Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (175)

Search Parameters:
Authors = Lucas Teixeira ORCID = 0000-0003-1188-4123

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 934 KiB  
Article
Effect of 24-Epibrassinolide Plant Hormone Rates on the Level of Macronutrients in Forage Sorghum Plants Subjected to Water Deficit and Rehydration
by Daniele Monteiro Ribeiro, Sabrina de Nazaré Barbosa dos Santos, Dayana Castilho dos Santos Ferreira, Júlia Fernanda Ferreira de Miranda, Job Teixeira de Oliveira, Fernando França da Cunha, Caio Lucas Alhadas de Paula Velloso, Priscilla Andrade Silva and Cândido Ferreira de Oliveira Neto
Grasses 2025, 4(3), 33; https://doi.org/10.3390/grasses4030033 - 12 Aug 2025
Abstract
Forage sorghum (Sorghum bicolor (L.)) is a cereal native to Africa and belongs to the family Poaceae. It is a forage with a C4 photosynthetic pathway that stands out for its ability to adapt to different environments; it is able to produce [...] Read more.
Forage sorghum (Sorghum bicolor (L.)) is a cereal native to Africa and belongs to the family Poaceae. It is a forage with a C4 photosynthetic pathway that stands out for its ability to adapt to different environments; it is able to produce even in unfavorable circumstances. The objective of this study was to analyze the attenuating effect of the brassinosteroid hormone in the form of 24-epibrassinolide on forage sorghum plants subjected to water deficit and rehydration. A completely randomized design (CRD) was used in the experiment. A 2 × 3 × 5 factorial arrangement was used, with two water conditions (water deficit and rehydration), three brassinosteroid doses (0 nM, 50 nM, and 100 nM as 24-epibrassinolide), and five replicates. The experiment was conducted in a greenhouse. Sorghum seeds were sown in pots with a capacity of 3 kg of substrate. Analyses were performed on the roots and leaves of sorghum plants at different growth stages. The macronutrients (N, P, K, Ca, and Mg) were analyzed in the soil physics laboratory. As a result, the content of N, P, K, Ca, and Mg decreased under a water deficit and was then restored by the hormone 24-epibrassinolide, which was able to restore these nutrients. The effect of the hormone under rehydration had a positive effect, increasing the levels of nutrients. Given the above, it was possible to conclude that there were no significant divergences between the treatments during the period of irrigation suspension. Among the tested concentrations, 50 nM of 24-epibrassinolide showed the most consistent improvements in nutrient concentrations under water-deficit conditions, suggesting a potential role in mitigating nutritional imbalance during stress. Rehydrated plants maintained nutrient levels similar to the controls regardless of 24-epibrassinolide application. However, it is important to note that nutritional quality indices such as crude protein and total digestible nutrients (TDN) were not evaluated in this study, which limits direct conclusions about the forage nutritional value. Full article
Show Figures

Figure 1

17 pages, 1509 KiB  
Article
Nanocellulose Application for Metal Adsorption and Its Effect on Nanofiber Thermal Behavior
by Wanderson Ferreira Braz, Lucas Tonetti Teixeira, Rogério Navarro and Omar Ginoble Pandoli
Metals 2025, 15(8), 832; https://doi.org/10.3390/met15080832 - 25 Jul 2025
Viewed by 370
Abstract
Carboxylate (TCNF) and sulfonated (SCNC) cellulose nanofibers were synthesized and used as adsorbents for metallic cations in aqueous solutions: Na+ and Hg2+ (SCNC); Mg2+ and Hg2+ (TCNF). ICP-OES analysis of the liquid phase revealed metal removal efficiencies at room [...] Read more.
Carboxylate (TCNF) and sulfonated (SCNC) cellulose nanofibers were synthesized and used as adsorbents for metallic cations in aqueous solutions: Na+ and Hg2+ (SCNC); Mg2+ and Hg2+ (TCNF). ICP-OES analysis of the liquid phase revealed metal removal efficiencies at room temperature of 89.3% (Hg2+) and 100% (Mg2+) for TCNF, 35.2% (Hg2+) and 63.3% (Na+) for SCNC after 3 h of contact. Interestingly, the nanofibers exhibited a distinct thermal degradation profile (characterized by two main events) compared to that of cellulose, suggesting that their nanostructured morphology and surface functionalization may enhance thermal instability. Additionally, the presence of metals at its surface notably altered the thermal degradation kinetics, as observed for mercury and magnesium in TCNF. Finally, the results for SCNC strongly suggest that the mechanism for thermal degradation can also change, as observed for mercury and sodium, expressed through the appearance of a new DTG peak located around 300 °C. Full article
(This article belongs to the Special Issue Advances in Recycling of Valuable Metals—2nd Edition)
Show Figures

Figure 1

16 pages, 720 KiB  
Article
Demographic and Clinical Profile of Patients with Osteogenesis Imperfecta Hospitalized Due to Coronavirus Disease (COVID)-19: A Case Series of 13 Patients from Brazil
by Luana Lury Morikawa, Luiz Felipe Azevedo Marques, Adriele Evelyn Ferreira Silva, Patrícia Teixeira Costa, Lucas Silva Mello, Andrea de Melo Alexandre Fraga and Fernando Augusto Lima Marson
Healthcare 2025, 13(15), 1779; https://doi.org/10.3390/healthcare13151779 - 23 Jul 2025
Viewed by 912
Abstract
Background: Osteogenesis imperfecta (OI) is a rare genetic connective tissue disorder characterized by bone fragility, most often caused by pathogenic variants in type I collagen genes. In this context, we aimed to describe the clinical and epidemiological characteristics of patients with OI who [...] Read more.
Background: Osteogenesis imperfecta (OI) is a rare genetic connective tissue disorder characterized by bone fragility, most often caused by pathogenic variants in type I collagen genes. In this context, we aimed to describe the clinical and epidemiological characteristics of patients with OI who were hospitalized for coronavirus disease (COVID)-19 in Brazil between 2020 and 2024. Methods: We conducted a retrospective descriptive analysis using data from the Brazilian Unified Health System (SUS, which stands for the Portuguese Sistema Único de Saúde) through the Open-Data-SUS platform. Patients with a confirmed diagnosis of OI and hospitalization due to COVID-19 were included. Descriptive statistical analysis was performed to evaluate demographic, clinical, and outcome-related variables. We included all hospitalized COVID-19 cases with a confirmed diagnosis of OI between 2020 and 2024. Results: Thirteen hospitalized patients with OI and COVID-19 were identified. Most were adults (9; 69.2%), male (7; 53.8%), self-identified as White (9; 69.2%), and all were residents of urban areas (13; 100.0%). The most frequent symptoms were fever (10; 76.9%), cough (9; 69.2%), oxygen desaturation (9; 69.2%), dyspnea (8; 61.5%), and respiratory distress (7; 53.8%). Two patients had heart disease, one had chronic lung disease, and one was obese. As for vaccination status, five patients (38.5%) had been vaccinated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Four patients (30.8%) required admission to an intensive care unit (ICU), and six (46.2%) required noninvasive ventilatory support. Among those admitted to the ICU, only two required invasive mechanical ventilation. The clinical outcome was death in two cases (15.4%). Both patients were male, White, and had not been vaccinated against SARS-CoV-2. One was 47 years old, was not admitted to the ICU, but required noninvasive ventilation. Despite the underlying condition most patients had favorable outcomes, consistent with an international report. Conclusions: This is the first report to describe the clinical and epidemiological profile of patients with OI hospitalized for COVID-19 in Brazil, providing initial insights into how a rare bone disorder intersects with an acute respiratory infection. The generally favorable outcomes observed—despite the underlying skeletal fragility—suggest that individuals with OI are not necessarily at disproportionate risk of severe COVID-19, particularly when appropriately monitored. The occurrence of deaths only among unvaccinated patients underscores the critical role of SARS-CoV-2 vaccination in this population. Although pharmacological treatment data were unavailable, the potential protective effects of bisphosphonates and vitamin D merit further exploration. These findings support the need for early preventive strategies, systematic vaccination efforts, and dedicated clinical protocols for rare disease populations during infectious disease outbreaks. Full article
Show Figures

Figure 1

19 pages, 4374 KiB  
Article
Characterization of the Aqueous Phase from Pyrolysis of Açaí Seeds and Fibers (Euterpe oleracea Mart.)
by Erick Monteiro de Sousa, Kelly Christina Alves Bezerra, Renan Marcelo Pereira Silva, Gabriel Arthur da Costa Martins, Gabriel Xavier de Assis, Raise Brenda Pinheiro Ferreira, Lucas Pinto Bernar, Neyson Martins Mendonça, Carmen Gilda Barroso Tavares Dias, Douglas Alberto Rocha de Castro, Gabriel de Oliveira Rodrigues, Sergio Duvoisin Junior, Marta Chagas Monteiro and Nélio Teixeira Machado
Energies 2025, 18(14), 3820; https://doi.org/10.3390/en18143820 - 18 Jul 2025
Viewed by 372
Abstract
Açaí (Euterpe oleracea Mart.) is a native fruit of the Amazon, and its production chain is centered in the state of Pará. The processing of açaí fruits generates large amounts of solid waste, which can pose serious risks to the environment if not [...] Read more.
Açaí (Euterpe oleracea Mart.) is a native fruit of the Amazon, and its production chain is centered in the state of Pará. The processing of açaí fruits generates large amounts of solid waste, which can pose serious risks to the environment if not used and managed properly. The novelty of this research lies in the fact that until this moment, no research had been reported in the literature on the pyrolysis of açaí fibers and the chemical composition of the aqueous phase, making possible a broad set of applications including biogas production. The present research proposes a study of the pyrolysis of açaí seeds and fibers and the physicochemical and compositional characterization of the aqueous phase products. In this way, açaí processing residues were collected in the city of Belém, PA. The seeds and fibers were dried and impregnated with NaOH solutions, and subsequently subjected to pyrolysis on a laboratory scale. The liquid products from pyrolysis were characterized through acidity index analysis, FT-IR, and gas chromatography. The increase in the concentration of the impregnating agent led to an increase in bio-oil yield from both the seeds (ranging from 3.3% to 6.6%) and the fibers (ranging from 1.2% to 3.7%). The yield in the aqueous phase showed an inverse behavior, decreasing as the concentration of NaOH increased, both in the seeds (ranging from 41% to 37.5%) and the fibers (ranging from 33.7% to 21.2%). High acidity levels were found in the liquid products studied, which decreased as the concentration of the impregnating agent increased. The increase in the concentration of the impregnating agent (NaOH) influenced the chemical composition of the obtained liquid products, leading to a decrease in oxygenated compounds and an increase in nitrogenous compounds in both experimental matrices, which was also evidenced by the reduction in acidity. Full article
(This article belongs to the Special Issue Advanced Bioenergy, Biomass and Waste Conversion Technologies)
Show Figures

Figure 1

20 pages, 1658 KiB  
Article
Preclinical In Vitro Evaluation of Extracellular Vesicles from Human Dental Pulp Stem Cells for the Safe and Selective Modulation of Anaplastic Thyroid Carcinoma
by Anderson Lucas Alievi, Michelli Ramires Teixeira, Vitor Rodrigues da Costa, Irina Kerkis and Rodrigo Pinheiro Araldi
Int. J. Mol. Sci. 2025, 26(13), 6443; https://doi.org/10.3390/ijms26136443 - 4 Jul 2025
Viewed by 1101
Abstract
Anaplastic thyroid carcinoma (ATC) is a highly aggressive malignancy with poor prognosis and limited treatment options. Precision oncology seeks personalized therapies that selectively modulate tumor behavior, which is critical for improving patient outcomes. In this study, we evaluated the therapeutic potential of human [...] Read more.
Anaplastic thyroid carcinoma (ATC) is a highly aggressive malignancy with poor prognosis and limited treatment options. Precision oncology seeks personalized therapies that selectively modulate tumor behavior, which is critical for improving patient outcomes. In this study, we evaluated the therapeutic potential of human dental pulp stem cell-derived extracellular vesicles (hDPSC-EVs) in three ATC cell lines (8505C, HTH83, KTC-2). Fluorescence and confocal microscopy confirmed the efficient, time-dependent internalization of hDPSC-EVs by ATC cells, with increased fluorescence intensity over 48 h. Functional assays revealed the selective inhibition of migration and invasion in a cell line-dependent manner, without affecting cell proliferation, viability, or tumorigenic traits, indicating a non-cytotoxic, context-specific modulation of tumor behavior. After 72 h of EV treatment, targeted qPCR of 92 cancer-related genes showed the strongest response in 8505C cells (24 genes; 16 up, 8 down), moderate changes in KTC-2 (16 genes; 14 up, 2 down), and few alterations in HTH83 (6 genes; 4 up, 2 down). Across all lines, FN1 emerged as a context-dependent target, downregulated in 8505C but upregulated in the other two. No broad pathway enrichment was observed, indicating the fine-tuning of key networks rather than wholesale reprogramming. Despite variations across cell lines, hDPSC-EVs consistently demonstrated no impact on cell proliferation and no evidence of cytotoxicity or tumorigenic behavior, with no adverse outcomes. These findings provide preclinical evidence for hDPSC-EVs as a promising, safe, and targeted therapeutic platform in precision oncology, particularly for aggressive cancers, like ATC, warranting further exploration in preclinical and clinical studies. Full article
(This article belongs to the Special Issue Preclinical and Translational Research in Thyroid Cancer)
Show Figures

Figure 1

42 pages, 4211 KiB  
Review
Industrial Wastewater Treatment by Coagulation–Flocculation and Advanced Oxidation Processes: A Review
by Marco S. Lucas, Ana R. Teixeira, Nuno Jorge and José A. Peres
Water 2025, 17(13), 1934; https://doi.org/10.3390/w17131934 - 27 Jun 2025
Viewed by 1120
Abstract
As human living standards have improved, the demand for industrial products—such as food, dyes, cosmetics, pharmaceuticals, and others—has significantly increased. This surge in production has, in turn, led to a rise in industrial wastewater (IW) generation, which is often marked by low biodegradability [...] Read more.
As human living standards have improved, the demand for industrial products—such as food, dyes, cosmetics, pharmaceuticals, and others—has significantly increased. This surge in production has, in turn, led to a rise in industrial wastewater (IW) generation, which is often marked by low biodegradability and a high concentration of toxic or refractory compounds. This review highlights the use of coagulation–flocculation–decantation (CFD) and advanced oxidation processes (AOPs) for treating such wastewater. A comprehensive analysis of CFD is provided, covering the underlying mechanisms, types of coagulants (including metal-based, animal-derived, mineral, and plant-based), and the optimal operational conditions required to maximize treatment efficiency. This review discusses the properties and performance of these coagulants in detail. In addition, this paper explores the methods used in AOPs to reduce organic carbon, focusing particularly on the roles of hydroxyl and sulfate radicals. Emphasis is placed on the enhancement of these processes using radiation, chelating agents, and heterogeneous catalysts, along with their effectiveness in IW treatment. Finally, the integration of CFD as a pre-treatment step to improve the efficiency of subsequent AOPs is provided. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

19 pages, 1254 KiB  
Article
A Sustainable Approach to Phosphorus Nutrition in Banana Plantations
by Hebert Teixeira Cândido, Magali Leonel, Sarita Leonel, Adalton Mazetti Fernandes, Jackson Myrellis Azevêdo Souza, Lucas Felipe dos Ouros and Paulo Ricardo Rodrigues de Jesus
Plants 2025, 14(13), 1923; https://doi.org/10.3390/plants14131923 - 23 Jun 2025
Viewed by 487
Abstract
The genetic diversity of banana plants (Musa spp.) can result in different phosphorus requirements, highlighting the importance of studies performed to optimize phosphate fertilization in order to improve the productivity and sustainability of banana plantations. This study assessed the effects of phosphate [...] Read more.
The genetic diversity of banana plants (Musa spp.) can result in different phosphorus requirements, highlighting the importance of studies performed to optimize phosphate fertilization in order to improve the productivity and sustainability of banana plantations. This study assessed the effects of phosphate fertilization on the duration of the harvest season, bunch mass, soil fertility and foliar nutrition of BRS SCS Belluna banana plants. A replicated trial was performed in two consecutive harvests, with different phosphorus levels, i.e., 25, 50, 75, 100, 125 and 150% of the recommended level for the crop. Soil analyses included macro- and micronutrients, silicon, acidity, organic matter, cation exchange capacity and base saturation. Leaf tissue was analyzed for mineral content. Thermophosphate had different effects on soil fertility and leaf nutrients. Calcium and phosphorus in the soil increased linearly. In the leaf, a reduction in zinc content was mainly observed. The lower temperatures and accumulated rainfall that occurred during the second harvest season are related to a greater number of days between flowering and harvest and a lower bunch mass. These results could support fertilization programs aimed at ensuring the long-term sustainability of phosphorus nutrition in banana plantations. Full article
(This article belongs to the Special Issue Soil Ecology and Nutrients' Cycling in Crops and Fruits)
Show Figures

Figure 1

16 pages, 311 KiB  
Article
The Nursing Practice Environment and Job Satisfaction, Intention to Leave, and Burnout Among Primary Healthcare Nurses: A Cross-Sectional Study
by Pedro Lucas, Élvio Jesus, Sofia Almeida, Patrícia Costa, Paulo Cruchinho, Gisela Teixeira and Beatriz Araújo
Nurs. Rep. 2025, 15(7), 224; https://doi.org/10.3390/nursrep15070224 - 21 Jun 2025
Viewed by 757
Abstract
Background: The nursing practice environment significantly influences nurses’ job satisfaction, turnover, and burnout; therefore, it is essential to promote favorable environments to ensure the retention of qualified professionals. Improving the nursing practice environment is a low-cost organizational strategy associated with satisfaction, retaining professionals, [...] Read more.
Background: The nursing practice environment significantly influences nurses’ job satisfaction, turnover, and burnout; therefore, it is essential to promote favorable environments to ensure the retention of qualified professionals. Improving the nursing practice environment is a low-cost organizational strategy associated with satisfaction, retaining professionals, and reducing burnout. The aim of this study was to assess the relationship between the nursing practice environment and job satisfaction, turnover, and burnout among primary healthcare nurses in Portugal. Methods: A descriptive, cross-sectional, and correlational study was carried out based on data from the RN4CAST Portugal Project. The Nurse Survey Instrument (Core Nurse Survey) of the RN4Cast Project (2018) was used for data collection. The sample consisted of 1059 nurses from fifty-five health center groups in mainland Portugal, fifteen health centers in the Autonomous Region of Madeira, and six health centers in the Autonomous Region of the Azores. Results: Primary healthcare nurses in Portugal rated the nursing practice environment as unfavorable or mixed, with an average (x¯) of 2.5 (standard deviation (SD) = 0.4), which is associated with lower job satisfaction, with an average of 2.0 (SD = 0.4), moderate intention to leave, with 40.3%, and low levels of burnout, with an average of 1.6 (SD = 0.8). There was also a negative correlation between the nursing practice environment and burnout (r = −0.28) and its dimensions. Emotional exhaustion (r = −0.35) represents the individual dimension of stress and physical exhaustion, corresponding to feelings regarding the depletion of emotional and physical resources, depersonalization (r = −0.18) represents the interpersonal context dimension of burnout, and a lack of personal accomplishment (r = −0.15) represents the self-assessment dimension of burnout and refers to feelings of incompetence and a lack of confidence and self-efficacy at work. Conclusions: The quality of the work environment is associated with greater job satisfaction and a reduction in burnout. For this reason, improving the work environment has therefore been associated with increased job satisfaction and reduced burnout among primary healthcare nurses, promoting nurse retention and the well-being of healthcare teams. Full article
10 pages, 916 KiB  
Article
Accessing the Impacts of the Calculated Panel Reactive Antibody Value on a Lung Transplant Waitlist: A Latin American Experience
by Samuel Lucas dos Santos, Flavio Pola dos Reis, Luis Gustavo Abdalla, Lucas Matos Fernandes, Elissa Ayumi Okuno, Priscila Cilene Leon Bueno Camargo, Rafael Medeiros Carraro, Silvia Vidal Campos, Ricardo Henrique Oliveira Braga Teixeira and Paulo Manuel Pêgo-Fernandes
J. Clin. Med. 2025, 14(12), 4344; https://doi.org/10.3390/jcm14124344 - 18 Jun 2025
Viewed by 396
Abstract
Backgorund\Objectives: Lung transplantation is the definitive treatment for select patients with end-stage pulmonary diseases. However, immunologic sensitization, as measured by calculated panel-reactive antibody (cPRA), poses significant challenges to transplant access and outcomes. This study aimed to evaluate the impact of cPRA on lung [...] Read more.
Backgorund\Objectives: Lung transplantation is the definitive treatment for select patients with end-stage pulmonary diseases. However, immunologic sensitization, as measured by calculated panel-reactive antibody (cPRA), poses significant challenges to transplant access and outcomes. This study aimed to evaluate the impact of cPRA on lung transplantation waitlist dynamics in a single-center cohort in Brazil, focusing on its association with waitlist mortality, delisting, and transplantation. Methods: A retrospective cohort study was conducted including all lung transplant candidates listed in our institution between January 2012 and December 2022. Candidates were stratified by cPRA values at listing into five groups: 0%, 0.1–25%, 25.1–50%, 50.1–75%, and 75.1–100%. Primary outcomes included lung transplantation, with secondary outcomes of waitlist mortality and delisting due to clinical deterioration. Statistical comparisons were performed, as appropriate. Results: Of the 411 candidates evaluated, 327 met the inclusion criteria. Among them, 100 (30.6%) were sensitized (cPRA > 0%), with increasing cPRA values correlating with longer median waitlist times (p < 0.01). Although transplantation rates were not statistically different across the cPRA strata (p = 0.277), the group with a cPRA > 75% had the lowest transplant rate (37.5%). Waitlist mortality was significantly higher in candidates with a cPRA > 50% (p = 0.047), whereas delisting rates did not differ across groups (p = 0.722). Conclusions: Elevated cPRA is associated with prolonged waitlist time and increased mortality, reflecting both immunologic and logistical barriers to lung transplantation. These findings support the need for incorporating cPRA into allocation policies and adopting targeted strategies, such as desensitization protocols, to improve equity in transplant access for sensitized patients, particularly in genetically diverse populations. Further multicenter studies are warranted to validate these results and inform policy development. Full article
(This article belongs to the Special Issue Lung Transplantation: Clinical Advances and Practice Updates)
Show Figures

Figure 1

13 pages, 758 KiB  
Article
The Effects of the Clinical Simulation of Transfusion Reactions on Nursing Students’ Knowledge Gain: A Pragmatic Clinical Trial
by Ana Beatriz Frota Lima Rodrigues, Samia Valéria Ozorio Dutra, Maria Ivaneide Teixeira dos Santos, Lucas Ribeiro Araujo, Annie Leticia de Holanda Ferreira, Arthur Feitosa Jacinto, Brenda Sousa da Conceição, Gleiciane Kélen Lima, Igor Cordeiro Mendes, Elaine Cristina Negri, Maria Neyrian de Fátima Fernandes, Luciana Mara Monti Fonseca and Francisco Mayron Morais Soares
Educ. Sci. 2025, 15(6), 693; https://doi.org/10.3390/educsci15060693 - 3 Jun 2025
Viewed by 883
Abstract
Background: Blood transfusion is a therapeutic procedure characterized by the use of blood components for the treatment of certain pathologies. When applied properly, it is highly successful; however, it also has risks, such as transfusion reactions. Objective: This study aimed to evaluate the [...] Read more.
Background: Blood transfusion is a therapeutic procedure characterized by the use of blood components for the treatment of certain pathologies. When applied properly, it is highly successful; however, it also has risks, such as transfusion reactions. Objective: This study aimed to evaluate the effects of the clinical simulation of transfusion reactions on the knowledge gain of nursing students. Methods: Two groups were compared: the intervention group, which used the educational intervention: “clinical simulation of transfusion reactions in adults”, and the control group, which did not use the strategy. The study was conducted at a Higher Education Institution from August 2022 to June 2023, with nursing students in the fifth semester. An instrument on the knowledge of transfusion reactions was applied before and seven days after the intervention. Data were analyzed descriptively and inferentially using the Mann–Whitney U and Wilcoxon tests. For both, p < 0.05 was accepted. Results: The Wilcoxon test revealed a statistically significant difference in pre- and post-test scores within the intervention group (p-value: 0.003), with a large effect size (Cohen’s d = 1.14). The average score in the pre-test was 16.47 and increased to 18.93 in the post-test (p = 0.002), while in the control group there was a drop from 14.53 to 12.07 (p = 0.053). In terms of overall scores, the intervention group went from an average of 8.10 to 9.67 (p = 0.001), while the control group went from 8.13 to 8.66 (p = 0.053). The reduction in errors was significant in topics such as hand hygiene (from 56.7% to 23.3%) and the maximum exposure time of the blood component at room temperature (from 66.7% to 20%). The data showed that the clinical simulation intervention had a significant positive effect on the acquisition of theoretical knowledge about transfusion reactions. Conclusions: Through the use of simulation as a teaching strategy, students gained greater knowledge. Full article
(This article belongs to the Special Issue Technology-Enhanced Nursing and Health Education)
Show Figures

Figure 1

16 pages, 2441 KiB  
Article
Azospirillum brasilense in the Planting Furrow of Sugarcane to Minimize the Use of N Fertilizer
by José Augusto Liberato de Souza, Lucas dos Santos Teixeira, Gabriela da Silva Freitas, Lucas da Silva Alves, Maurício Bruno Prado da Silva, Juliana Françoso da Silva, Fernando Shintate Galindo, Carolina dos Santos Batista Bonini, Clayton Luís Baravelli de Oliveira and Reges Heinrichs
Plants 2025, 14(11), 1599; https://doi.org/10.3390/plants14111599 - 24 May 2025
Viewed by 788
Abstract
Sugarcane (Saccharum spp.) stands out in the context of sustainable agricultural production due to its versatility and energy potential. However, management challenges, such as nitrogen (N) fertilization associated with microbiological action, require improvement. In this context, the use of the bacterium Azospirillum [...] Read more.
Sugarcane (Saccharum spp.) stands out in the context of sustainable agricultural production due to its versatility and energy potential. However, management challenges, such as nitrogen (N) fertilization associated with microbiological action, require improvement. In this context, the use of the bacterium Azospirillum brasilense has been studied as an alternative to reducing the use of mineral fertilizers. The objective of this study was to evaluate the application of Azospirillum brasilense in the planting furrow of sugarcane in terms of leaf diagnosis, nutrient uptake, yield and technological quality of the stalks, and total fresh and dry biomass of the aerial parts of the plants. The experiment was conducted under field conditions at two locations during the 2022/2023 growing season. The soils in Areas 1 and 2 were classified as medium-textured oxisol and sandy-textured oxisol, respectively. The experimental design was a randomized block design with four replications. The treatments were as follows: (T1) 28 kg ha−1 of N; (T2) 14 kg ha−1 of N; (T3) T2 + 0.2 L ha−1 of inoculant; (T4) T2 + 0.4 L ha−1 of inoculant; (T5) T2 + 0.6 L ha−1 of inoculant; (T6) T2 + 0.8 L ha−1 of inoculant. In Area 1, treatment T5 showed a total fresh biomass yield of the aerial parts that was 34% higher than T2. Total dry biomass, tillering, stalk yield, and technological parameters did not differ significantly between treatments in either area. In terms of nutrient uptake, treatment T5 consistently ranked among those with the highest averages for P, K, Ca, Mg, S, Fe, Mn, and Zn in both experimental areas. The dendrogram showed similar results between treatments T1 and T5. The application of 0.6 L ha−1 of the solution containing Azospirillum brasilense, combined with 50% of the recommended N dose, increased total fresh biomass production. Total dry biomass, stalk yield, tillering, and technological variables of the crop were not affected by the presence of the bacterium. Full article
Show Figures

Figure 1

20 pages, 1199 KiB  
Article
Diversification of Cultivars and Production of Male Inflorescence Flours for More Sustainable Banana Cultivation
by Lucas Felipe dos Ouros, Magali Leonel, Sarita Leonel, Nicholas Zanette Molha, Paulo Ricardo Rodrigues de Jesus, Hebert Teixeira Cândido, Marco Antonio Tecchio, Mayra Schmidt Rechsteiner and Caio César dos Ouros
Agriculture 2025, 15(10), 1110; https://doi.org/10.3390/agriculture15101110 - 21 May 2025
Viewed by 701
Abstract
Banana inflorescences are usually discarded, but there has been interest in managing this by-product to turn it into a product with added value. Herein, the inflorescences of seven cultivars were processed into flour and evaluated for their physicochemical characteristics. The weight of the [...] Read more.
Banana inflorescences are usually discarded, but there has been interest in managing this by-product to turn it into a product with added value. Herein, the inflorescences of seven cultivars were processed into flour and evaluated for their physicochemical characteristics. The weight of the inflorescences ranged from 681.3 to 1245.4 g, with bracts accounting for more than 40%. The Prata Anã cultivar had the largest inflorescence. The part of the inflorescence was the main factor differentiating the flours, with the effect of the cultivar dependent on the part processed. All flours had high levels of fiber (27.70–41.91 g/100 g) and carbohydrates (19.30–33.96 g/100 g). The palm flours were differentiated by their higher levels of protein (17.4–19.4 g/100 g), and the flower flours by their higher levels of lipids (5.89–7.97 g/100 g). The bract flours had a higher water holding capacity (5.62–6.78%) and browning index (40.7–42). The bract and flower flours were less dissimilar. Results revealed the high nutritional quality of the flours and the prospect of using them as a non-conventional food source. Understanding the differences between banana inflorescence flours expands their possible uses and promotes sustainable agricultural production in terms of efficient banana by-product management. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

25 pages, 2300 KiB  
Article
Discovery and Genome Characterization of Three New Rhabdoviruses Infecting Passiflora spp. in Brazil
by Andreza Henrique Vidal, Ana Clara Rodrigues Abreu, Jorge Flávio Sousa Dantas-Filho, Monique Jacob Xavier Vianna, Cristiano Lacorte, Emanuel Felipe Medeiros Abreu, Gustavo Pereira Felix, Dione Mendes Teixeira Alves-Freitas, Bruna Pinheiro-Lima, Isadora Nogueira, Fabio Gelape Faleiro, Raul Castro Carriello Rosa, Onildo Nunes Jesus, Marcio Martinello Sanches, Yam Sousa Santos, Rosana Blawid, José Leonardo Santos Jiménez, Maite Freitas Silva Vaslin, Elliot Watanabe Kitajima, Magnolia de Araujo Campos, Rafaela Salgado Fontenele, Arvind Varsani, Fernando Lucas Melo and Simone Graça Ribeiroadd Show full author list remove Hide full author list
Viruses 2025, 17(5), 725; https://doi.org/10.3390/v17050725 - 19 May 2025
Viewed by 756
Abstract
This study aimed to explore the RNA viruses affecting Passiflora species in Brazil. Our results enhance the understanding of the viruses that infect Passiflora plants by identifying and characterizing three previously unrecognized viruses: Passiflora cytorhabdovirus (PFCV), Passiflora nucleorhabdovirus 1 (PaNV1), and Passiflora nucleorhabdovirus [...] Read more.
This study aimed to explore the RNA viruses affecting Passiflora species in Brazil. Our results enhance the understanding of the viruses that infect Passiflora plants by identifying and characterizing three previously unrecognized viruses: Passiflora cytorhabdovirus (PFCV), Passiflora nucleorhabdovirus 1 (PaNV1), and Passiflora nucleorhabdovirus 2 (PaNV2). These rhabdoviruses were identified through high-throughput sequencing and validated by reverse transcription-polymerase chain reaction (RT-PCR) in various Passiflora species. PFCV has a genome organization 3′-N-P-P3-P4-M-G-P7-L-5′ and was classified as a novel member of the Gammacytorhabdovirus genus. A particularly noteworthy feature of PFCV is its glycoprotein, as the genomes of other gammarhabdoviruses do not contain this gene. PFCV has a high incidence across multiple locations and was identified in plants from Northeastern, Central, and Southeastern Brazil. PaNV1 with genome structure 3′-N-P-P3-M-G-L-5′ and PaNV2 with genome organization 3′-N-X-P-Y-M-G-L-5′ are new members of the Alphanucleorhabdovirus genus and have a more restricted occurrence. Importantly, all three viruses were found in mixed infections alongside at least one other virus. In situ observations confirmed mixed infections, with PaNV2 particles co-located in tissues with a potyvirus and a carlavirus. Phylogenetic and glycoprotein sequence similarity network analysis provided insights into their evolutionary placement and potential vector associations. These findings expand the known diversity of rhabdoviruses in Passiflora and contribute to the understanding of their evolution and epidemiology. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

15 pages, 3886 KiB  
Article
Optimization of the Boron Back Surface Field Produced with Reduced Thermal Steps in Bifacial PERT Solar Cell
by Thais Crestani, Izete Zanesco, Adriano Moehlecke, Lucas Teixeira Caçapietra Pires da Silva and João Victor Zanatta Britto
Energies 2025, 18(9), 2347; https://doi.org/10.3390/en18092347 - 3 May 2025
Viewed by 478
Abstract
Bifacial solar cells are the leading technology, and the number of steps in the manufacturing process influences the processing time and production cost. The goal of this paper is to optimize the boron back surface field (B-BSF) produced with reduced thermal steps and [...] Read more.
Bifacial solar cells are the leading technology, and the number of steps in the manufacturing process influences the processing time and production cost. The goal of this paper is to optimize the boron back surface field (B-BSF) produced with reduced thermal steps and to analyze its influence on the electrical parameters and bifaciality coefficients of p-type bifacial PERT solar cells. The boron diffusion and a silicon oxide layer grown as a phosphorus diffusion barrier were carried out in a single thermal step, according to the patent granted BR102012030606-9. The sheet resistance of the emitter and B-BSF were not affected by the reduced thermal steps, demonstrating the effectiveness of the silicon oxide layer as a barrier to phosphorus diffusion in the boron-doped side. The short-circuit current density with incident irradiance on the boron-doped side was impacted by the B-BSF sheet resistance, affecting the efficiency and the maximum power bifaciality coefficient. The high recombination in the pp+ region limited the maximum power bifaciality coefficient to approximately 0.7, which is typical in p-type solar cells. Considering the achieved results, the boron and phosphorus diffusion performed with reduced thermal steps produces bifacial p-PERT solar cells with typical bifaciality, avoiding two thermal steps for silicon oxide growth and chemical etching and cleaning. Full article
Show Figures

Figure 1

15 pages, 2951 KiB  
Article
Cowpea (Vigna unguiculata) Water Relations, Growth, and Productivity as Affected by Salinity in Two Soils with Contrasting Mineralogies
by Jaciane Rosa Maria de Souza, Lucas Yago de Carvalho Leal, Martha Katharinne Silva Souza Paulino, José Alfredo Nunes, Rafael Luís Silva de Medeiros, Monaliza Alves dos Santos, Cintia Maria Teixeira Lins, Valdomiro Severino de Souza Júnior, Bruce Schaffer and Edivan Rodrigues de Souza
Soil Syst. 2025, 9(2), 36; https://doi.org/10.3390/soilsystems9020036 - 21 Apr 2025
Viewed by 782
Abstract
Soil salinity affects crop growth and production, especially in arid and semi-arid regions of the world. The interactions between salt ions and soil particles vary depending on soil texture, mineralogy, and ion composition. The relationship between soil ions and particles and the effects [...] Read more.
Soil salinity affects crop growth and production, especially in arid and semi-arid regions of the world. The interactions between salt ions and soil particles vary depending on soil texture, mineralogy, and ion composition. The relationship between soil ions and particles and the effects of this interaction on crop plants remains underexplored. This study evaluated the plant water relations, growth, and yield of cowpea (Vigna unguiculata) as affected by the salinity of the irrigation water in two different soil types with varying weathering levels and contrasting mineralogies. The treatments consisted of six salinity levels based on the electrical conductivity (EC) of the irrigation water (0, 1.5, 3, 4, 5, 6.0, or 9 dS m−1) and were tested in Ultisol (well-weathered soil) and Alfisol (less-weathered soil). The experiment was conducted over 80 days with 4 repetitions. The results showed that the plant salinity tolerance, growth, and yield in response to salinity varied depending on the soil type. Irrigation with saline water exceeding an EC of 3 dS m−1 completely halted cowpea production in Ultisol, whereas in Alfisol, production ceased at an EC above 6 dS m−1. Although it accumulates more salts under saline irrigation, Alfisol promotes better cowpea growth and yield than Ultisol. Full article
Show Figures

Figure 1

Back to TopTop