google Scholar] [CrossRef]
- Glaser, P.H. Raised bogs in eastern North America—Regional controls for species richness and floristic assemblages. J. Ecol. 1992, 80, 535–554. [Google Scholar] [CrossRef]
- Gignac, L.D.; Gauthier, R.; Rochefort, L.; Bubier, J. Distribution and habitat niches of 37 peatland Cyperaceae species across a broad geographic range in Canada. Can. J. Bot. 2004, 82, 1292–1313. [Google Scholar] [CrossRef]
- Nordbakken, J.F. Fine-scale patterns of vegetation and environmental factors on an ombrotrophic mire expanse: A numerical approach. Nord. J. Bot. 1996, 16, 197–209. [Google Scholar] [CrossRef]
- Nordbakken, J.F. Plant niches along the water-table gradient on an ombrotrophic mire expanse. Ecography 1996, 19, 114–121. [Google Scholar] [CrossRef]
- Frolking, S.; Roulet, N.T.; Moore, T.R.; Lafleur, P.M.; Bubier, J.L.; Crill, P.M. Modeling the seasonal to annual carbon balance of Mer Bleue bog, Ontario, Canada. Glob. Biogeochem. Cycles 2002, 16, 1030. [Google Scholar] [CrossRef]
- Bubier, J.; Moore, T.R.; Crosby, G. Fine-scale vegetation distribution in a cool temperate peatland. Can. J. Bot. 2006, 84, 910–924. [Google Scholar] [CrossRef]
- Minkkinen, K.; Korhonen, R.; Savolainen, I.; Laine, J. Carbon balance and radiative forcing of Finnish peatlands 1900–2100-the impact of forestry drainage. Glob. Chang. Biol. 2002, 8, 785–799. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; Euskirchen, E.S. Carbon cycling and storage in world forests: Biome patterns related to forest age. Glob. Chang. Biol. 2004, 10, 2052–2077. [Google Scholar] [CrossRef]
Site | Sphagnum | Short-Sasa | Tall-Sasa | Ilex |
---|---|---|---|---|
RTOT (g C m−2 y−1) | 494 ± 39 a | 594 ± 117 a | 815 ± 119 a | 1713 ± 127 b |
PG (g C m−2 y−1) | 544 ± 18 a | 470 ± 76 a | 1055 ± 178 b | 2702 ± 148 c |
NEE (g C m−2 y−1) | −49.7 ± 40.2 bc | 124 ± 43 c | −240 ± 80 b | −990 ± 91 a |
CH4 (g C m−2 y−1) | 11.2 ± 1.9 b | 6.91 ± 2.52 ab | 3.42 ± 1.23 a | 0.169 ± 0.166 a |
N2O (mg N m−2 y−1) | 5.05 ± 4.02 a | 4.37 ± 3.91 a | −4.54 ± 9.24 a | 47.2 ± 9.5 b |
Net GHG (g CO2-eq m−2 y−1) | 326 ± 203 c | 771 ± 130 c | −728 ± 302 b | −3599 ± 335 a |
Sphagnum | Short-Sasa | Tall-Sasa | Ilex | |
---|---|---|---|---|
Moisture content (%) | 90.4 ± 0.8 b | 88.4 ± 0.8 b | 88.5 ± 0.9 b | 76.8 ± 4.4 a |
Kaila’s degree of humification | 19.6 ± 1.0 a | 31.7 ± 1.7 b | 35.9 ± 2.0 b | 30.2 ± 3.3 b |
C/N ratio | 19.3 ± 0.8 c | 14.8 ± 0.2 ab | 16.0 ± 0.4 b | 13.5 ± 0.2 a |
T-N (%) | 1.84 ± 0.07 a | 2.15 ± 0.20 a | 2.39 ± 0.17 a | 1.69 ± 0.45 a |
T-C (%) | 35.5 ± 2.5 b | 31.5 ± 2.5 ab | 38.1 ± 2.8 b | 23.0 ± 6.6 a |
pH (H2O, 1:20) | 4.23 ± 0.05 a | 4.34 ± 0.03 a | 4.21 ± 0.05 a | 4.36 ± 0.07 a |
Groundwater DOC (mg L−1) | 19.9 ± 3.5 a | 32.0 ± 5.8 a | 31.6 ± 4.4 a | 30.6 ± 0.54 a |
Site | Sphagnum | Short-Sasa | Tall-Sasa | Ilex | Entire Wetland |
---|---|---|---|---|---|
Area (ha) | 3.86 | 0.122 | 17.3 | 0.21 | 21.5 |
CO2 (Mg C y−1) | −1.92 | 0.0561 | −38.7 | −2.07 | −42.6 |
CH4 (Mg C y−1) | 0.167 | 0.00150 | 0.756 | 0.00432 | 0.929 |
N2O (kg N y−1) | 0.486 | 0.0141 | 1.11 | 0.103 | 1.72 |
CO2 (Mg CO2-eq y−1) | −7.04 | 0.206 | −142 | −7.61 | −156 |
CH4 (Mg CO2-eq y−1) | 7.58 | 0.0680 | 34.3 | 0.196 | 42.1 |
N2O (Mg CO2-eq y−1) | 0.227 | 0.00659 | 0.522 | 0.0481 | 0.804 |
Net GHG (Mg CO2-eq y−1) | 0.76 | 0.280 | −107 | −7.36 | −113 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kagemoto, A.; Takakai, F.; Nagata, O.; Takada, M.; Hatano, R. Spatial Evaluation of Greenhouse Gas Fluxes in a Sasa (Dwarf Bamboo) Invaded Wetland Ecosystem in Central Hokkaido, Japan. Atmosphere 2021, 12, 448. https://doi.org/10.3390/atmos12040448
Kagemoto A, Takakai F, Nagata O, Takada M, Hatano R. Spatial Evaluation of Greenhouse Gas Fluxes in a Sasa (Dwarf Bamboo) Invaded Wetland Ecosystem in Central Hokkaido, Japan. Atmosphere. 2021; 12(4):448. https://doi.org/10.3390/atmos12040448
Chicago/Turabian StyleKagemoto, Akane, Fumiaki Takakai, Osamu Nagata, Masayuki Takada, and Ryusuke Hatano. 2021. "Spatial Evaluation of Greenhouse Gas Fluxes in a Sasa (Dwarf Bamboo) Invaded Wetland Ecosystem in Central Hokkaido, Japan" Atmosphere 12, no. 4: 448. https://doi.org/10.3390/atmos12040448
APA StyleKagemoto, A., Takakai, F., Nagata, O., Takada, M., & Hatano, R. (2021). Spatial Evaluation of Greenhouse Gas Fluxes in a Sasa (Dwarf Bamboo) Invaded Wetland Ecosystem in Central Hokkaido, Japan. Atmosphere, 12(4), 448. https://doi.org/10.3390/atmos12040448