Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (301)

Search Parameters:
Authors = Mei Tao

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5464 KiB  
Article
Dihydromyricetin/Protein Pickering Emulsions: Interfacial Behavior, Rheology, and In Vitro Bioaccessibility
by Shengqi Mei, Lei Dou, Kaixuan Cheng, Guangqian Hou, Chi Zhang, Jianhui An, Yexing Tao, Lingli Deng and Longchen Shang
Foods 2025, 14(14), 2520; https://doi.org/10.3390/foods14142520 - 18 Jul 2025
Viewed by 335
Abstract
Protein-polyphenol-based delivery vehicles are effective strategies for encapsulating bioactive compounds, thereby enhancing their solubility and bioaccessibility. In this study, dihydromyricetin/soy protein isolate (DHM/SPI) complexes were used as emulsifiers to prepare Pickering emulsions for DHM delivery. The results show that DHM and SPI form [...] Read more.
Protein-polyphenol-based delivery vehicles are effective strategies for encapsulating bioactive compounds, thereby enhancing their solubility and bioaccessibility. In this study, dihydromyricetin/soy protein isolate (DHM/SPI) complexes were used as emulsifiers to prepare Pickering emulsions for DHM delivery. The results show that DHM and SPI form negatively charged complexes through hydrogen bonding, and the complex size decreases and stabilizes with increasing DHM addition. The size of the emulsion droplets was inversely related to the concentration of DHM addition (c), particle concentration (w), and ionic strength (i). Conversely, the increasing oil phase concentration (φ) was positively correlated with droplet size. The CLSM results confirmed the expected oil-in-water emulsion, while the rheological behavior of the Pickering emulsion highlighted its elastic, gel-like network structure and non-Newtonian fluid properties. Moreover, DHM effectively slowed lipid oxidation in the emulsion, and the bioaccessibility of DHM reached 33.51 ± 0.31% after in vitro simulated digestion. In conclusion, this emulsion system shows promising potential for delivering DHM and harnessing its bioactive effects. Full article
(This article belongs to the Special Issue Advanced Technology to Improve Plant Protein Functionality)
Show Figures

Graphical abstract

17 pages, 3653 KiB  
Article
Significant Increase of Cinnamic Acid in Metabolites of Chicks Infected with Infectious Bronchitis Virus and Its Remarkable Antiviral Effects In Vitro and In Vivo
by Lan-Ping Wei, Tao-Ni Zhang, Yu Zhang, Li-Na Ren, Yan-Peng Lu, Tian-Chao Wei, Teng Huang, Jian-Ni Huang and Mei-Lan Mo
Microorganisms 2025, 13(7), 1633; https://doi.org/10.3390/microorganisms13071633 - 10 Jul 2025
Viewed by 268
Abstract
Avian infectious bronchitis virus (IBV) infection has caused significant economic losses to the poultry industry. Unfortunately, there is currently no effective cure for this disease. Understanding the pathogenic mechanism is crucial for the treatment of the disease. Studying the pathogenic mechanism of IBV [...] Read more.
Avian infectious bronchitis virus (IBV) infection has caused significant economic losses to the poultry industry. Unfortunately, there is currently no effective cure for this disease. Understanding the pathogenic mechanism is crucial for the treatment of the disease. Studying the pathogenic mechanism of IBV based on metabolomics analysis is helpful for identifying antiviral drugs. However, studies on metabolomics analysis of IBV infection have been relatively limited, particularly without metabolomics analysis in sera after IBV infection. In this study, 17-day-old SPF chicks were infected with the IBV GX-YL5 strain, and serum samples were collected 7 days post-infection (DPI) for metabolomics analysis using ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). A total of 143 differential metabolites were identified across 20 metabolic pathways, with the phenylalanine pathway showing the most significant changes. The level of cinnamic acid (CA), an upstream metabolite in the phenylalanine pathway, was notably increased following IBV infection. To investigate the antiviral effects of CA, chicken embryo kidney (CEK) cells and SPF chicks infected with IBV were treated with different concentrations of CA to assess its effect on viral replication. The results demonstrated that CA at 25 μg/mL effectively inhibited IBV replication in vitro; meanwhile, CA at 50 μg/mL and 25 μg/mL effectively inhibited IBV replication in vivo. Molecular docking and molecular dynamics simulation studies showed that CA interacts with the N domains of the IBV nucleocapsid (N) protein. In conclusion, the serum metabolite CA is significantly elevated following IBV infection and demonstrates remarkable antiviral effects both in vitro and in vivo, providing a promising avenue for the development of antiviral therapies to combat IBV infection. Full article
(This article belongs to the Special Issue Poultry Pathogens and Poultry Diseases, 2nd Edition)
Show Figures

Figure 1

13 pages, 849 KiB  
Article
Beyond Pairwise Interactions: How Other Species Regulate Competition Between Two Plants?
by Wang-Xin Cheng, Wei Xue, Jie-Jie Jiao, Hao-Ming Yuan, Lin-Xuan He, Xiao-Mei Zhang, Tao Xu and Fei-Hai Yu
Plants 2025, 14(13), 2018; https://doi.org/10.3390/plants14132018 - 1 Jul 2025
Viewed by 264
Abstract
A plant species in a community often grows with some other plant species. While many studies have assessed interspecific interactions between two target plant species, few have considered the impacts of the other plant species (e.g., the third, fourth, and fifth plant species) [...] Read more.
A plant species in a community often grows with some other plant species. While many studies have assessed interspecific interactions between two target plant species, few have considered the impacts of the other plant species (e.g., the third, fourth, and fifth plant species) on these interactions. To assess the impacts, we grew one seedling of each of the five herbaceous plant species that are common in China (Cynodon dactylon, Plantago asiatica, Taraxacum mongolicum, Nepeta cataria, and Leonurus japonicus) alone (no competition) or with one seedling of one, two, three, or four of the other species. The presence of a neighbor plant generally reduced the growth of the target species, suggesting that the interspecific relationships were mostly competitive. The presence of other neighbor species (the third, fourth, and fifth species) could alter the interspecific interactions between two target species, but such effects varied depending on both the identity of the target species and the identity of the other species. Additionally, the effects of the third species depended little on the presence of the fourth and fifth species. We conclude that interspecific interactions between two plant species are commonly regulated by the presence of other species, facilitating species coexistence. However, our findings do not support the idea that the impacts of the fourth and fifth species on interactions among three plant species are common. This study highlights the complex interactions among multiple plant species within a community and also the importance of including these high-order interactions when modelling community dynamics and species coexistence. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

16 pages, 2393 KiB  
Article
Structural and Biological Properties of Rhamnogalacturonan-I-Enriched Pectin Isolated from Cardamine tangutorum and Cardamine macrophylla
by Mei-Mei Qu Mo, Bo Li, Ding-Tao Wu, Jing Feng, Jing Wei, Yan Wan, Juan Li, Yuan Liu and Wen-Bing Li
Foods 2025, 14(13), 2340; https://doi.org/10.3390/foods14132340 - 1 Jul 2025
Viewed by 556
Abstract
C. macrophylla and C. tangutorum, collectively known as Shigecai in Chinese, are consumed as special and nutritious vegetables by the Tibetan, Qiang, and Yi communities in China. However, due to the insufficient knowledge of their phytochemical compositions and health benefits, the industrial [...] Read more.
C. macrophylla and C. tangutorum, collectively known as Shigecai in Chinese, are consumed as special and nutritious vegetables by the Tibetan, Qiang, and Yi communities in China. However, due to the insufficient knowledge of their phytochemical compositions and health benefits, the industrial utilization of these species in the food sector remains limited. Although Shigecai leaves contain substantial pectic polysaccharides, their chemical structures and biological activities remain unknown, which ultimately restricts their industrial utilization. Thus, to address this gap, this study systematically analyzed the chemical characteristics and biological functions of rhamnogalacturonan-I (RG-I)- enriched pectin from C. tangutorum (CTHDP) and C. macrophylla (CMHDP) leaves. The results demonstrate that Shigecai leaves are promising sources of RG-I-enriched pectin, with yields of 57.63–65.21 mg/g dry weight. In addition, both CTHDP and CMHDP exhibited highly similar chemical and structural properties, dominated by RG-I and homogalacturonan (HG) pectin regions, with RG-I ratios of 60.14–63.33 mol%. Furthermore, both samples demonstrated notable antioxidant ability, antiglycation activity, prebiotic potency, and immunoregulatory effects, which were strongly linked to their bound polyphenol content, uronic acid content, and molecular weight. These findings support the industrial utilization of Shigecai and establish Shigecai-derived RG-I-enriched pectin as a promising functional food ingredient. Full article
Show Figures

Figure 1

17 pages, 938 KiB  
Article
Status Quo and Future Prospects of China’s Weather Routing Services for Ocean-Going Business Vessels
by Hao Zhang, Guanjun Niu, Tao Liu, Chuanhai Qian, Wei Zhao, Xiaojun Mei and Hao Wu
Oceans 2025, 6(3), 38; https://doi.org/10.3390/oceans6030038 - 23 Jun 2025
Viewed by 551
Abstract
The global shipping industry is evolving towards deep integration of digital transformation, intelligent upgrading, and green development. Meanwhile, recent geopolitical shifts have introduced heightened uncertainties into international shipping, compounding the challenges and escalating the demands for weather routing services for ocean-going ships. This [...] Read more.
The global shipping industry is evolving towards deep integration of digital transformation, intelligent upgrading, and green development. Meanwhile, recent geopolitical shifts have introduced heightened uncertainties into international shipping, compounding the challenges and escalating the demands for weather routing services for ocean-going ships. This paper provides a systematic review and expert perspective on China’s current status and key challenges in ocean-going weather routing services. Based on operational insights from China’s national meteorological service synthesized with a review of current trends and the literature, it further explores the future development of China’s ocean-going weather routing services and technologies from multiple dimensions: enhancing maritime weather observation capabilities, developing advanced weather routing service models, upgrading autonomous and controllable global satellite communication systems, promoting intelligent navigation technologies to facilitate shipping’s low-carbon transition, and expanding meteorological support capabilities for Arctic shipping routes. The analysis identifies critical gaps and proposes strategic directions, offering a unique contribution to understanding the trajectory of weather routing services within China’s specific national context from the perspective of its primary national service provider. Full article
Show Figures

Figure 1

21 pages, 5291 KiB  
Article
Numerical Background-Oriented Schlieren for Phase Reconstruction and Its Potential Applications
by Shiwei Liu, Yichong Ren, Haiping Mei, Zhiwei Tao, Shuran Ye, Xiaoxuan Ma and Ruizhong Rao
Photonics 2025, 12(7), 626; https://doi.org/10.3390/photonics12070626 - 20 Jun 2025
Viewed by 311
Abstract
This study presents a comprehensive numerical framework for Background-Oriented Schlieren (BOS) to systematically evaluate its performance and reconstructive capabilities under complex flow conditions. This framework integrates two stages: forward modeling, using ray tracing to simulate image degradation, and inverse processing, using optical flow [...] Read more.
This study presents a comprehensive numerical framework for Background-Oriented Schlieren (BOS) to systematically evaluate its performance and reconstructive capabilities under complex flow conditions. This framework integrates two stages: forward modeling, using ray tracing to simulate image degradation, and inverse processing, using optical flow and a conjugate gradient algorithm to extract displacements and reconstruct phase information. This method is first validated using turbulent flow fields in the Johns Hopkins Turbulence Database, where the reconstructed phase screens closely match the original data, with relative errors below 4% and structural similarity indices above 0.75 in all cases, providing a possible restoration method for degraded flow field images. It is then applied to shock wave fields with varying Mach numbers; this method achieves meaningful reconstruction at short ranges but fails under long-range imaging due to severe wavefront distortions. However, even in degraded conditions, the extracted optical flow fields preserve structural features correlated with the underlying shock patterns, indicating potential for BOS-based target recognition. These findings highlight both the capabilities and limitations of BOS and suggest new pathways for extending its use beyond traditional flow visualization. Full article
Show Figures

Figure 1

18 pages, 2791 KiB  
Article
Assessment of Biodegradation Mechanisms of Ceftiofur Sodium by Escherichia sp. CS-1 and Insights from Transcriptomic Analysis
by Meng-Yang Yan, Cai-Hong Zhao, Jie Wu, Adil Mohammad, Yi-Tao Li, Liang-Bo Liu, Yi-Bo Cao, Xing-Mei Deng, Jia Guo, Hui Zhang, Hong-Su He and Zhi-Hua Sun
Microorganisms 2025, 13(6), 1404; https://doi.org/10.3390/microorganisms13061404 - 16 Jun 2025
Viewed by 494
Abstract
Ceftiofur sodium (CFS) is a clinically significant cephalosporin widely used in the livestock and poultry industries. However, CFS that is not absorbed by animals is excreted in feces, entering the environment and contributing to the emergence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes [...] Read more.
Ceftiofur sodium (CFS) is a clinically significant cephalosporin widely used in the livestock and poultry industries. However, CFS that is not absorbed by animals is excreted in feces, entering the environment and contributing to the emergence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs). This situation poses substantial challenges to both environmental integrity and public health. Currently, research on the biodegradation of CFS is limited. In this study, we isolated a strain of Escherichia coli, designated E. coli CS-1, a Gram-negative, rod-shaped bacterium capable of utilizing CFS as its sole carbon source, from fecal samples collected from hog farms. We investigated the effects of initial CFS concentration, pH, temperature, and inoculum size on the degradation of CFS by E. coli CS-1 through a series of single-factor experiments conducted under aerobic conditions. The results indicated that E. coli CS-1 achieved the highest CFS degradation rate under the following optimal conditions: an initial CFS concentration of 50 mg/L, a pH of 7.0, a temperature of 37 °C, and an inoculum size of 6% (volume fraction). Under these conditions, E. coli CS-1 was able to completely degrade CFS within 60 h. Additionally, E. coli CS-1 exhibited significant capabilities for CFS degradation. In this study, six major degradation products of (CFS) were identified by UPLC–MS/MS: desfuroyl ceftiofur, 5-hydroxymethyl-2-furaldehyde, 7-aminodesacetoxycephalosporanic acid, 5-hydroxy-2-furoic acid, 2-furoic acid, and CEF-aldehyde. Based on these findings, two degradation pathways are proposed. Pathway I: CFS is hydrolyzed to break the sulfur–carbon (S–C) bond, generating two products. These products undergo subsequent hydrolysis and redox reactions for gradual transformation. Pathway II: The β-lactam bond of CFS is enzymatically cleaved, forming CEF-aldehyde as the primary degradation product, which is consistent with the biodegradation mechanism of most β-lactam antibiotics via β-lactam ring cleavage. Transcriptome sequencing revealed that 758 genes essential for degradation were upregulated in response to the hydrolysis and redox processes associated with CFS. Furthermore, the differentially expressed genes (DEGs) of E. coli CS-1 were functionally annotated using a combination of genomics and bioinformatics approaches. This study highlights the potential of E. coli CS-1 to degrade CFS in the environment and proposes hypotheses regarding the possible biodegradation mechanisms of CFS for future research. Full article
(This article belongs to the Special Issue Antibiotic and Resistance Gene Pollution in the Environment)
Show Figures

Figure 1

15 pages, 4583 KiB  
Article
Research on the Time-Varying Network Topology Characteristics of Cryptocurrencies on Uniswap V3
by Xiao Feng, Mei Yu, Tao Yan, Jianhong Lin and Claudio J. Tessone
Electronics 2025, 14(12), 2444; https://doi.org/10.3390/electronics14122444 - 16 Jun 2025
Viewed by 454
Abstract
This study examines the daily top 100 cryptocurrencies on Uniswap V3. It denoises the correlation coefficient matrix of cryptocurrencies by using sliding window techniques and random matrix theory. Further, this study constructs a time-varying correlation network of cryptocurrencies under different thresholds based on [...] Read more.
This study examines the daily top 100 cryptocurrencies on Uniswap V3. It denoises the correlation coefficient matrix of cryptocurrencies by using sliding window techniques and random matrix theory. Further, this study constructs a time-varying correlation network of cryptocurrencies under different thresholds based on complex network methods and analyzes the Uniswap V3 network’s time-varying topological properties and risk contagion intensity of Uniswap V3. The study findings suggest the presence of random noise on the Uniswap V3 cryptocurrency market. The strength of connection relationships in cryptocurrency networks varies at different thresholds. With a low threshold, the cryptocurrency network shows high average degree and average clustering coefficient, indicating a small-world effect. Conversely, at a high threshold, the cryptocurrency network appears relatively sparse. Moreover, the Uniswap V3 cryptocurrency network demonstrates heterogeneity. Additionally, cryptocurrency networks exhibit diverse local time-varying characteristics depending on the thresholds. Notably, with a low threshold, the local time-varying characteristics of the network become more stable. Furthermore, risk contagion analysis reveals that WETH (Wrapped Ether) exhibits the highest contagion intensity, indicating its predominant role in propagating risks across the Uniswap V3 network. The novelty of this study lies in its capture of time-varying characteristics in decentralized exchange network topologies, unveiling dynamic evolution patterns in cryptocurrency correlation structures. Full article
(This article belongs to the Special Issue Complex Networks and Applications in Blockchain-Based Networks)
Show Figures

Figure 1

15 pages, 3537 KiB  
Article
High-Efficiency Broadband Selective Photothermal Absorbers Based on Multilayer Chromium Films
by Chu Li, Er-Tao Hu, Yu-Xiang Zheng, Song-You Wang, Yue-Mei Yang, Young-Pak Lee, Jun-Peng Guo, Qing-Yuan Cai, Wei-Bo Duan and Liang-Yao Chen
Crystals 2025, 15(6), 562; https://doi.org/10.3390/cryst15060562 - 14 Jun 2025
Viewed by 361
Abstract
Photothermal conversion is a pivotal energy transformation mechanism in solar energy systems. Achieving high-efficiency and broadband photothermal conversion within the solar radiation spectrum holds strategic significance in driving the innovative development of renewable energy technologies. In this study, a transmission matrix method was [...] Read more.
Photothermal conversion is a pivotal energy transformation mechanism in solar energy systems. Achieving high-efficiency and broadband photothermal conversion within the solar radiation spectrum holds strategic significance in driving the innovative development of renewable energy technologies. In this study, a transmission matrix method was employed to design an interference-type solar selective absorber based on multilayer Cr-SiO2 planar films, successfully achieving an average absorption of 94% throughout the entire solar spectral range. Further analysis indicates that this newly designed absorber shows excellent absorption performance even at a relatively large incident angle (up to 60°). Additionally, the newly designed absorber demonstrates lower polarization sensitivity, enabling efficient operation under complicated incident conditions. With its simple fabrication process and ease of preparation, the proposed absorber holds substantial potential for applications in photothermal conversion fields such as solar thermal collectors. Full article
(This article belongs to the Special Issue Preparation and Characterization of Optoelectronic Functional Films)
Show Figures

Figure 1

16 pages, 1650 KiB  
Article
Application of VUV/Sulfite Defluorination System for the Simple Detection of Perfluoroalkyl Substances
by Shiyong Tao, Yilin Chen, Xiao Mei, Luyao Jin, Feng Wu and Jing Xu
Molecules 2025, 30(11), 2475; https://doi.org/10.3390/molecules30112475 - 5 Jun 2025
Viewed by 603
Abstract
This study investigated the defluorination of PFOA and PFOS using a vacuum ultraviolet (VUV)/sulfite system, and evaluated its potential application in quantifying individual perfluoroalkyl substances (PFAS). Results showed that 81.9% and 87.5% defluorination of PFOA and PFOS were achieved after 120 min of [...] Read more.
This study investigated the defluorination of PFOA and PFOS using a vacuum ultraviolet (VUV)/sulfite system, and evaluated its potential application in quantifying individual perfluoroalkyl substances (PFAS). Results showed that 81.9% and 87.5% defluorination of PFOA and PFOS were achieved after 120 min of photoreaction under conditions of pH 12 and 20 mM of sulfite. Higher pH and sulfite dosage facilitated the reaction, while competing ions could suppress the defluorination efficiency. Based on the optimized defluorination conditions for individual PFAS, the potential of fluoride release amount, as an indirect quantification indicator, was further assessed. A strong linearity between the fluoride release and initial PFAS concentration (R2 > 0.999) was observed in the PFAS concentration range of 2–100 μM, and such linearity was also shown in the presence of sediment leachates. This correlation enabled the estimation of individual PFAS concentrations by measuring fluoride release after defluorination treatment. The approach was further demonstrated in an adsorption experiment, where calculated distribution coefficients (Koc) for PFAS–sediment interactions were consistent with previously reported values, supporting the analytical validity of the method under controlled conditions. Overall, this work presents a simple and cost-effective indirect analytical strategy of applying a VUV/sulfite defluorination system for individual PFAS quantitative detection in complex environmental matrices. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

24 pages, 1312 KiB  
Review
Targeting Phosphodiesterase 4 in Gastrointestinal and Liver Diseases: From Isoform-Specific Mechanisms to Precision Therapeutics
by Can Chen, Mei Liu and Xiang Tao
Biomedicines 2025, 13(6), 1285; https://doi.org/10.3390/biomedicines13061285 - 23 May 2025
Viewed by 846
Abstract
Phosphodiesterase 4 (PDE4) serves as a crucial regulator of cyclic adenosine monophosphate (cAMP) signaling and has been identified as a significant therapeutic target for inflammatory and metabolic disorders impacting the gastrointestinal (GI) tract and liver. Although pan-PDE4 inhibitors hold therapeutic promise, their clinical [...] Read more.
Phosphodiesterase 4 (PDE4) serves as a crucial regulator of cyclic adenosine monophosphate (cAMP) signaling and has been identified as a significant therapeutic target for inflammatory and metabolic disorders impacting the gastrointestinal (GI) tract and liver. Although pan-PDE4 inhibitors hold therapeutic promise, their clinical use has been constrained by dose-dependent adverse effects. Recent progress in the development of isoform-specific PDE4 inhibitors, such as those selective for PDE4B/D, alongside targeted delivery systems like liver-targeting nanoparticles and probiotic-derived vesicles, is reshaping the therapeutic landscape. This review consolidates the latest insights into PDE4 biology, highlighting how the structural characterization of isoforms informs drug design. We conduct a critical evaluation of preclinical and clinical data across various diseases, including inflammatory bowel diseases (IBDs), alcoholic liver disease, nonalcoholic fatty liver disease (NAFLD), liver fibrosis, and digestive tract tumors, with an emphasis on mechanisms extending beyond cAMP modulation, such as microbiota remodeling and immune reprogramming. Additionally, we address challenges in clinical translation, including biomarker discovery and the heterogeneity of trial outcomes, and propose a roadmap for future research directions. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

17 pages, 1116 KiB  
Article
Integrating DEA and AHP for Optimizing Rural Road Network Planning Under the Common Prosperity Framework: A Case Study of Yueqing City
by Yesen Lu, Hualong Huang, Zhihua Zhang, Qiugang Tao, Jinrui Gong and Zhenyu Mei
Sustainability 2025, 17(10), 4697; https://doi.org/10.3390/su17104697 - 20 May 2025
Viewed by 404
Abstract
Transportation infrastructure serves a pivotal role in driving regional development. This study proposes a decision-making framework for rural road network planning within the context of China’s common prosperity initiative. An integrated model combining Data Envelopment Analysis (DEA) and the Analytic Hierarchy Process (AHP) [...] Read more.
Transportation infrastructure serves a pivotal role in driving regional development. This study proposes a decision-making framework for rural road network planning within the context of China’s common prosperity initiative. An integrated model combining Data Envelopment Analysis (DEA) and the Analytic Hierarchy Process (AHP) is developed, where DEA is employed to identify technically efficient planning alternatives and AHP is used to rank these alternatives based on social and environmental benefits. Applying the model to the case of Yueqing City, Zhejiang Province, the findings reveal that common prosperity-oriented schemes, particularly the Scheme, which emphasizes full industrial coverage and balanced equity, achieve a superior balance among construction costs, industrial coverage, regional equity, and carbon emissions. Theoretically, this research advances transportation planning by incorporating equity-focused metrics, such as the Gini coefficient, into efficiency analyses, thus promoting a socially sustainable approach to infrastructure development. Practically, the proposed method offers a systematic and actionable tool for local governments to optimize rural transportation networks in support of common prosperity and balanced regional growth. The resulting framework not only identifies technically efficient and equitable layouts but also offers planners a transparent tool for balancing cost, social equity, and environmental impact in future rural infrastructure projects. Full article
Show Figures

Figure 1

13 pages, 2081 KiB  
Article
A Single-Chain Mpox mRNA Vaccine Elicits Protective Immune Response in Mice
by Qian Xu, Rong-Rong Zhang, Mei Wu, Jie Zhang, Zu-Xin Wang, Hang Chi, Chao Zhou, Xiao-Chuan Xiong, Hai-Tao Liu, Cheng-Feng Qin and Qing Ye
Vaccines 2025, 13(5), 514; https://doi.org/10.3390/vaccines13050514 - 13 May 2025
Viewed by 654
Abstract
Background: The re-emerging mpox virus (MPXV) has spread to numerous countries and raised global concern. There is an urgent need for a safe and effective mRNA vaccine candidate against MPXV infection. Previously, we developed a penta-component mRNA vaccine that contained five distinct antigen-encoded [...] Read more.
Background: The re-emerging mpox virus (MPXV) has spread to numerous countries and raised global concern. There is an urgent need for a safe and effective mRNA vaccine candidate against MPXV infection. Previously, we developed a penta-component mRNA vaccine that contained five distinct antigen-encoded mRNAs encapsulated within lipid nanoparticles (LNPs). Here, we sought to develop a single-chain mRNA vaccine that encodes antigens derived from both intracellular mature virion (IMV) and extracellular enveloped virion (EEV). Methods: A single-chain mRNA vaccine encoding a fusion protein comprising the ectodomains of M1R (eM1R) and A35R (eA35R) (MPXVeM1-eA35) was developed and characterized, while an admixed formulation of two individual mRNA-LNPs encoding separate antigens was developed as the control (MPXVeM1+eA35). Meanwhile, based on the same strategy, we designed a single-chain mRNA vaccine encoding dimeric antigens (MPXVeM1-eA35-Fc). Mice were immunized with two doses of the candidate vaccines, and both humoral and cellular immune responses were evaluated. The protective efficacy of the candidate vaccines was evaluated based on body weight monitoring and tissue viral load measurement after challenge with vaccinia virus (VACV). Results: Immunization with two doses of MPXVeM1-eA35 elicited robust levels of neutralizing antibodies and antigen-specific cellular immune response. Importantly, MPXVeM1-eA35 demonstrated protective efficacy in a VACV challenge mouse model and showed superior capacity in preventing weight loss post-challenge compared to MPXVeM1+eA35. Similarly, MPXVeM1-eA35-Fc exhibited comparable or superior immunogenicity and protective efficacy compared to the admixed formulations. Conclusions: The single-chain mRNA vaccine elicited a protective immune response in mice, offering significant advantages in terms of manufacturing processes and quality control. Our single-chain mRNA vaccine platform presents a promising strategy for the next generation design of mpox vaccines and contributes to the mitigation of MPXV endemic worldwide. Full article
(This article belongs to the Section Nucleic Acid (DNA and mRNA) Vaccines)
Show Figures

Figure 1

14 pages, 5914 KiB  
Article
Effect of Microplastics on the Bioavailability of (Semi-)Metals in the Soil Earthworm Eisenia fetida
by Xue Xiao, Jia-Ling Li, Wan-Li Rao, Chun-Mei Zhao, Er-Kai He, Ye-Tao Tang, Hua-Yi Chen and Rong-Liang Qiu
Agronomy 2025, 15(5), 1052; https://doi.org/10.3390/agronomy15051052 - 27 Apr 2025
Viewed by 715
Abstract
Microplastics have a large surface area and hydrophobic characteristics, which helps them to easily adsorb organic matter and trace metals in soil. This interaction has the potential to alter soil physicochemical properties, affect the bioavailability of metals, and finally influence the toxicity of [...] Read more.
Microplastics have a large surface area and hydrophobic characteristics, which helps them to easily adsorb organic matter and trace metals in soil. This interaction has the potential to alter soil physicochemical properties, affect the bioavailability of metals, and finally influence the toxicity of organisms. In the present study, we exposed Cd or As (Cd/As) to the earthworm Eisenia fetida (Savigny, 1826) in uncontaminated paddy soil, both in the presence and absence of polystyrene (PS) MPs (100~300 μm). The results show that MPs exhibit a significant influence on the physicochemical properties of As-contaminated soil, notably reducing the pH while increasing the electrical conductivity (EC), redox potential (Eh), and dissolved organic carbon (DOC), relative to single As treatment. At a Cd concentration of 40 mg·kg−1, the addition of MPs substantially altered the soil properties, decreasing the pH while increasing the EC and DOC. The effect of MPs on the bioavailable Cd content in soil was associated with Cd concentration. Specifically, MPs significantly increased the content of DGT (diffusion gradient technology)-Cd at a Cd concentration of 60 mg·kg−1. Regarding the bioavailable As content in the soil, MPs led to an increase at a high As concentration (40 mg·kg−1). Moreover, the addition of MPs amplified the uptake rate constants (ku) of DGT-Cd/As at various exposure concentrations, expediting the uptake of Cd/As by earthworms. In addition, compared to Cd treatment, the growth inhibition of earthworms in the As-treatment group was more significant due to microplastics. The results show that MPs in terrestrial environments magnify the negative effects of (semi-)metals, a phenomenon intricately tied to the degree of contamination by (semi-)metals. The interaction between MPs and metals may induce higher ecological risks for organisms. Full article
Show Figures

Graphical abstract

23 pages, 8974 KiB  
Article
Plasma Exosomal Proteomics Identifies Differentially Expressed Proteins as Biomarkers for Acute Myocardial Infarction
by Jie Zhou, Hai-Tao Hou, Huan-Xin Chen, Yu Song, Xiao-Lin Zhou, Li-Li Zhang, Hong-Mei Xue, Qin Yang and Guo-Wei He
Biomolecules 2025, 15(4), 583; https://doi.org/10.3390/biom15040583 - 15 Apr 2025
Viewed by 831
Abstract
Myocardial infarction (MI), including ST-elevation MI (STEMI) and non-ST-elevation MI (NSTEMI), has been the leading cause of hospitalization and death. Exosomes participate in many physiological and pathological processes and have important effects on cell communication and function. This study analyzed the proteomic characteristics [...] Read more.
Myocardial infarction (MI), including ST-elevation MI (STEMI) and non-ST-elevation MI (NSTEMI), has been the leading cause of hospitalization and death. Exosomes participate in many physiological and pathological processes and have important effects on cell communication and function. This study analyzed the proteomic characteristics of plasma exosomes with the discovery of exosomal differentially expressed proteins (DEPs) in MI patients. Proteomics technology was used to identify the plasma exosomal DEPs in 41 patients in STEMI, NSTEMI, unstable angina, and CONTROL groups, and 406 exosomal DEPs were discovered. Further, 36 selected exosomal DEPs were validated with parallel reaction monitoring (PRM) in a new cohort of STEMI, NSTEMI, and CONTROL groups, and 7 were successfully verified. There were three (F13A1, TSPAN33, and YWHAZ) in the STEMI group and six (F13A1, TSPAN33, ITGA2B, GP9, GP5, and PPIA) in the NSTEMI group, and all were down-regulated compared to the CONTROL group with high sensitivity and specificity in MI that may be developed as biomarkers for MI and may become possible therapeutic targets for MI. Bioinformatics analysis revealed that these seven exosomal DEPs are of great significance in the molecular mechanism of MI. Therefore, the present study has provided insights to further explore the pathological mechanism and possible therapeutic targets in MI. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

Back to TopTop