Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (357)

Search Parameters:
Authors = Naveed Ahmad

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 20415 KiB  
Article
FireNet-KD: Swin Transformer-Based Wildfire Detection with Multi-Source Knowledge Distillation
by Naveed Ahmad, Mariam Akbar, Eman H. Alkhammash and Mona M. Jamjoom
Fire 2025, 8(8), 295; https://doi.org/10.3390/fire8080295 - 26 Jul 2025
Viewed by 495
Abstract
Forest fire detection is an essential application in environmental surveillance since wildfires cause devastating damage to ecosystems, human life, and property every year. The effective and accurate detection of fire is necessary to allow for timely response and efficient management of disasters. Traditional [...] Read more.
Forest fire detection is an essential application in environmental surveillance since wildfires cause devastating damage to ecosystems, human life, and property every year. The effective and accurate detection of fire is necessary to allow for timely response and efficient management of disasters. Traditional techniques for fire detection often experience false alarms and delayed responses in various environmental situations. Therefore, developing robust, intelligent, and real-time detection systems has emerged as a central challenge in remote sensing and computer vision research communities. Despite recent achievements in deep learning, current forest fire detection models still face issues with generalizability, lightweight deployment, and accuracy trade-offs. In order to overcome these limitations, we introduce a novel technique (FireNet-KD) that makes use of knowledge distillation, a method that maps the learning of hard models (teachers) to a light and efficient model (student). We specifically utilize two opposing teacher networks: a Vision Transformer (ViT), which is popular for its global attention and contextual learning ability, and a Convolutional Neural Network (CNN), which is esteemed for its spatial locality and inductive biases. These teacher models instruct the learning of a Swin Transformer-based student model that provides hierarchical feature extraction and computational efficiency through shifted window self-attention, and is thus particularly well suited for scalable forest fire detection. By combining the strengths of ViT and CNN with distillation into the Swin Transformer, the FireNet-KD model outperforms state-of-the-art methods with significant improvements. Experimental results show that the FireNet-KD model obtains a precision of 95.16%, recall of 99.61%, F1-score of 97.34%, and mAP@50 of 97.31%, outperforming the existing models. These results prove the effectiveness of FireNet-KD in improving both detection accuracy and model efficiency for forest fire detection. Full article
Show Figures

Figure 1

15 pages, 1031 KiB  
Article
A Comparative Analysis of Numerical Methods for Mathematical Modelling of Intravascular Drug Concentrations Using a Two-Compartment Pharmacokinetic Model
by Kaniz Fatima, Basit Ali, Abdul Attayyab Khan, Sadique Ahmed, Abdelhamied Ashraf Ateya and Naveed Ahmad
Math. Comput. Appl. 2025, 30(4), 70; https://doi.org/10.3390/mca30040070 - 7 Jul 2025
Viewed by 256
Abstract
Pharmacokinetic modelling is extensively used in understanding drug behavior, distribution and optimizing dosing regimens. This study presents a two-compartment pharmacokinetic model developed using three numerical approaches that includes the Euler method, fourth-order Runge–Kutta method, and Adams–Bashforth–Moulton method. The model incorporates key parameters including [...] Read more.
Pharmacokinetic modelling is extensively used in understanding drug behavior, distribution and optimizing dosing regimens. This study presents a two-compartment pharmacokinetic model developed using three numerical approaches that includes the Euler method, fourth-order Runge–Kutta method, and Adams–Bashforth–Moulton method. The model incorporates key parameters including elimination, transfer rate constants, and compartment volumes. The numerical approaches are used to simulate the concentration of drug profiles, which are then compared to the exact solution. The results reveal that with an average error of 1.54%, the fourth-order Runge–Kutta technique provides optimized results compared to other methods when the overall average error is taken into account, which shows that the Runge–Kutta method is better in terms of accuracy and consistency for drug concentration estimates in the two-compartment model. This mathematical model may be used to optimize dosing procedures by providing a less complex method. Along with that, it also monitors therapeutic medication levels, which provides accurate analysis for drug distribution and elimination kinetics. Full article
(This article belongs to the Topic Numerical Methods for Partial Differential Equations)
Show Figures

Figure 1

25 pages, 5796 KiB  
Article
Enhancing Sustainability and Functionality with Recycled Materials in Multi-Material Additive Manufacturing
by Nida Naveed, Muhammad Naveed Anwar, Mark Armstrong, Furqan Ahmad, Mir Irfan Ul Haq and Glenn Ridley
Sustainability 2025, 17(13), 6105; https://doi.org/10.3390/su17136105 - 3 Jul 2025
Viewed by 479
Abstract
This study presents a novel multi-material additive manufacturing (MMAM) strategy by combining virgin polylactic acid (vPLA) with recycled polylactic acid (rPLA) in a layered configuration to improve both performance and sustainability. Specimens were produced using fused deposition modelling (FDM) with various vPLA: rPLA [...] Read more.
This study presents a novel multi-material additive manufacturing (MMAM) strategy by combining virgin polylactic acid (vPLA) with recycled polylactic acid (rPLA) in a layered configuration to improve both performance and sustainability. Specimens were produced using fused deposition modelling (FDM) with various vPLA: rPLA ratios (33:67, 50:50, and 67:33) and two distinct layering approaches: one with vPLA forming the external layers and rPLA as the core, and a second using the reversed arrangement. Mechanical testing revealed that when vPLA is used as the exterior, printed components exhibit tensile strength and elongation improvements of 10–25% over conventional single-material prints, while the tensile modulus is largely influenced by the distribution of the two materials. Thermal analysis shows that both vPLA and rPLA begin to degrade at approximately 330 °C; however, rPLA demonstrates a higher end-of-degradation temperature (461.7 °C) and increased residue at elevated temperatures, suggesting improved thermal stability due to enhanced crystallinity. Full-field strain mapping, corroborated by digital microscopy (DM) and scanning electron microscopy (SEM), revealed that vPLA-rich regions display more uniform interlayer adhesion with minimal voids or microcracks, whereas rPLA-dominated areas exhibit greater porosity and a higher propensity for brittle failure. These findings highlight the role of optimal material placement in mitigating the inherent deficiencies of recycled polymers. The integrated approach of combining microstructural assessments with full-field strain mapping provides a comprehensive view of interlayer bonding and underlying failure mechanisms. Statistical analysis using analysis of variance (ANOVA) confirmed that both layer placement and material ratio have a significant influence on performance, with high effect sizes highlighting the sensitivity of mechanical properties to these parameters. In addition to demonstrating improvements in mechanical and thermal properties, this work addresses a significant gap in the literature by evaluating the combined effect of vPLA and rPLA in a multi-material configuration. The results emphasise that strategic material distribution can effectively counteract some of the limitations typically associated with recycled polymers, while also contributing to reduced dependence on virgin materials. These outcomes support broader sustainability objectives by enhancing energy efficiency and promoting a circular economy within additive manufacturing (AM). Overall, the study establishes a robust foundation for industrial-scale implementations, paving the way for future innovations in eco-efficient FDM processes. Full article
(This article belongs to the Special Issue 3D Printing for Multifunctional Applications and Sustainability)
Show Figures

Figure 1

16 pages, 387 KiB  
Article
Optimizing Low Crude Protein Diets with Coated Cysteamine Hydrochloride and Exogenous Alkaline Protease Supplementation in Broiler Chickens
by Hafiz Abu Bakar Siddique, Ehsaan Ullah Khan, Muhammad Muneeb, Saima Naveed, Elham Assadi Soumeh, Sohail Ahmad, Rashed A. Alhotan, Abdulrahman S. Alharthi and Ala E. Abudabos
Vet. Sci. 2025, 12(7), 622; https://doi.org/10.3390/vetsci12070622 - 27 Jun 2025
Viewed by 473
Abstract
Decreasing crude protein (CP) in broiler diets can improve sustainability but may compromise growth performance. Feed additives like coated cysteamine hydrochloride (CSH) and exogenous alkaline protease (EAP) can enhance protein utilization and promote gut health. While CSH modulates metabolism, EAP improves digestibility, but [...] Read more.
Decreasing crude protein (CP) in broiler diets can improve sustainability but may compromise growth performance. Feed additives like coated cysteamine hydrochloride (CSH) and exogenous alkaline protease (EAP) can enhance protein utilization and promote gut health. While CSH modulates metabolism, EAP improves digestibility, but their combined effects in low CP diets remain unclear. This study examines the synergistic impact of CSH and EAP on broiler growth, gut histology, carcass traits, immune response, and nutrient digestibility, aiming to optimize performance while reducing environmental impact. Six-hundred, 1-day-old broiler Ross-308 chicks (male) were allotted to four treatments, each consisting of six replicates of twenty-five birds, in a factorial arrangement using a completely randomized design. The treatments comprised two inclusion levels of coated CSH (0.2 and 0.4 g/kg with or without EAP (0 and 0.2 g/kg) in reduced CP diets. A ten percent reduction in CP from the standard requirements of Ross-308 (20.7% vs. 23% in the starter, 19.35% vs. 21.5% in the grower, and 17.55% vs. 19.5% in the finisher phase) was made in all the dietary treatments. A notable interaction (p ≤ 0.05) between CSH and EAP was detected in body weight gain (BWG), feed conversion ratio (FCR), carcass characteristics, and gut morphology during the whole study duration. Similarly, nutrient digestibility and immune response were also influenced by the combined use of CSH and EAP. The synergistic use of coated CSH at 0.2 g/kg or 0.4 g/kg with EAP in reduced CP broiler diets can enhance performance, intestinal health, carcass characteristics, immune response, and nutrient digestibility. Implications of these findings in commercial feeding practices could substantially improve the efficiency and sustainability of broiler production systems. Full article
(This article belongs to the Section Veterinary Food Safety and Zoonosis)
Show Figures

Figure 1

22 pages, 5753 KiB  
Article
Leveraging Degradation Events for Enhanced Remaining Useful Life Prediction
by Zeeshan Abbas, Muhammad Sharif, Musrat Hussain, Naeem Hussain, Mehboob Hussain and Naveed Ahmad Khan
Information 2025, 16(7), 542; https://doi.org/10.3390/info16070542 - 26 Jun 2025
Viewed by 363
Abstract
The remaining useful life (RUL) of complex mechanical systems is the primary aspect of prognostics and health management, which is critical for ensuring reliability and safety. Recent developments have shifted towards a data-driven approach, emphasizing empirical insights over expert opinions. The similarity-based data-driven [...] Read more.
The remaining useful life (RUL) of complex mechanical systems is the primary aspect of prognostics and health management, which is critical for ensuring reliability and safety. Recent developments have shifted towards a data-driven approach, emphasizing empirical insights over expert opinions. The similarity-based data-driven approach operates on the premise that systems with similar historical behaviors will likely exhibit similar future behaviors, making it suitable for RUL estimation. Conventionally, most similarity-based approaches utilize all historical data to identify reference systems for RUL estimations. However, not all historical events within a system hold equal significance for RUL. Certain events have a substantial impact on the remaining lifespan of a system. These significant and impactful events are called degradation events (DEs) in this study. Based on the hypothesis that systems undergoing similar DEs may share the same RUL, this study presents an innovative framework for RUL estimation that leverages only the DEs of a test system to identify reference systems that have experienced similar DEs. Furthermore, the model incorporates novel strategies for adjusting the RUL of the reference system based on the initial wear and degradation rates, thereby improving estimation accuracy. The effectiveness of the proposed model, in comparison with similar state-of-the-art models, is demonstrated through experiments on widely recognized jet engine datasets provided by NASA and bearing degradation data from the XJTU-SY. Full article
Show Figures

Figure 1

27 pages, 2232 KiB  
Review
Reprogramming Hairy Root Cultures: A Synthetic Biology Framework for Precision Metabolite Biosynthesis
by Chang Liu, Naveed Ahmad, Ye Tao, Hamad Hussain, Yue Chang, Abdul Wakeel Umar and Xiuming Liu
Plants 2025, 14(13), 1928; https://doi.org/10.3390/plants14131928 - 23 Jun 2025
Viewed by 761
Abstract
Hairy root cultures induced by Agrobacterium rhizogenes (Rhizobium rhizogenes) provide a sustainable approach to meet the growing demand for economically valuable plant-derived compounds in the face of depleting natural resources. These cultures exhibit rapid, hormone-independent growth and genetic stability, making them [...] Read more.
Hairy root cultures induced by Agrobacterium rhizogenes (Rhizobium rhizogenes) provide a sustainable approach to meet the growing demand for economically valuable plant-derived compounds in the face of depleting natural resources. These cultures exhibit rapid, hormone-independent growth and genetic stability, making them viable for producing bioactive compounds, plant-specialized metabolites, and recombinant proteins. However, challenges remain in optimizing large-scale production, improving bioreactor efficiency, and enhancing metabolite synthesis across different plant species. This review addresses these challenges by exploring the mechanisms behind the induction of hairy root cultures, their applications in genetic and metabolic engineering, and their potential in environmental remediation. The review further highlights recent advances in biotechnology and illustrates how the hairy root system can sustainably meet industrial, pharmaceutical, and agricultural needs. In addition, by pointing out essential research areas such as optimizing culture conditions, increasing metabolite yields, and scaling up production, this work strengthens the significance of hairy root cultures in meeting the demand for high-value products while ensuring sustainable resource utilization. In particular, the integration of hairy root systems with advanced genomic tools such as transcriptomics and CRISPR technology holds immense potential for accelerating pathway-specific metabolic engineering, enhancing biosynthetic flux, and expanding their applications in sustainable agriculture and pharmaceutical innovation. This convergence is expected to drive substantial economic value by optimizing the production of high-value bioactive compounds, improving crop resilience, and facilitating precision medicine. Future work involving systems and synthetic biology will be instrumental in unlocking novel functions and ensuring broader deployment of hairy root cultures across industrial biotechnological platforms. Full article
(This article belongs to the Special Issue Isolation and Characterization of Secondary Metabolites from Plants)
Show Figures

Figure 1

19 pages, 3071 KiB  
Review
The Known Unknowns: An Enigmatic Pathway of C17-Polyacetylenic Oxylipins in Carrot (Daucus carota L.)
by Abdul Wakeel Umar, Hamad Hussain and Naveed Ahmad
Curr. Issues Mol. Biol. 2025, 47(6), 471; https://doi.org/10.3390/cimb47060471 - 19 Jun 2025
Viewed by 465
Abstract
C17-polyacetylenic (PA) oxylipins are bioactive compounds in carrots (Daucus carota L.) with structurally unique features and diverse biological roles. These PA-derived compounds have garnered attention for their potential contributions to human health, particularly in cancer prevention and anti-inflammatory applications. This [...] Read more.
C17-polyacetylenic (PA) oxylipins are bioactive compounds in carrots (Daucus carota L.) with structurally unique features and diverse biological roles. These PA-derived compounds have garnered attention for their potential contributions to human health, particularly in cancer prevention and anti-inflammatory applications. This trade-off between health benefits and sensory quality underscores the importance of understanding the genetic and biochemical basis of PA biosynthesis, as it may allow for the development of carrots with optimized levels of these compounds that balance both nutritional and sensory qualities. In this review, we seek biochemically inspired strategies to elucidate the complexities of PA-derived oxylipins biosynthesis in carrots, a topic that remains largely unexplored. By integrating current knowledge on polyacetylene biology, biosynthesis, genetic and enzymatic factors involved in their production and the implications for enhancing the medicinal value of carrots we aim to provide a foundation for future research that could unlock the full potential of carrots as a source of health-promoting bioactive compounds. Full article
Show Figures

Figure 1

21 pages, 20038 KiB  
Article
CN2VF-Net: A Hybrid Convolutional Neural Network and Vision Transformer Framework for Multi-Scale Fire Detection in Complex Environments
by Naveed Ahmad, Mariam Akbar, Eman H. Alkhammash and Mona M. Jamjoom
Fire 2025, 8(6), 211; https://doi.org/10.3390/fire8060211 - 26 May 2025
Cited by 2 | Viewed by 771
Abstract
Fire detection remains a challenging task due to varying fire scales, occlusions, and complex environmental conditions. This paper proposes the CN2VF-Net model, a novel hybrid architecture that combines vision Transformers (ViTs) and convolutional neural networks (CNNs), effectively addressing these challenges. By leveraging the [...] Read more.
Fire detection remains a challenging task due to varying fire scales, occlusions, and complex environmental conditions. This paper proposes the CN2VF-Net model, a novel hybrid architecture that combines vision Transformers (ViTs) and convolutional neural networks (CNNs), effectively addressing these challenges. By leveraging the global context understanding of ViTs and the local feature extraction capabilities of CNNs, the model learns a multi-scale attention mechanism that dynamically focuses on fire regions at different scales, thereby improving accuracy and robustness. The evaluation on the D-Fire dataset demonstrate that the proposed model achieves a mean average precision at an IoU threshold of 0.5 (mAP50) of 76.1%, an F1-score of 81.5%, a recall of 82.8%, a precision of 83.3%, and a mean IoU (mIoU50–95) of 77.1%. These results outperform existing methods by 1.6% in precision, 0.3% in recall, and 3.4% in F1-score. Furthermore, visualizations such as Grad-CAM heatmaps and prediction overlays provide insight into the model’s decision-making process, validating its capability to effectively detect and segment fire regions. These findings underscore the effectiveness of the proposed hybrid architecture and its applicability in real-world fire detection and monitoring systems. With its superior performance and interpretability, the CN2VF-Net architecture sets a new benchmark in fire detection and segmentation, offering a reliable approach to protecting life, property, and the environment. Full article
Show Figures

Figure 1

23 pages, 4539 KiB  
Review
Interactions of Fe and Zn Nanoparticles at Physiochemical, Biochemical, and Molecular Level in Horticultural Crops Under Salt Stress: A Review
by Jinyang Weng, Lu Xu, Pengli Li, Wei Xing, Saeed ur Rahman, Naveed Ahmad, Muhammad Naeem, Jun Lu and Asad Rehman
Horticulturae 2025, 11(4), 442; https://doi.org/10.3390/horticulturae11040442 - 21 Apr 2025
Viewed by 747
Abstract
Salinity is a major abiotic stress that affects the growth and yield of horticultural crops. By raising the levels of sodium and chlorine ions in plant cells, salinity disrupts various morphological, physiological, epigenetic, and genetic traits, leading to excessive oxidative stress production. Through [...] Read more.
Salinity is a major abiotic stress that affects the growth and yield of horticultural crops. By raising the levels of sodium and chlorine ions in plant cells, salinity disrupts various morphological, physiological, epigenetic, and genetic traits, leading to excessive oxidative stress production. Through a variety of redox methods, the plants can partially alleviate this disorder and restore the cell to its initial state. At cell level, cellular redox adaptation plays a potential role coping with salinity stress in all plants; however, if the salt dose is excessive, the plants might not be able to respond appropriately and may even perish from salt stress. Scientists have proposed many solutions to this issue in recent years. One of the newest and most effective technologies to enter this field is nanotechnology, which has produced some extremely impressive outcomes. However, the molecular mechanism and interaction between nanoparticles in horticultural crops remains unclear. In order to take a step toward resolving the current doubts for researchers in this field, we have attempted to conclude the most recent articles regarding how iron oxide nanoparticles (FeO-NPs) and zinc oxide nanoparticles (ZnO–NPs) could aid salt-stressed plants in restoring cellular function under saline conditions in horticulture crops. Further, different inoculation modes of NPs mediated changes in physiological attributes; biochemical and genetic expressions of plants under salt stress have been discussed. This article also discussed the limitations, risk, and challenges of NPs in the food chain. Full article
(This article belongs to the Special Issue Horticulture Plants Stress Physiology—2nd Edition)
Show Figures

Graphical abstract

14 pages, 717 KiB  
Article
Influence of Dietary Supplementation with Yeast Culture and Microencapsulated Butyric Acid on Growth Performance, Carcass Traits, Gut Health, and Immune Status in Broilers
by Azhar Nazir, Ehsaan Ullah Khan, Muhammad Muneeb, Shafqat Nawaz Qaisrani, Saima Naveed, Sohail Ahmad, Rao Muhammad Kashif Yameen, Ali R. Al Sulaiman, Rashed A. Alhotan and Ala E. Abudabos
Vet. Sci. 2025, 12(4), 359; https://doi.org/10.3390/vetsci12040359 - 12 Apr 2025
Viewed by 776
Abstract
The study aimed to examine the effects of dietary supplementation with microencapsulated butyric acid (EBA) and yeast culture (YC) in broiler diets. A total of 450 Ross-308 broiler chicks were selected and randomly allocated to five dietary treatments with six replicates (15 birds [...] Read more.
The study aimed to examine the effects of dietary supplementation with microencapsulated butyric acid (EBA) and yeast culture (YC) in broiler diets. A total of 450 Ross-308 broiler chicks were selected and randomly allocated to five dietary treatments with six replicates (15 birds per replicate) in a complete block design. The experimental diets included the following treatments: (1) Negative control (NC) with basal diet without any additives. (2) Positive control (PC) with basal diet + 0.2 g/kg enramycin. (3) EBA, basal diet + 0.3 g/kg EBA. (4) YC, basal diet + 1 g/kg YC. (5) EBA+YC, basal diet + 0.3 g/kg EBA and 1 g/kg YC. The results indicated a non-significant effect on feed intake (FI) during the experiment periods. However, the EBA+YC treatment exhibited significantly increased body weight gain (BWG), better feed conversion ratio (FCR), and enhanced carcass traits (p < 0.05) compared to other treatments. A significant effect was observed for the immune organ weights and ND titters. Villus height (VH) and the ratio of villus height-to-crypt depth (VH: CD) were noted for EBA+YC across all other treatments. Ileal microbial analysis revealed a significantly lower count of E. coli and Salmonella in the ileal digesta of broiler chickens in the EBA+YC treatment compared to the NC group (p < 0.05). In conclusion, dietary supplementation with any supplement positively influences the broiler’s performance, carcass characteristics, gut health, and immune status over the NC group. More pronounced improvements were obtained from the EBA+YC group, indicating that EBA and YC had a synergistic effect on broilers. Full article
Show Figures

Figure 1

2 pages, 1235 KiB  
Correction
Correction: Khan et al. Anti-Oxidative and Anti-Apoptotic Oligosaccharides from Pichia pastoris-Fermented Cress Polysaccharides Ameliorate Chromium-Induced Liver Toxicity. Pharmaceuticals 2024, 17, 958
by Imdad Ullah Khan, Aqsa Aqsa, Yusra Jamil, Naveed Khan, Amjad Iqbal, Sajid Ali, Muhammad Hamayun, Abdulwahed Fahad Alrefaei, Turki Kh. Faraj, Bokyung Lee and Ayaz Ahmad
Pharmaceuticals 2025, 18(3), 365; https://doi.org/10.3390/ph18030365 - 4 Mar 2025
Viewed by 444
Abstract
In the original publication [...] Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 10

22 pages, 3952 KiB  
Article
Seismic Site Amplification Characteristics of Makran Subduction Zone Using 1D Non-Linear Ground Response Analysis
by Hammad Raza, Naveed Ahmad, Muhammad Aaqib, Turab H. Jafri and Mohsin Usman Qureshi
Appl. Sci. 2025, 15(4), 1775; https://doi.org/10.3390/app15041775 - 10 Feb 2025
Viewed by 1093
Abstract
The Makran Subduction Zone (MSZ) is a tectonic plate boundary where the Arabian Plate is subducting beneath the Eurasian Plate. This study investigated the dynamic response in the Gwadar region, located in the eastern part of the MSZ. A suite of seismic records [...] Read more.
The Makran Subduction Zone (MSZ) is a tectonic plate boundary where the Arabian Plate is subducting beneath the Eurasian Plate. This study investigated the dynamic response in the Gwadar region, located in the eastern part of the MSZ. A suite of seismic records compatible with the Building Code of Pakistan (BCP:2021) rock design spectrum was used as the input ground motions at the bedrock. The amplification characteristics were assessed through a series of one-dimensional (1D) site response analyses utilizing a non-linear (NL) approach. The results revealed significant de-amplification in soft soils at short spectral periods. A general depth-wise decrease in the shear stress ratio and peak ground acceleration values was observed, influenced by shear-strain-induced effects and shear wave velocity reversals within the site profiles. The code spectra, compared to the proposed design spectra, underestimated the site amplification for stiff soils (i.e., Site Class D) for periods of less than 0.32 s and overestimated it for soft soils (i.e., Site Class E) across all periods. These findings underscore the necessity for site-specific ground response analyses, particularly within the framework of the China–Pakistan Economic Corridor (CPEC). Full article
Show Figures

Figure 1

23 pages, 9524 KiB  
Article
Novel AlCo2O4/MWCNTs Nanocomposites for Efficient Degradation of Reactive Yellow 160 Dye: Characterization, Photocatalytic Efficiency, and Reusability
by Junaid Ahmad, Amir Ikhlaq, Muhammad Raashid, Uzma Ikhlaq, Umair Yaqub Qazi, Hafiz Tariq Masood, Tousif Hussain, Mohsin Kazmi, Naveed Ramzan, Asma Naeem, Ashraf Aly Hassan, Fei Qi and Rahat Javaid
Catalysts 2025, 15(2), 154; https://doi.org/10.3390/catal15020154 - 7 Feb 2025
Cited by 2 | Viewed by 1010
Abstract
The purpose of this work was to consider the decolorization efficiency of reactive yellow 160 (Ry-160) dye utilizing cobalt aluminum oxide (AlCo2O4)-anchored Multi-Walled Carbon Nanotubes (AlCo2O4/MWCNTs) nanocomposites as catalysts for the first time in a [...] Read more.
The purpose of this work was to consider the decolorization efficiency of reactive yellow 160 (Ry-160) dye utilizing cobalt aluminum oxide (AlCo2O4)-anchored Multi-Walled Carbon Nanotubes (AlCo2O4/MWCNTs) nanocomposites as catalysts for the first time in a photocatalytic process under natural sunlight irradiation. The compositional, morphological, and functional group analyses of AlCo2O4 and AlCo2O4/MWCNTs were performed by utilizing Energy Dispersive Spectroscopy (EDS), Field Emission Scanning Electron Microscopy (FE-SEM), and Fourier Transform Infrared (FTIR) Spectroscopy, respectively. A UV-Vis (UV-Vis) spectrophotometer was used to investigate degradation efficiency. The results exhibited a reduction in the optical bandgap for AlCo2O4/MWCNTs nanocomposites as catalysts from 1.5 to 1.3 eV compared with pure spinel AlCo2O4 nanocomposites. AlCo2O4/MWCNTs nanocomposites showed excellent photocatalytic behavior, and around 96% degradation of Ry-160 dye was observed in just 20 min under natural sunlight, showing first-order kinetics with rate constant of 0.151 min−1. The results exhibited outstanding stability and reusability for AlCo2O4/MWCNTs by maintaining more than 90% photocatalytic efficiency even after seven successive operational cycles. The betterment of the photocatalytic behavior of AlCo2O4/MWCNTs nanocomposites as compared to AlCo2O4 nanocomposites owes to the first-rate storage capacity of electrons in MWCNTs, due to which the catalyst became an excellent electron acceptor. Furthermore, the permeable structure of MWCNTs results in a greater surface area leading to the onset of more active sites, and, in turn, it also boosts conductivity and reduces the formation of agglomerates on the surface of catalysts, which inhibits e−/h+ pair recombination. Concisely, the synthesis of a novel AlCo2O4/MWCNTs catalyst with excellent and fast photocatalytic activity was the aim of this study. Full article
(This article belongs to the Special Issue Photocatalysis towards a Sustainable Future)
Show Figures

Figure 1

23 pages, 2343 KiB  
Review
Autophagy and Cancer: Insights into Molecular Mechanisms and Therapeutic Approaches for Chronic Myeloid Leukemia
by Mohd Adnan Kausar, Sadaf Anwar, Yusuf Saleem Khan, Ayman A. Saleh, Mai Ali Abdelfattah Ahmed, Simran Kaur, Naveed Iqbal, Waseem Ahmad Siddiqui and Mohammad Zeeshan Najm
Biomolecules 2025, 15(2), 215; https://doi.org/10.3390/biom15020215 - 2 Feb 2025
Cited by 4 | Viewed by 2166
Abstract
Autophagy is a critical cellular process that maintains homeostasis by recycling damaged or aberrant components. This process is orchestrated by a network of proteins that form autophagosomes, which engulf and degrade intracellular material. In cancer, autophagy plays a dual role: it suppresses tumor [...] Read more.
Autophagy is a critical cellular process that maintains homeostasis by recycling damaged or aberrant components. This process is orchestrated by a network of proteins that form autophagosomes, which engulf and degrade intracellular material. In cancer, autophagy plays a dual role: it suppresses tumor initiation in the early stages but supports tumor growth and survival in advanced stages. Chronic myeloid leukemia (CML), a hematological malignancy, is characterized by the Philadelphia chromosome, a chromosomal abnormality resulting from a translocation between chromosomes 9 and 22. Autophagy has emerged as a key factor in CML pathogenesis, promoting cancer cell survival and contributing to resistance against tyrosine kinase inhibitors (TKIs), the primary treatment for CML. Targeting autophagic pathways is being actively explored as a therapeutic approach to overcome drug resistance and enhance cancer cell death. Recent research highlights the intricate interplay between autophagy and CML progression, underscoring its role in disease biology and treatment outcomes. This review aims to provide a comprehensive analysis of the molecular and cellular mechanisms underlying CML, with a focus on the therapeutic potential of targeting autophagy. Full article
(This article belongs to the Special Issue Cellular Signaling in Cancer)
Show Figures

Graphical abstract

16 pages, 1679 KiB  
Article
Vibration Analysis of a Tetra-Layered FGM Cylindrical Shell Using Ring Support
by Asra Ayub, Naveed Hussain, Ahmad N. Al-Kenani and Madiha Ghamkhar
Mathematics 2025, 13(1), 155; https://doi.org/10.3390/math13010155 - 3 Jan 2025
Cited by 1 | Viewed by 826
Abstract
In the present study, the vibration characteristics of a cylindrical shell (CS) made up of four layers are investigated. The ring is placed in the axial direction of a four-layered functionally graded material (FGM) cylindrical shell. The layers are made of functionally graded [...] Read more.
In the present study, the vibration characteristics of a cylindrical shell (CS) made up of four layers are investigated. The ring is placed in the axial direction of a four-layered functionally graded material (FGM) cylindrical shell. The layers are made of functionally graded material (FGM). The materials used are stainless steel, aluminum, zirconia, and nickel. The frequency equations are derived by employing Sander’s shell theory and the Rayleigh–Ritz (RR) mathematical technique. Vibration characteristics of functionally graded materials have been investigated using polynomial volume fraction law for all FGM layers. The characteristic beam functions have been used to determine the axial model dependency. The natural frequencies are obtained with simply supported boundary conditions by using MATLAB software. Several analogical assessments of shell frequencies have also been conducted to confirm the accuracy and dependability of the current technique. Full article
Show Figures

Figure 1

Back to TopTop