A Comparative Analysis of Numerical Methods for Mathematical Modelling of Intravascular Drug Concentrations Using a Two-Compartment Pharmacokinetic Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Two Compartmental Pharmacokinetic Model
2.2. Numerical Methods
2.2.1. Euler Method
2.2.2. Fourth-Order Runge–Kutta Method
2.2.3. Adams–Bashforth–Moulton Method
2.3. Analytical Approach
3. Results
Error Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grobler, L.; Laubscher, R.; van der Merwe, J.; Herbst, P.G. Evaluation of Aortic Valve Pressure Gradients for Increasing Severities of Rheumatic and Calcific Stenosis Using Empirical and Numerical Approaches. Math. Comput. Appl. 2024, 29, 33. [Google Scholar] [CrossRef]
- Frixione, M.G.; Roffet, F.; Adami, M.A.; Bertellotti, M.; D’Amico, V.L.; Delrieux, C.; Pollicelli, D. Integrating Deep Learning into Genotoxicity Biomarker Detection for Avian Erythrocytes: A Case Study in a Hemispheric Seabird. Math. Comput. Appl. 2024, 29, 41. [Google Scholar] [CrossRef]
- Shah, K.; Ahmad, S.; Ullah, A.; Abdeljawad, T. Study of chronic myeloid leukemia with T-cell under fractal-fractional order model. Open Phys. 2024, 22, 20240032. [Google Scholar] [CrossRef]
- Eiman; Shah, K.; Sarwar, M.; Abdeljawad, T. A comprehensive mathematical analysis of fractal–fractional order nonlinear re-infection model. Alex. Eng. J. 2024, 103, 353–365. [Google Scholar] [CrossRef]
- Eiman; Shah, K.; Sarwar, M.; Abdeljawad, T. On mathematical model of infectious disease by using fractals fractional analysis. Discrete Contin. Dyn. Syst.-S 2024, 17, 3064–3085. [Google Scholar] [CrossRef]
- Shah, K.; Naz, H.; Abdeljawad, T.; Abdalla, B. Study of Fractional Order Dynamical System of Viral Infection Disease under Piecewise Derivative. CMES-Comput. Model. Eng. Sci. 2023, 136, 921–941. [Google Scholar] [CrossRef]
- Ahmed, T. Basic Pharmacokinetic Concepts and Some Clinical Applications; IntechOpen: Rijeka, Croatia, 2015. [Google Scholar]
- Jamei, M.; Dickinson, G.L.; Rostami-Hodjegan, A. A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: A tale of ‘bottom-up’vs ‘top-down’recognition of covariates. Drug Metab. Pharmacokinet. 2009, 24, 53–75. [Google Scholar]
- Kumar, A.; Mansour, H.M.; Friedman, A.; Blough, E.R.; Press, C. Nanomedicine in Drug Delivery; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Saint-Marcoux, F. Current practice of therapeutic drug monitoring. Ther. Drug Monit. Newer Drugs Biomark. 2012, 1, 103–120. [Google Scholar]
- Jones, H.; Rowland-Yeo, K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e63. [Google Scholar] [CrossRef]
- Ivanova, S.; Dimitrova, D.; Petrichev, M. Pharmacokinetics of ciprofloxacin in broiler chickens after single intravenous and intraingluvial administration. Maced. Veter-Rev. 2017, 40, 67–72. [Google Scholar] [CrossRef]
- Sacco, R.; Chiaravalli, G.; Guidoboni, G.; Layton, A.; Antman, G.; Shalem, K.W.; Verticchio, A.; Siesky, B.; Harris, A. Reduced-Order Model for Cell Volume Homeostasis: Application to Aqueous Humor Production. Math. Comput. Appl. 2024, 30, 13. [Google Scholar] [CrossRef] [PubMed]
- Soejima, K.; Sato, H.; Hisaka, A. Age-related change in hepatic clearance inferred from multiple population pharmacokinetic studies: Comparison with renal clearance and their associations with organ weight and blood flow. Clin. Pharmacokinet. 2022, 61, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Upton, R.N. The two-compartment recirculatory pharmacokinetic model—An introduction to recirculatory pharmacokinetic concepts. Br. J. Anaesth. 2004, 92, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Sunil, S.; Jambhekar, B.; Philip, J. Basic Pharmacokinetics; Pharmaceutical Press: London, UK, 2022. [Google Scholar]
- Tomita, T.; Ohara-Nemoto, Y.; Moriyama, H.; Ozawa, A.; Takeda, Y.; Kikuchi, K. A Novel In Vitro Pharmacokinetic/Pharmacodynamic Model Based on Two-Compartment Open Model Used to Simulate Serum Drug Concentration-Time Profiles. Microbiol. Immunol. 2007, 51, 567–575. [Google Scholar] [CrossRef]
- Melin, P.; Sánchez, D.; Pulido, M.; Castillo, O. Comparative study of metaheuristic optimization of convolutional neural networks applied to face mask classification. Math. Comput. Appl. 2023, 28, 107. [Google Scholar] [CrossRef]
- Péchère, J.-C.; Péchère, M.-M.; Dugal, R. Clinical pharmacokinetics of sisomicin: Two-compartment model analysis of serum data after IV and IM administration. Eur. J. Clin. Pharmacol. 1976, 10, 251–256. [Google Scholar] [CrossRef]
- Gordon, M.; Markham, J.; Hartlein, J.M.; Koller, J.M.; Loftin, S.; Black, K.J. Intravenous levodopa administration in humans based on a two-compartment kinetic model. J. Neurosci. Methods 2007, 159, 300–307. [Google Scholar] [CrossRef]
- Sa’adah, A.N.; Widodo; Indarsih. Drug elimination in two-compartment pharmacokinetic models with nonstandard finite difference approach. IAENG Int. J. Appl. Math. 2020, 50, 1–7. [Google Scholar]
- Ehrnebo, M. Pharmacokinetics and distribution properties of pentobarbital in humans following oral and intravenous administration. J. Pharm. Sci. 1974, 63, 1114–1118. [Google Scholar] [CrossRef]
- Metzler, C.M. Usefulness of the two-compartment open model in pharmacokinetics. J. Am. Stat. Assoc. 1971, 66, 49–53. [Google Scholar] [CrossRef]
- Mesnil, F.; Dubruc, C.; Mentre, F.; Huet, S.; Mallet, A.; Thenot, J.-P. Pharmacokinetic analysis of mizolastine in healthy young volunteers after single oral and intravenous doses: Noncompartmental approach and compartmental modeling. J. Pharmacokinet. Biopharm. 1997, 25, 125–147. [Google Scholar] [CrossRef]
- Kiang, T.K.; Sherwin, C.M.; Spigarelli, M.G.; Ensom, M.H. Fundamentals of population pharmacokinetic modelling: Modelling and software. Clin. Pharmacokinet. 2012, 51, 515–525. [Google Scholar] [CrossRef]
- Bailey, J.M.; Shafer, S.L. A simple analytical solution to the three-compartment pharmacokinetic model suitable for computer-controlled infusion pumps. IEEE Trans. Biomed. Eng. 1991, 38, 522–525. [Google Scholar] [CrossRef]
- Akanbi, M.A.; Patidar, K.C. Application of Geometric Explicit Runge–Kutta Methods to Pharmacokinetic Models. In Proceedings of the International Conference on Modeling and Simulation in Engineering, Economics and Management, New Rochelle, NY, USA, 30 May–1 June 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 259–269. [Google Scholar]
- Azizan, F.; Sathasivam, S.; Velavan, M.; Azri, N.; Manaf, N. Prediction of drug concentration in human bloodstream using Adams-Bashforth-Moulton method. J. Adv. Res. Appl. Sci. Eng. Technol. 2023, 29, 53–71. [Google Scholar] [CrossRef]
- Hamzah, N.; Mamat, M.; Kavikumar, J.; Chong, L.; Ahmad, N. Impulsive differential equations by using the Euler method. Appl. Math. Sci. 2010, 4, 3219–3232. [Google Scholar]
- Ai, J.; Dai, J.; Zhai, C.; Sun, W. Pulse Drug Delivery Strategy Based on Pharmacokinetic-Pharmacodynamic (PK-PD) Model of Tolerance. Chem. Eng. Trans. 2022, 94, 1279–1284. [Google Scholar]
- Agarwal, P.; Singh, R.; ul Rehman, A. Numerical solution of hybrid mathematical model of dengue transmission with relapse and memory via Adam–Bashforth–Moulton predictor-corrector scheme. Chaos Solitons Fractals 2021, 143, 110564. [Google Scholar] [CrossRef]
- Agoram, B.M.; Martin, S.W.; Van der Graaf, P.H. The role of mechanism-based pharmacokinetic–pharmacodynamic (PK–PD) modelling in translational research of biologics. Drug Discov. Today 2007, 12, 1018–1024. [Google Scholar] [CrossRef]
- Wang, Z. A numerical method for delayed fractional-order differential equations. J. Appl. Math. 2013, 2013, 256071. [Google Scholar] [CrossRef]
- Chen, B.; Abuassba, A.O. Compartmental models with application to pharmacokinetics. Procedia Comput. Sci. 2021, 187, 60–70. [Google Scholar] [CrossRef]
- ICH. Q2 (R1): Validation of analytical procedures: Text and methodology. In Proceedings of the International Conference on Harmonization, Geneva, Switzerland, 2005; Volume 2005. Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 1 July 2025).
- Wu, X.; Nekka, F.; Li, J. Steady-state volume of distribution of two-compartment models with simultaneous linear and saturated elimination. J. Pharmacokinet. Pharmacodyn. 2016, 43, 447–459. [Google Scholar] [CrossRef]
- Gibaldi, M. Estimation of the pharmacokinetic parameters of the two-compartment open model from post-infusion plasma concentration data. J. Pharm. Sci. 1969, 58, 1133–1135. [Google Scholar] [CrossRef]
- Khanday, M.A.; Rafiq, A.; Nazir, K. Mathematical models for drug diffusion through the compartments of blood and tissue medium. Alex. J. Med. 2017, 53, 245–249. [Google Scholar] [CrossRef]
- Qiao, Y.; Xu, H.; Qi, H. Numerical simulation of a two-compartmental fractional model in pharmacokinetics and parameters estimation. Math. Methods Appl. Sci. 2021, 44, 11526–11536. [Google Scholar] [CrossRef]
- Egbelowo, O. Nonlinear elimination of drugs in one-compartment pharmacokinetic models: Nonstandard finite difference approach for various routes of administration. Math. Comput. Appl. 2018, 23, 27. [Google Scholar] [CrossRef]
Time | Euler’s Method | Fourth-Order Runge–Kutta Method | Adams–Bashforth–Moulton Method | Analytical Solution |
---|---|---|---|---|
0 | 0.0000 | 0.0000 | 0.0000 | −0.0013 |
1 | 35.2940 | 34.3460 | 34.5668 | 34.3452 |
2 | 50.3344 | 49.4835 | 49.6841 | 49.4845 |
3 | 56.4320 | 55.8598 | 55.9964 | 55.8631 |
4 | 58.5859 | 58.2448 | 58.3272 | 58.2505 |
5 | 59.0053 | 58.8158 | 58.8621 | 58.8239 |
6 | 58.6666 | 58.5668 | 58.5915 | 58.5773 |
7 | 58.0010 | 57.9515 | 57.9639 | 57.9643 |
8 | 57.1992 | 57.1770 | 57.1826 | 57.1920 |
9 | 56.3452 | 56.3375 | 56.3395 | 56.3547 |
10 | 55.4760 | 55.4760 | 55.4761 | 55.4953 |
Time | Euler’s Method | Fourth-Order Runge–Kutta Method | Adams–Bashforth–Moulton Method | Analytical Solution |
---|---|---|---|---|
0 | 200.0000 | 200.0000 | 200.0000 | 199.9900 |
1 | 163.7910 | 164.6810 | 164.4737 | 164.6789 |
2 | 146.5941 | 147.3956 | 147.2066 | 147.4002 |
3 | 137.8190 | 138.3619 | 138.2323 | 138.3723 |
4 | 132.7846 | 133.1135 | 133.0340 | 133.1295 |
5 | 129.4219 | 129.6111 | 129.5648 | 129.6323 |
6 | 126.8160 | 126.9233 | 126.8967 | 126.9496 |
7 | 124.5624 | 124.6247 | 124.6091 | 124.6559 |
8 | 122.4818 | 122.5206 | 122.5108 | 122.5566 |
9 | 120.4950 | 120.5221 | 120.5152 | 120.5626 |
10 | 118.5664 | 118.5882 | 118.5827 | 118.6331 |
Time | Euler’s Method | Fourth-Order Runge–Kutta Method | Adams–Bashforth–Moulton Method |
---|---|---|---|
0 | 0.0100 | 0.0100 | 0.0100 |
1 | 0.8879 | 0.0021 | 0.2052 |
2 | 0.8061 | 0.0046 | 0.1936 |
3 | 0.5533 | 0.0104 | 0.1400 |
4 | 0.3449 | 0.0160 | 0.0955 |
5 | 0.2104 | 0.0212 | 0.0675 |
6 | 0.1336 | 0.0263 | 0.0529 |
7 | 0.0935 | 0.0312 | 0.0468 |
8 | 0.0748 | 0.0360 | 0.0458 |
9 | 0.0676 | 0.0405 | 0.0474 |
10 | 0.0667 | 0.0449 | 0.0504 |
Time | Euler’s Method | Fourth-Order Runge–Kutta Method | Adams–Bashforth–Moulton Method |
---|---|---|---|
0 | 0.0013 | 0.0013 | 0.0013 |
1 | 0.9488 | 0.0008 | 0.2216 |
2 | 0.8499 | 0.0010 | 0.1996 |
3 | 0.5689 | 0.0033 | 0.1333 |
4 | 0.3354 | 0.0057 | 0.0767 |
5 | 0.1814 | 0.0081 | 0.0382 |
6 | 0.0893 | 0.0105 | 0.0142 |
7 | 0.0367 | 0.0128 | 0.0004 |
8 | 0.0072 | 0.0150 | 0.0094 |
9 | 0.0095 | 0.0172 | 0.0152 |
10 | 0.0193 | 0.0193 | 0.0192 |
Method | Central Compartment | Peripheral Compartment | Overall Average | Overall Average (%) |
---|---|---|---|---|
Euler Method | 0.2771 | 0.2953 | 0.2862 | 28.62 |
Fourth-Order Runge–Kutta Method | 0.0086 | 0.0221 | 0.0154 | 1.54 |
Adams–Bashforth–Moulton Method | 0.0663 | 0.0868 | 0.0766 | 7.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, K.; Ali, B.; Khan, A.A.; Ahmed, S.; Ateya, A.A.; Ahmad, N. A Comparative Analysis of Numerical Methods for Mathematical Modelling of Intravascular Drug Concentrations Using a Two-Compartment Pharmacokinetic Model. Math. Comput. Appl. 2025, 30, 70. https://doi.org/10.3390/mca30040070
Fatima K, Ali B, Khan AA, Ahmed S, Ateya AA, Ahmad N. A Comparative Analysis of Numerical Methods for Mathematical Modelling of Intravascular Drug Concentrations Using a Two-Compartment Pharmacokinetic Model. Mathematical and Computational Applications. 2025; 30(4):70. https://doi.org/10.3390/mca30040070
Chicago/Turabian StyleFatima, Kaniz, Basit Ali, Abdul Attayyab Khan, Sadique Ahmed, Abdelhamied Ashraf Ateya, and Naveed Ahmad. 2025. "A Comparative Analysis of Numerical Methods for Mathematical Modelling of Intravascular Drug Concentrations Using a Two-Compartment Pharmacokinetic Model" Mathematical and Computational Applications 30, no. 4: 70. https://doi.org/10.3390/mca30040070
APA StyleFatima, K., Ali, B., Khan, A. A., Ahmed, S., Ateya, A. A., & Ahmad, N. (2025). A Comparative Analysis of Numerical Methods for Mathematical Modelling of Intravascular Drug Concentrations Using a Two-Compartment Pharmacokinetic Model. Mathematical and Computational Applications, 30(4), 70. https://doi.org/10.3390/mca30040070