Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (131)

Search Parameters:
Authors = Li-guang Zhu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 23403 KiB  
Article
Flexibly Reconfigurable Kerr Micro-Comb Based on Cascaded Si3N4 Micro-Ring Filters
by Jieyu Yang, Guang Chen, Lidan Lu, Jianzhen Ou, Chao Mei, Yingjie Xu, Wenbo Bo, Peng Wang, Xinyi Li and Lianqing Zhu
Photonics 2025, 12(7), 661; https://doi.org/10.3390/photonics12070661 - 30 Jun 2025
Viewed by 362
Abstract
In recent years, micro-combs, due to their compact structure and high efficiency, have proven to be a practical solution for optical sources. In this paper, an approach to flexibly modulating micro-combs is proposed, and a simulation platform based on Si3N4 [...] Read more.
In recent years, micro-combs, due to their compact structure and high efficiency, have proven to be a practical solution for optical sources. In this paper, an approach to flexibly modulating micro-combs is proposed, and a simulation platform based on Si3N4 micro-combs with highly integrated, tunable, and reconfigurable features is built. By means of the Lugiato–Lefever equation model, the dynamic evolution process of micro-combs is analyzed, and a micro-ring resonator is designed with a free spectral range of 7.24 nm, an effective mode area of 1.0829µm2, and coherent comb lines spanning over 125 THz. Cascaded silicon nitride micro-ring filters are utilized to obtain reconfigurable modulation effects for Kerr-frequency micro-combs. Due to the significance of flexibly controlled optical sources with high-repetition rates and multiple channels for system-on-chip, our proposal has potential in photonic integrated circuit systems, such as high-density photonic computing and large-capacity optical communications, in the future. Full article
(This article belongs to the Special Issue Photonic Integrated Circuits: Techniques, Insights and Devices)
Show Figures

Figure 1

15 pages, 4309 KiB  
Article
The Casual Associations Between Brain Functional Networks and Fibromyalgia: A Large-Scale Genetic Correlation and Mendelian Randomization Study
by Yiqun Hu, Guang Yang, Zhenhan Deng, Shengwu Yang, Yusheng Li, Wenfeng Xiao, Bangbao Lu and Xiongbai Zhu
Bioengineering 2025, 12(7), 692; https://doi.org/10.3390/bioengineering12070692 - 25 Jun 2025
Viewed by 455
Abstract
While the central mechanisms of fibromyalgia have gained attention, the causal effects between brain networks and fibromyalgia remain unclear. Two-sample Mendelian randomization and Linkage Disequilibrium Score Regression were performed to investigate the relationship between 191 rsfMRI traits and 8 fibromyalgia-related traits. A total [...] Read more.
While the central mechanisms of fibromyalgia have gained attention, the causal effects between brain networks and fibromyalgia remain unclear. Two-sample Mendelian randomization and Linkage Disequilibrium Score Regression were performed to investigate the relationship between 191 rsfMRI traits and 8 fibromyalgia-related traits. A total of 4 rsfMRI traits were genetically correlated with trouble falling asleep, 11 with back pain for 3+ months, 16 with pain all over the body, 14 with insomnia, 5 with fibromyalgia, 4 with fibromyalgia, and 3 with malaise and fatigue. Pheno801 has significant causal effects on malaise and fatigue (OR = 1.0022, p = 0.01), fibromyalgia (finngen) (OR = 1.5055, p = 0.03), and insomnia (OR = 1.4063, p = 0.04). Pheno1696 significantly impacts fibromyalgia-related comorbidities (OR = 1.002, p = 0.02), trouble falling asleep (OR = 1.0285, p = 0.04), malaise and fatigue (OR = 1.0011, p = 0.04), and pain all over the body (OR = 0.9967, p = 0.04). Pheno103 has marked effects on fibromyalgia (finngen) (OR = 0.7477, p = 0.02), malaise and fatigue (OR = 0.9987, p = 0.03), and pain all over the body (OR = 1.0033, p = 0.03). Our findings suggest that targeting these networks could effectively prevent or alleviate fibromyalgia. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

19 pages, 5358 KiB  
Review
Chitosan-Based Dressing Materials for Burn Wound Healing
by Shiyu Li, Wenlong Pan, Ming Zhang, Kailu Song, Ziqian Zhou, Qilong Zhao, Guang-Zhao Li and Chongyu Zhu
Polymers 2025, 17(12), 1647; https://doi.org/10.3390/polym17121647 - 13 Jun 2025
Cited by 1 | Viewed by 1223
Abstract
The treatment of burn injuries remains a significant global challenge. Although conventional cellulose-based dressings are still the dominant clinical choice, chitosan-based burn wound dressing materials have emerged as a promising alternative due to their unique physicochemical properties and biocompatibility. In this mini-review, we [...] Read more.
The treatment of burn injuries remains a significant global challenge. Although conventional cellulose-based dressings are still the dominant clinical choice, chitosan-based burn wound dressing materials have emerged as a promising alternative due to their unique physicochemical properties and biocompatibility. In this mini-review, we aim to provide a summary of recent advances in chitosan-based dressing materials and highlight their advantages in the treatment of burn wounds. Specifically, we first outline the chemical structure and synthesis methods of chitosan and its derivatives. Subsequently, various forms of chitosan-based dressings are introduced, with a particular focus on hydrogels and micro/nanofibers dressings, along with an overview of their preparation methods. Considering the microenvironment of the burn wound site, we then summarize the design principles and clinical efficacy of chitosan-based dressings with antimicrobial and/or antioxidative activity. Additionally, the applications of chitosan dressings in tissue engineering for burn treatment are also discussed, including growth factor delivery, gene therapy, and stem cell-based treatments. Finally, we examine the main challenges of chitosan-based dressing materials and the potential future directions. Through this mini-review, we expect to provide new perspectives for the development of wound dressings for burn care. Full article
Show Figures

Graphical abstract

18 pages, 8053 KiB  
Article
Hydrazine Derivative-Based Carbon Dots for Potent Antibacterial Activity Against Multidrug-Resistant Bacterial
by Hou-Qun Yuan, Zhu-Lin Wang, Meng-Ke Wang, Qiu-Yu Zhang, Xin-Yi Liang, Ting-Zhong Xie, Li-Ge He, Peiyao Chen, Hongda Zhu and Guang-Ming Bao
Nanomaterials 2025, 15(12), 910; https://doi.org/10.3390/nano15120910 - 11 Jun 2025
Viewed by 587
Abstract
Bacterial infections, particularly those caused by multidrug-resistant strains, remain a significant global public health challenge. The growing resistance to traditional antibiotics highlights the urgent need for novel antibacterial strategies. Herein, we successfully synthesized three types of nitrogen-doped carbon dots (tBuCz-CDs, HAH-CDs, and EC-CDs) [...] Read more.
Bacterial infections, particularly those caused by multidrug-resistant strains, remain a significant global public health challenge. The growing resistance to traditional antibiotics highlights the urgent need for novel antibacterial strategies. Herein, we successfully synthesized three types of nitrogen-doped carbon dots (tBuCz-CDs, HAH-CDs, and EC-CDs) via hydrothermal method using tert-butyl carbazate, hydroxyacetic acid hydrazide, and ethyl carbazate as precursors. tBuCz-CDs, HAH-CDs, and EC-CDs exhibited potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentrations (MICs) of 100, 100, and 150 µg/mL, respectively. Their antibacterial effect on MRSA was comparable to that of the widely used antibiotic vancomycin hydrochloride, as shown by the zone of inhibition assay. Furthermore, the carbon dots exhibited low cytotoxicity and hemolytic activity showing their excellent biocompatibility both in vitro and in vivo. They also significantly promoted wound healing compared to untreated controls. Notably, the serial passaging of MRSA exposed to these carbon dots did not result in the bacterial resistance. Mechanistic studies revealed that the carbon dots exerted antibacterial effects through multiple mechanisms, including the disruption of bacterial membranes, inhibition and eradication of biofilm formation, generation of reactive oxygen species, and DNA damage. This work highlights the potential of nitrogen-doped CDs as a promising material for combating drug-resistant bacterial infections and underscores their potential for further biomedical development. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

13 pages, 3692 KiB  
Article
In Situ Growth of CoS Nanosheets on Carbon Fiber Surfaces to Enhance the Interfacial Properties of Carbon Fiber/Norbornene Polyimide Composites
by Guoqiang Kong, Jianshun Feng, Fengjie Qi, Meng Shao, Qiubing Yu, Guang Yu, Xin Ren, Wenjie Yuan, Qifen Wang, Wenbo Liu, Xiang Zhao, Dayong Li, Xuejun Hou and Bo Zhu
Materials 2025, 18(10), 2334; https://doi.org/10.3390/ma18102334 - 17 May 2025
Viewed by 442
Abstract
This study presents a novel method for altering the surface properties of carbon fiber (CF) to improve the bonding strength at its interface with norbornene–polyimide (PI-NA) resin. Cobaltous sulfide (CoS) nanosheets were successfully synthesized on the CF surface using a solvothermal method combined [...] Read more.
This study presents a novel method for altering the surface properties of carbon fiber (CF) to improve the bonding strength at its interface with norbornene–polyimide (PI-NA) resin. Cobaltous sulfide (CoS) nanosheets were successfully synthesized on the CF surface using a solvothermal method combined with a chemical sulfidation process. The modification increased the specific surface area and surface roughness of the CFs, enhancing the interfacial mechanical lock-in effect between the fibers and the resin. This facilitated effective load transfer between the resin and the fibers, thereby significantly improving the interfacial strength of CF-reinforced polymers (CFRPs). The experimental findings showed that after solvothermal treatment with a precursor solution of 0.006 g/mL for 4.5 h, vertical CoS nanosheets were successfully grown on the CF surface. The interlaminar shear strength (ILSS) and interfacial shear strength (IFSS) of the modified CF reached 60.03 MPa and 83.27 MPa, respectively, representing increases of 19.49% and 27.01% compared to untreated fiber composites. This research demonstrates that this method is simple to apply and promising in terms of industrial scalability. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

2 pages, 131 KiB  
Retraction
RETRACTED: Yue et al. A Ferulic Acid Derivative FXS-3 Inhibits Proliferation and Metastasis of Human Lung Cancer A549 Cells via Positive JNK Signaling Pathway and Negative ERK/p38, AKT/mTOR and MEK/ERK Signaling Pathways. Molecules 2019, 24, 2165
by Shi-Jun Yue, Peng-Xuan Zhang, Yue Zhu, Nian-Guang Li, Yan-Yan Chen, Jia-Jia Li, Sai Zhang, Ru-Yi Jin, Hao Yan, Xu-Qin Shi, Yu-Ping Tang and Jin-Ao Duan
Molecules 2025, 30(10), 2139; https://doi.org/10.3390/molecules30102139 - 13 May 2025
Cited by 2 | Viewed by 388
Abstract
The journal retracts the article titled “A Ferulic Acid Derivative FXS-3 Inhibits Proliferation and Metastasis of Human Lung Cancer A549 Cells via Positive JNK Signaling Pathway and Negative ERK/p38, AKT/mTOR and MEK/ERK Signaling Pathways” [...] Full article
22 pages, 1186 KiB  
Article
Establishment and Validation of a Method for the Identification of Recessive Mastitis Resistance Genes in Dairy Cows
by Wei Zheng, Pei Wu, Mengting Zhu, Yaseen Ullah, Zongsheng Zhao, Shaoqi Cao, Guang Li, Sihai Ou, Kaibing He and Ye Xu
Genes 2025, 16(5), 485; https://doi.org/10.3390/genes16050485 - 25 Apr 2025
Viewed by 649
Abstract
Background/Objectives: The resistance to occult mastitis in dairy cows is a multifaceted trait influenced by a variety of genetic and environmental factors, posing significant challenges to its prevention and treatment. Methods: In this study, a cohort of 389 Holstein dairy cows was selected [...] Read more.
Background/Objectives: The resistance to occult mastitis in dairy cows is a multifaceted trait influenced by a variety of genetic and environmental factors, posing significant challenges to its prevention and treatment. Methods: In this study, a cohort of 389 Holstein dairy cows was selected for investigation. The genes NOD2, CXCR1, SPP1 and LF, which are implicated in resistance to occult mastitis, were genotyped utilizing the efficient and cost-effective Kompetitive Allele-Specific PCR (KASP) technology. Additionally, the study analyzed the association between various single nucleotide polymorphisms (SNPs) and the somatic cell score in Holstein dairy cows. Multi-locus penetrance variance analysis (MPVA) analysis was also conducted to assess the resistance of different genotypic combinations to recessive mastitis in dairy cows. A genotyping kit for occult mastitis resistance was developed. Subsequently, 300 Holstein cows were randomly selected to evaluate the accuracy of the kit’s classification and resistance detection. Results: The findings revealed that the most effective genotype combination was SPP1(AA)-CXCR1(CC)-NOD2(CA)-LF(GA). Upon verification, the genotyping kit for recessive mastitis resistance in dairy cows exhibited an accuracy rate of 100% for individual genotyping and 95.90% for resistance detection. Conclusions: From the perspective of disease resistance genetics, this study lays a foundation for the precise management of dairy cow herds. It enables the early identification and removal of individuals susceptible to subclinical mastitis, thereby improving the overall quality of the cattle population. Full article
(This article belongs to the Special Issue Research on Genetics and Breeding of Cattle)
Show Figures

Figure 1

27 pages, 12122 KiB  
Article
An Investigation into the Saliency Ratio of Fractional-Slot Concentrated-Winding Generators for Offshore Wind Power
by Isaac Rudden, Guang-Jin Li, Zi-Qiang Zhu, Alexander Duke and Richard Clark
Energies 2025, 18(8), 2057; https://doi.org/10.3390/en18082057 - 17 Apr 2025
Viewed by 410
Abstract
This paper investigates the nature of the low saliency ratio of large permanent magnet generators with fractional-slot concentrated windings (FSCWs). A saliency ratio of at least 1.2 is typically required to enable sensorless control of large generators—a value naturally achieved in integer slot [...] Read more.
This paper investigates the nature of the low saliency ratio of large permanent magnet generators with fractional-slot concentrated windings (FSCWs). A saliency ratio of at least 1.2 is typically required to enable sensorless control of large generators—a value naturally achieved in integer slot winding topologies but absent in FSCW surface-mounted permanent magnet machines reported in the literature. The low saliency ratio in FSCW designs is attributed to larger teeth, which reduce magnetic saturation and increase d-axis inductance. This work explores methods to enhance the saliency ratio of FSCW machines for offshore wind turbines, facilitating sensorless rotor position estimation. The proposed approaches are categorized into two groups: (1) those that preserve the conventional machine geometry with minimal modification to the magnetic circuit and (2) those involving magnetic circuit alterations. The results show that significant improvement in saliency ratio is only achievable through magnetic circuit modifications, such as rotor shoes, albeit with some performance trade-offs. A multi-objective genetic algorithm is employed to design two optimized 3 MW FSCW machine topologies, achieving saliency ratios of 1.15 and 1.2 with minimal performance loss. Compared to a 3 MW FSCW baseline, the optimized designs show stator power reductions of 3.40% and 6.16% for saliency ratios of 1.15 and 1.2, respectively. Full article
Show Figures

Figure 1

26 pages, 2506 KiB  
Article
Optimal Economic Dispatch of Hydrogen Storage-Based Integrated Energy System with Electricity and Heat
by Yu Zhu, Siyu Niu, Guang Dai, Yifan Li, Linnan Wang and Rong Jia
Sustainability 2025, 17(5), 1974; https://doi.org/10.3390/su17051974 - 25 Feb 2025
Cited by 1 | Viewed by 655
Abstract
To enhance the accommodation capacity of renewable energy and promote the coordinated development of multiple energy, this paper proposes a novel economic dispatch method for an integrated electricity–heat–hydrogen energy system on the basis of coupling three energy flows. Firstly, we develop a mathematical [...] Read more.
To enhance the accommodation capacity of renewable energy and promote the coordinated development of multiple energy, this paper proposes a novel economic dispatch method for an integrated electricity–heat–hydrogen energy system on the basis of coupling three energy flows. Firstly, we develop a mathematical model for the hydrogen energy system, including hydrogen production, storage, and hydrogen fuel cells. Additionally, a multi-device combined heat and power system is constructed, incorporating gas boilers, waste heat boilers, gas turbines, methanation reactors, thermal storage tanks, batteries, and gas storage tanks. Secondly, to further strengthen the carbon reduction advantages, the economic dispatch model incorporates the power-to-gas process and carbon trading mechanisms, giving rise to minimizing energy purchase costs, energy curtailment penalties, carbon trading costs, equipment operation, and maintenance costs. The model is linearized to ensure a global optimal solution. Finally, the experimental results validate the effectiveness and superiority of the proposed model. The integration of electricity–hydrogen coupling devices improves the utilization rate of renewable energy generation and reduces the total system operating costs and carbon trading costs. The use of a tiered carbon trading mechanism decreases natural gas consumption and carbon emissions, contributing to energy conservation and emission reduction. Full article
Show Figures

Figure 1

20 pages, 4190 KiB  
Article
Arthrocolin B Impairs Adipogenesis via Delaying Cell Cycle Progression During the Mitotic Clonal Expansion Period
by Guang Cao, Xuemei Liao, Shuang Zhao, Mengwen Li, Zhengyuan Xie, Jinglan Yang, Yanze Li, Zihao Zhu, Xiaoru Jin, Rui Huang, Ziyin Guo, Xuemei Niu and Xu Ji
Int. J. Mol. Sci. 2025, 26(4), 1474; https://doi.org/10.3390/ijms26041474 - 10 Feb 2025
Viewed by 1040
Abstract
Obesity and its related diseases severely threaten people’s health, causing persistently high morbidity and mortality worldwide. The abnormal proliferation and hypertrophy of adipocytes mediate the expansion of adipose tissue, which is the main cause of obesity-related diseases. Inhibition of cell proliferation during the [...] Read more.
Obesity and its related diseases severely threaten people’s health, causing persistently high morbidity and mortality worldwide. The abnormal proliferation and hypertrophy of adipocytes mediate the expansion of adipose tissue, which is the main cause of obesity-related diseases. Inhibition of cell proliferation during the mitotic clonal expansion (MCE) period of adipogenesis may be a promising strategy for preventing and treating obesity. Arthrocolins are a series of fluorescent dye-like complex xanthenes from engineered Escherichia coli, with potential anti-tumor and antifungal activities. However, the role and underlying mechanisms of these compounds in adipocyte differentiation remain unclear. In this study, we discovered that arthrocolin B, a member of the arthrocolin family, significantly impeded adipogenesis by preventing the accumulation of lipid droplets and triglycerides, as well as by downregulating the expression of key factors involved in adipogenesis, such as SREBP1, C/EBPβ, C/EBPδ, C/EBPα, PPARγ, and FABP4. Moreover, we revealed that this inhibition might be a consequence of cell cycle arrest during the MCE of adipocyte differentiation, most likely by modulating the p53, AKT, and ERK pathways, upregulating the expression of p21 and p27, and repressing the expression of CDK1, CDK4, Cyclin A2, Cyclin D1, and p-Rb. Additionally, arthrocolin B could promote the expression of CPT1A during adipocyte differentiation, implying its potential role in fatty acid oxidation. Overall, our research concludes that arthrocolin B has the ability to suppress the early stages of adipocyte differentiation mainly by modulating the signaling proteins involved in cell cycle progression. This work broadens our understanding of the function and mechanisms of arthrocolins in regulation of adipogenesis and might provide a potential lead compound for treating the obesity. Full article
Show Figures

Graphical abstract

13 pages, 3694 KiB  
Article
Synthesis and Performance of Epoxy-Terminated Hyperbranched Polymers Based on Epoxidized Soybean Oil
by Guang-Zhao Li, Qiuhong Wang, Chongyu Zhu, Shuai Zhang, Fumei Wang, Lei Tao, Youqi Jiang, Qiang Zhang, Wenyan Wang and Rui Han
Molecules 2025, 30(3), 583; https://doi.org/10.3390/molecules30030583 - 27 Jan 2025
Cited by 1 | Viewed by 1202
Abstract
Epoxy-terminated hyperbranched polymers (EHBPs) are a class of macromolecular polymers with a hyperbranched structure containing epoxy groups. They possess characteristics such as low viscosity, high functionality, and thermal stability, which endow them with broad application potential in materials science and chemical engineering. This [...] Read more.
Epoxy-terminated hyperbranched polymers (EHBPs) are a class of macromolecular polymers with a hyperbranched structure containing epoxy groups. They possess characteristics such as low viscosity, high functionality, and thermal stability, which endow them with broad application potential in materials science and chemical engineering. This study uses epoxidized soybean oil (ESO) as the raw material, which undergoes ring-opening reactions with glycerol and is esterified with 2,2-bis(hydroxymethyl)propionic acid (DMPA) to obtain epoxy soybean oil polyol (EGD) with a high hydroxyl value. Subsequently, four types of EHBPs are synthesized by incorporating epichlorohydrin (ECH) in mass ratios of 1:3, 1:4, 1:5, and 1:6 under strong alkaline conditions. The product structure is characterized using FT–IR and GPC. The degree of branching of EGD is calculated using 1H NMR and 13C NMR spectroscopy. The epoxy value of EHBPs is tested using the hydrochloric acid–acetone method, and the water contact angle, adhesion properties, rheological properties, and thermal properties of the EHBPs are also evaluated. The results show that the degree of branching of EGD is 0.45. The epoxy values of the EHBPs are 0.73, 0.79, 0.82, and 0.89 mol/100g, respectively. As the epoxy value and molecular weight of the epoxy hyperbranched polymers (EHBPs) increase, the water contact angle and adhesion strength of the EHBPs rise progressively and the viscosity decreases. Additionally, the glass transition temperature increases with the increase in the epoxy value. These epoxy hyperbranched polymers with low viscosity and high adhesion strength offer a promising approach for modifying surface coatings or formulating adhesives. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

15 pages, 12357 KiB  
Article
Fabrication of Polydopamine/hemin/TiO2 Composites with Enhanced Visible Light Absorption for Efficient Photocatalytic Degradation of Methylene Blue
by Zhuandong Zhu, Shengrong Zhou, Debin Tian, Guang-Zhao Li, Gang Chen, Dong Fang, Jiaxuan Cao, Fumei Wang, Wenyan Wang, Xuewei He and Wei Zhang
Polymers 2025, 17(3), 311; https://doi.org/10.3390/polym17030311 - 24 Jan 2025
Cited by 2 | Viewed by 896
Abstract
With the rapid progression of industrialization, water pollution has emerged as an increasingly critical issue, especially due to the release of organic dyes such as methylene blue (MB), which poses serious threats to both the environment and human health. Developing efficient photocatalysts to [...] Read more.
With the rapid progression of industrialization, water pollution has emerged as an increasingly critical issue, especially due to the release of organic dyes such as methylene blue (MB), which poses serious threats to both the environment and human health. Developing efficient photocatalysts to effectively degrade these pollutants is therefore of paramount importance. In this work, titanium dioxide (TiO2) was modified with the photosensitizer hemin and the hydroxyl-rich polymer polydopamine (PDA) to enhance its photocatalytic degradation performance. Hemin and PDA function as photosensitizers, extending the light absorption of TiO2 into the visible spectrum, reducing its bandgap energy, and effectively promoting separation of photogenerated electron–hole pairs through conjugated structures. Additionally, the strong adhesion of PDA enabled the rapid transfer and effective utilization of photogenerated electrons, while its abundant phenolic hydroxyls increased MB adsorption on the photocatalyst’s surface. Experimental results demonstrated a significant enhancement in photocatalytic activity, with the 1%PDA/3%hemin/TiO2 composite achieving degradation rates of 91.79% under UV light and 71.53% under visible light within 120 min, representing 2.22- and 2.05-fold increases compared to unmodified TiO2, respectively. This research presents an effective modification approach and provides important guidance for designing high-performance TiO2-based photocatalysts aimed at environmental remediation. Full article
Show Figures

Figure 1

23 pages, 10531 KiB  
Article
Investigation into the Potential Mechanism of Radix Paeoniae Rubra Against Ischemic Stroke Based on Network Pharmacology
by Tingyu Wen, Guang Xin, Qilong Zhou, Tao Wang, Xiuxian Yu, Yanceng Li, Shiyi Li, Ying Zhang, Kun Zhang, Ting Liu, Beiwei Zhu and Wen Huang
Nutrients 2024, 16(24), 4409; https://doi.org/10.3390/nu16244409 - 23 Dec 2024
Viewed by 1568
Abstract
Background: Radix Paeoniae Rubra (RPR), an edible and medicinal Traditional Chinese Medicine (TCM), is extensively employed in therapeutic interventions of cardiovascular and cerebrovascular diseases. However, the curative effect of RPR on ischemic stroke remains ambiguous. This work integrated network pharmacology, molecular docking, and [...] Read more.
Background: Radix Paeoniae Rubra (RPR), an edible and medicinal Traditional Chinese Medicine (TCM), is extensively employed in therapeutic interventions of cardiovascular and cerebrovascular diseases. However, the curative effect of RPR on ischemic stroke remains ambiguous. This work integrated network pharmacology, molecular docking, and experimental validation to explore the mechanisms of RPR in treating ischemic stroke. Methods: In this study, we preliminarily elucidated the therapeutic effect and mechanism of RPR on ischemic stroke through network pharmacology, molecular docking analysis, and experimental verification. Results: The results indicated that RPR improved the neurological deficit scores, decreased the size of infarcts, and reduced brain edema symptoms in the tMCAO mice model. Furthermore, through network pharmacology and molecular docking, four core targets (MAPK3, TNF-α, MAPK14, and JNK) closely related to RPR’s treatment of ischemic stroke were identified, exhibiting strong affinity with two key active components of RPR: albiflorin (AF) and β-sitosterol (BSS). The Western blot showed the potential mechanism of RPR treatment for ischemic stroke by regulating the MAPK signaling pathway. Moreover, RPR and its main active ingredients exhibited a significant inhibitory effect on platelets. Conclusion: In conclusion, this study revealed that RPR alleviates ischemic injury by activating the MAPK signaling pathway, and its protective effect may partly stem from inhibiting platelet activation. This work may provide a scientific basis for the development and utilization of RPR as a natural edible material to prevent ischemic stroke and anti-platelet therapy. Full article
(This article belongs to the Special Issue Medicinal Plants and Natural Products for Human Health)
Show Figures

Graphical abstract

18 pages, 10386 KiB  
Article
Climate-Driven Effects on NPP in the Tibetan Plateau Alpine Grasslands Diminish with Increasing Elevation
by Ze Tang, Yangjian Zhang, Ming Lei, Zhaolei Li, Guang Zhao, Yao Chen and Wenquan Zhu
Remote Sens. 2024, 16(24), 4754; https://doi.org/10.3390/rs16244754 - 20 Dec 2024
Cited by 2 | Viewed by 1130
Abstract
Temperature and precipitation are important abiotic factors affecting net primary productivity (NPP) in grassland ecosystems. However, findings on how elevation influences the effects of these factors on NPP in alpine grasslands are not yet consistent. In addition, the impact of varied patterns of [...] Read more.
Temperature and precipitation are important abiotic factors affecting net primary productivity (NPP) in grassland ecosystems. However, findings on how elevation influences the effects of these factors on NPP in alpine grasslands are not yet consistent. In addition, the impact of varied patterns of climate change on NPP sensitivity with elevation remain unclear. Therefore, alpine grassland on the Tibetan Plateau (TP) was selected to profile the spatial and temporal patterns of NPP from 2001 to 2022, and subsequently to reveal the effects of temperature and precipitation on the sensitivity of NPP with altitudinal gradient. The results showed that (1) 91% of the TP grassland experienced positive NPP trends, and the NPP trends followed a unimodal curve with elevation, with the largest mean value at 2500 m; (2) a positive correlation between precipitation and NPP dominated the grassland NPP up to an elevation of 3400 m, and a positive correlation between temperature and NPP dominated the grassland NPP above an elevation of 3400 m; (3) temperature, precipitation, and their interaction explained, on average, 21% of the temporal variation in the NPP of TP grassland, and the explanatory capacity decreased significantly with elevation; and (4) elevation, temperature, and precipitation variations together explained 35% of the NPP sensitivity of the TP grasslands. This study reveals the altitudinal characteristics of NPP in grasslands affected by climate, and reminds us to take elevation into account when carrying out grassland management. Full article
Show Figures

Graphical abstract

10 pages, 761 KiB  
Article
Two-Way Single-Photon Laser Time Transfer for High-Speed Moving Platforms
by Xinyi Zhu, Yurong Wang, Zhaohui Li, Xue Li and Guang Wu
Photonics 2024, 11(11), 1028; https://doi.org/10.3390/photonics11111028 - 31 Oct 2024
Cited by 1 | Viewed by 1334
Abstract
The two-way laser time transfer technology, based on single-photon detection, is among the techniques requiring the least weight and power consumption for ultra-long-distance clock synchronization. It holds promise as the most viable technology for high-accuracy inter-satellite clock synchronization, particularly for small satellites that [...] Read more.
The two-way laser time transfer technology, based on single-photon detection, is among the techniques requiring the least weight and power consumption for ultra-long-distance clock synchronization. It holds promise as the most viable technology for high-accuracy inter-satellite clock synchronization, particularly for small satellites that are highly sensitive to weight and power consumption. In this study, we analyze laser time transfer in fast-moving platforms and find that not only does the relative motion speed between platforms significantly impact the clock offset measurement, but also the components of each platform’s relative motion velocity are critical. We introduce a lightweight scenario for laser time transfer, capable of achieving high-precision and high-accuracy interstellar clock offset measurements within a 5000 km range using high repetition rate microchip lasers and single-pixel single-photon detectors. With a speed accuracy of ±0.06 m/s, the precision of clock offset measurement surpasses 3 ps at full width at half maximum (FWHM), making it suitable for high-speed and high-precision clock synchronization between near-Earth satellites. Full article
(This article belongs to the Special Issue Recent Progress in Single-Photon Generation and Detection)
Show Figures

Figure 1

Back to TopTop