Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Authors = Lampros Vasiliades ORCID = 0000-0002-1427-0007

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4233 KiB  
Article
A Modelling Framework for the Hydraulic Simulation of a Water Distribution System Under Data Scarcity: Application in the City of Farsala, Greece
by Pantelis Sidiropoulos, Achilleas Papadomanolakis, Aikaterini Lyra, Nikitas Mylopoulos and Lampros Vasiliades
Appl. Sci. 2025, 15(11), 6124; https://doi.org/10.3390/app15116124 - 29 May 2025
Viewed by 483
Abstract
Access to safe and reliable water is a fundamental requirement for sustainable urban development. However, water distribution systems (WDSs), particularly in small and aging municipalities, face persistent challenges, including infrastructure degradation, population growth, and limited operational data. This study presents a comprehensive hydraulic [...] Read more.
Access to safe and reliable water is a fundamental requirement for sustainable urban development. However, water distribution systems (WDSs), particularly in small and aging municipalities, face persistent challenges, including infrastructure degradation, population growth, and limited operational data. This study presents a comprehensive hydraulic modeling framework for the city of Farsala, Central Greece, an area characterized by significant data scarcity and outdated water network records. A novel methodology was developed that combines AutoCAD-based network digitization, GIS data integration, field surveys, and real-time SCADA telemetry to create a high-fidelity and operational hydraulic model using WaterGEMS software. The model was calibrated and validated using observed pressure and flow data, achieving high performance metrics, including a Nash–Sutcliffe efficiency (NSE) of 0.841 and R2 of 0.90. Extended period simulations (EPS) were conducted to evaluate system behavior over a 24 h cycle, revealing critical insights into pressure distribution, peak demand conditions, and leakage hotspots. The results demonstrate that even under constrained data conditions, it is possible to construct a robust and decision-supportive model, offering valuable guidance for future system upgrades, leakage control strategies, and smart infrastructure planning in similar urban environments. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

7 pages, 1823 KiB  
Proceeding Paper
Assessing the Vulnerability of Water Resources to Drought by Applying the Standardized Drought Vulnerability Index to the Lake Karla Basin
by Stylianos Voudouris, Athanasios Loukas, Pantelis Sidiropoulos and Lampros Vasiliades
Environ. Earth Sci. Proc. 2025, 32(1), 15; https://doi.org/10.3390/eesp2025032015 - 17 Apr 2025
Viewed by 537
Abstract
Drought as an extreme weather phenomenon has recently become more frequent with significant impacts on water resources, such as reduced infiltration and surface runoff. To assess the vulnerability of water resources to drought, the Standardized Drought Vulnerability Index (SDVI) was applied to the [...] Read more.
Drought as an extreme weather phenomenon has recently become more frequent with significant impacts on water resources, such as reduced infiltration and surface runoff. To assess the vulnerability of water resources to drought, the Standardized Drought Vulnerability Index (SDVI) was applied to the hydrological basin of Lake Karla in Thessaly, Central Greece. The Lake Karla basin has a semi-arid climate and is an agricultural basin in which water-demanding crops are cultivated. The SDVI is a composite index that integrates all types of droughts and, with its holistic approach, can be used as a monitoring tool to provide knowledge for the delineation of vulnerable areas. Full article
(This article belongs to the Proceedings of The 8th International Electronic Conference on Water Sciences)
Show Figures

Figure 1

8 pages, 4076 KiB  
Proceeding Paper
Regional Frequency Analysis of Annual Maximum Rainfall and Sampling Uncertainty Quantification
by Marios Billios and Lampros Vasiliades
Environ. Earth Sci. Proc. 2025, 32(1), 3; https://doi.org/10.3390/eesp2025032003 - 24 Jan 2025
Viewed by 781
Abstract
Accurate quantile estimation of extreme precipitation is crucial for hydraulic infrastructure design but is often hindered by limited data records, leading to uncertainties. This study applies regional frequency analysis (RFA) using L-moments, comparing classical and Bayesian approaches to quantify uncertainties. Data from 55 [...] Read more.
Accurate quantile estimation of extreme precipitation is crucial for hydraulic infrastructure design but is often hindered by limited data records, leading to uncertainties. This study applies regional frequency analysis (RFA) using L-moments, comparing classical and Bayesian approaches to quantify uncertainties. Data from 55 rainfall stations in Thessaly, Greece, are analyzed through clustering using PCA and k-means. The Generalized Extreme Value (GEV) distribution is fitted to delineated clusters, and uncertainties are assessed via bootstrap and MCMC methods. Results highlight consistency in location and scale estimates, with Bayesian methods offering narrower uncertainty bounds, demonstrating improved reliability for long-term rainfall prediction and design. Full article
(This article belongs to the Proceedings of The 8th International Electronic Conference on Water Sciences)
Show Figures

Figure 1

27 pages, 9833 KiB  
Article
A Network-Based Clustering Method to Ensure Homogeneity in Regional Frequency Analysis of Extreme Rainfall
by Marios Billios and Lampros Vasiliades
Water 2025, 17(1), 38; https://doi.org/10.3390/w17010038 - 26 Dec 2024
Cited by 1 | Viewed by 1987
Abstract
The social impacts of extreme rainfall events are expected to intensify with climate change, making reliable statistical analyses essential. High quantile estimation requires substantial data; however, available records are sometimes limited. Additionally, finite data and variability across statistical models introduce uncertainties in the [...] Read more.
The social impacts of extreme rainfall events are expected to intensify with climate change, making reliable statistical analyses essential. High quantile estimation requires substantial data; however, available records are sometimes limited. Additionally, finite data and variability across statistical models introduce uncertainties in the final estimates. This study addresses the uncertainty that arises when selecting parameters in Regional Frequency Analysis (RFA) by proposing a method to objectively identify statistically homogeneous regions. Station coordinates, elevation, annual mean rainfall, maximum annual rainfall, and l-skewness from 55 meteorological stations are selected to study annual maximum daily rainfall. These covariates are employed to investigate the interdependency of the covariates in Principal Component Analysis (PCA) as a preprocessing step in cluster analysis. Network theory, implemented through an iterative clustering process, is used in network creation where stations are linked based on the frequency of their co-occurrence in clusters. Communities are formed by maximizing the modularity index after creating a network of stations. RFA is performed in the final communities using L-moment theory to estimate regional and InSite quantiles. Quantile uncertainty is calculated through parametric bootstrapping. The application of PCA has a negligible effect on network creation in the study area. The results show that the iterative clustering approach with network theory ensures statistically created homogeneous regions, as demonstrated in Thessaly’s complex terrain for regionalisation of extreme rainfall. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

30 pages, 49910 KiB  
Article
Climate Change Impacts on Nitrate Leaching and Groundwater Nitrate Dynamics Using a Holistic Approach and Med-CORDEX Climatic Models
by Aikaterini Lyra, Athanasios Loukas, Pantelis Sidiropoulos and Lampros Vasiliades
Water 2024, 16(3), 465; https://doi.org/10.3390/w16030465 - 31 Jan 2024
Cited by 2 | Viewed by 2235
Abstract
This study presents the projected future evolution of water resource balance and nitrate pollution under various climate change scenarios and climatic models using a holistic approach. The study area is Almyros Basin and its aquifer system, located in Central Greece, Thessaly, Greece. Almyros [...] Read more.
This study presents the projected future evolution of water resource balance and nitrate pollution under various climate change scenarios and climatic models using a holistic approach. The study area is Almyros Basin and its aquifer system, located in Central Greece, Thessaly, Greece. Almyros Basin is a coastal agricultural basin and faces the exacerbation of water deficit and groundwater nitrate pollution. Using an Integrated Modeling System (IMS), which consists of the surface hydrology model (UTHBAL), the nitrate leachate model (REPIC, an R-ArcGIS-based EPIC model), the groundwater hydrology model (MODFLOW), and the nitrates’ advection, dispersion, and transport model (MT3MDS), the projected values of the variables of water quantity and quality are simulated. Nineteen climatic models from the Med-CORDEX database were bias-corrected with the Quantile Empirical Mapping method and employed to capture the variability in the simulated surface and groundwater water balance and nitrate dynamics. The findings indicate that future precipitation, runoff, and groundwater recharge will decrease while temperature and potential evapotranspiration will increase. Climate change will lead to reduced nitrogen leaching, lower groundwater levels, and persistent nitrate pollution; however, it will be accompanied by high variability and uncertainty, as simulations of IMS under multiple climatic models indicate. Full article
Show Figures

Figure 1

6 pages, 1658 KiB  
Proceeding Paper
A Unified Hydrologic Framework for Flood Design Estimation in Ungauged Basins
by Lampros Vasiliades, George Papaioannou and Athanasios Loukas
Environ. Sci. Proc. 2023, 25(1), 40; https://doi.org/10.3390/ECWS-7-14194 - 14 Mar 2023
Viewed by 1150
Abstract
Design flood hydrograph estimation is a key problem in hydrology and is necessary for a variety of applications from the design of hydraulic structures to flood risk mapping processes. Furthermore, in large ungauged basins (>1000 km2), design flood estimation methods mainly [...] Read more.
Design flood hydrograph estimation is a key problem in hydrology and is necessary for a variety of applications from the design of hydraulic structures to flood risk mapping processes. Furthermore, in large ungauged basins (>1000 km2), design flood estimation methods mainly rely on single-event theories using digital elevation models, land use/land cover and soil type data, and relevant meteorological information (temperature and rainfall data). The single event-based deterministic approach was adopted based on three modelling components: (i) a synthetic storm generator; (ii) a hydrological simulation model; and (iii) a hydrological routing model. In this study the 100-year design flood (which is assumed equal to 100-year extreme rainfall) was estimated for the Pinios River Basin, Thessaly, Greece, at Larissa outlet station (upstream of the area by about 6500 km2). The hydrological approach is based on semi-distributed modelling of the rainfall–run-off process (at the sub-basin scale) using HEC-HMS v.4.10 software and the SCS-CN method for estimating rainfall excess, as well as the unit hydrograph theory and the Muskingum hydrological flow routing method for propagating the surface run-off to the sub-basin outlets. Full article
(This article belongs to the Proceedings of The 7th International Electronic Conference on Water Sciences)
Show Figures

Figure 1

6 pages, 2475 KiB  
Proceeding Paper
A Monthly Water Balance Model for Assessing Streamflow Uncertainty in Hydrologic Studies
by Lampros Vasiliades and Ioannis Mastraftsis
Environ. Sci. Proc. 2023, 25(1), 39; https://doi.org/10.3390/ECWS-7-14192 - 14 Mar 2023
Cited by 3 | Viewed by 1629
Abstract
The accurate assessment of streamflow is crucial for operational water resource management projects. The aim of this study was to estimate the uncertainties in the surface runoff simulated by a monthly water balance model in a mountainous watershed of the Portaikos river, a [...] Read more.
The accurate assessment of streamflow is crucial for operational water resource management projects. The aim of this study was to estimate the uncertainties in the surface runoff simulated by a monthly water balance model in a mountainous watershed of the Portaikos river, a tributary of the Pinios river, Thessaly, Greece. The University of Thessaly (UTHBAL) monthly water balance model was developed in the R statistical computing environment language, named ‘R-UTHBAL’, to estimate surface water balance in data-scarce watersheds. Two sources of uncertainties in hydrological modelling were considered: the uncertainties in input data estimation and in model parameters. The uncertainties were estimated with the use of the R-package ‘hydroPSO’, a global Particle Swarm Optimisation (PSO) algorithm for the calibration of environmental models. The R-UTHBAL was integrated with the hydroPSO algorithm and advanced sensitivity analyses, and user-friendly evaluation plots were estimated to facilitate the interpretation and assessment of the calibration results. Application of R-UTHBAL with the hydroPSO showed that the uncertainty in streamflow estimation should always be accounted for and evaluated in operational water resources management projects. Full article
(This article belongs to the Proceedings of The 7th International Electronic Conference on Water Sciences)
Show Figures

Figure 1

29 pages, 12055 KiB  
Article
Contribution to the Study of Forest Fires in Semi-Arid Regions with the Use of Canadian Fire Weather Index Application in Greece
by Nikolaos Ntinopoulos, Marios Spiliotopoulos, Lampros Vasiliades and Nikitas Mylopoulos
Climate 2022, 10(10), 143; https://doi.org/10.3390/cli10100143 - 30 Sep 2022
Cited by 14 | Viewed by 4010
Abstract
Forest fires are of critical importance in the Mediterranean region. Fire weather indices are meteorological indices that produce information about the impact as well as the characteristics of a fire event in an ecosystem and have been developed for that reason. This study [...] Read more.
Forest fires are of critical importance in the Mediterranean region. Fire weather indices are meteorological indices that produce information about the impact as well as the characteristics of a fire event in an ecosystem and have been developed for that reason. This study explores the spatiotemporal patterns of the FWI system within a study area defined by the boundaries of the Greek state. The FWI has been calculated and studied for current and future periods using data from the CFSR reanalysis model from the National Centers for Environmental Protection (NCEP) as well as data from NASA satellite programs and the European Commission for Medium-Range Weather Forecasts (ECWMF) in the form of netCDF files. The calculation and processing of the results were conducted in the Python programming language, and additional drought- and fire-related indices were calculated, such as the standardized precipitation index (SPI), number of consecutive 50-day dry periods (Dry50), the Fosberg fire weather index (FFWI), the days where the FWI exceeds values of 40 and 50 days (FWI > 40) and (days FWI > 50). Similar patterns can easily be noted for all indices that seem to have their higher values concentrated in the southeast of the country owing to the higher temperatures and more frequent drought events that affect the indices’ behavior in both the current and future periods. Full article
(This article belongs to the Special Issue Natural Disasters and Extreme Hazards under Changing Climate)
Show Figures

Figure 1

19 pages, 7024 KiB  
Article
Flexible Goal Programming for Supporting Lake Karla’s (Greece) Sustainable Operation
by Mike Spiliotis, Dionissis Latinopoulos, Lampros Vasiliades, Kyriakos Rafailidis, Eleni Koutsokera and Ifigenia Kagalou
Sustainability 2022, 14(7), 4311; https://doi.org/10.3390/su14074311 - 5 Apr 2022
Cited by 2 | Viewed by 2467
Abstract
Sustainable management is a prerequisite for a lake to provide a range of ecosystem services. The prioritization of needs is a difficult task, especially when the needs are in conflict and threaten water security. Lake Karla, situated in the Thessaly plain, Greece, was [...] Read more.
Sustainable management is a prerequisite for a lake to provide a range of ecosystem services. The prioritization of needs is a difficult task, especially when the needs are in conflict and threaten water security. Lake Karla, situated in the Thessaly plain, Greece, was decimated in 1957–1962; due to environmental impacts, it was later refilled as a multipurpose reservoir with high ecological significance. The research objective is to achieve a compromise with respect to both the economic benefits derived from agricultural water use and environmental protection based on the minimum intersection. For this purpose, first, new managerial practices are introduced. Second, the ideas are quantified based on the hydrological budget, and these are used as input for flexible (fuzzy) programming. Under hypotheses about the acceptable range, the (flexible) fuzzy programming is identical with the MINMAX goal programming model, although the weights are not used directly in the first case. An understandable compromise (the maximum economic benefit from irrigation areas and the minimization of water retention time) is achieved, and the values of the membership functions can be used to verify the solution. The proposed solution leads to a quantitative proposition, incorporating new findings from modeling the recent real operation of the reservoir. Full article
(This article belongs to the Special Issue Sustainable Water Resource Management)
Show Figures

Figure 1

26 pages, 45029 KiB  
Article
A Flood Inundation Modeling Approach for Urban and Rural Areas in Lake and Large-Scale River Basins
by George Papaioannou, Lampros Vasiliades, Athanasios Loukas, Angelos Alamanos, Andreas Efstratiadis, Antonios Koukouvinos, Ioannis Tsoukalas and Panagiotis Kossieris
Water 2021, 13(9), 1264; https://doi.org/10.3390/w13091264 - 30 Apr 2021
Cited by 22 | Viewed by 5148
Abstract
Fluvial floods are one of the primary natural hazards to our society, and the associated flood risk should always be evaluated for present and future conditions. The European Union’s (EU) Floods Directive highlights the importance of flood mapping as a key stage for [...] Read more.
Fluvial floods are one of the primary natural hazards to our society, and the associated flood risk should always be evaluated for present and future conditions. The European Union’s (EU) Floods Directive highlights the importance of flood mapping as a key stage for detecting vulnerable areas, assessing floods’ impacts, and identifying damages and compensation plans. The implementation of the EU Flood Directive in Greece is challenging because of its geophysical and climatic variability and diverse hydrologic and hydraulic conditions. This study addressed this challenge by modeling of design rainfall at the sub-watershed level and subsequent estimation of flood design hydrographs using the Natural Resources Conservation Service (NRCS) Unit Hydrograph Procedure. The HEC-RAS 2D model was used for flood routing, estimation of flood attributes (i.e., water depths and flow velocities), and mapping of inundated areas. The modeling approach was applied at two complex and ungauged representative basins: The Lake Pamvotida basin located in the Epirus Region of the wet Western Greece, and the Pinios River basin located in the Thessaly Region of the drier Central Greece, a basin with a complex dendritic hydrographic system, expanding to more than 1188 river-km. The proposed modeling approach aimed at better estimation and mapping of flood inundation areas including relative uncertainties and providing guidance to professionals and academics. Full article
(This article belongs to the Special Issue Management of Hydro-Meteorological Hazards)
Show Figures

Graphical abstract

6 pages, 200 KiB  
Editorial
Hydrological and Hydro-Meteorological Extremes and Related Risk and Uncertainty
by Athanasios Loukas, Luis Garrote and Lampros Vasiliades
Water 2021, 13(3), 377; https://doi.org/10.3390/w13030377 - 1 Feb 2021
Cited by 6 | Viewed by 3304
Abstract
Natural hazards have caused significant damages to natural and manmade environments during the last few decades [...] Full article
21 pages, 5458 KiB  
Article
Groundwater Nitrate Contamination Integrated Modeling for Climate and Water Resources Scenarios: The Case of Lake Karla Over-Exploited Aquifer
by Pantelis Sidiropoulos, Georgios Tziatzios, Lampros Vasiliades, Nikitas Mylopoulos and Athanasios Loukas
Water 2019, 11(6), 1201; https://doi.org/10.3390/w11061201 - 8 Jun 2019
Cited by 29 | Viewed by 5481
Abstract
Groundwater quantity and quality degradation by agricultural practices is recorded as one of the most critical issues worldwide. This is explained by the fact that groundwater is an important component of the hydrological cycle, since it is a source of natural enrichment for [...] Read more.
Groundwater quantity and quality degradation by agricultural practices is recorded as one of the most critical issues worldwide. This is explained by the fact that groundwater is an important component of the hydrological cycle, since it is a source of natural enrichment for rivers, lakes, and wetlands and constitutes the main source of potable water. The need of aquifers simulation, taking into account water resources components at watershed level, is imperative for the choice of appropriate restoration management practices. An integrated water resources modeling approach, using hydrological modeling tools, is presented for assessing the nitrate fate and transport on an over-exploited aquifer with intensive and extensive agricultural activity under various operational strategies and future climate change scenarios. The results indicate that climate change affects nitrates concentration in groundwater, which is likely to be increased due to the depletion of the groundwater table and the decrease of groundwater enrichment in the future water balance. Application of operational agricultural management practices with the construction and use of water storage infrastructure tend to compensate the groundwater resources degradation due to climate change impacts. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Graphical abstract

8 pages, 2525 KiB  
Proceeding Paper
Flood Risk Management Methodology for Lakes and Adjacent Areas: The Lake Pamvotida Paradigm
by George Papaioannou, Athanasios Loukas and Lampros Vasiliades
Proceedings 2019, 7(1), 21; https://doi.org/10.3390/ECWS-3-05825 - 15 Nov 2018
Cited by 1 | Viewed by 1994
Abstract
In recent decades, natural hazards have caused major disasters in natural and man-made environments. Floods are one of the most devasting natural hazards, with high levels of mortality, destruction of infrastructure, and large financial losses. This study presents a methodological approach for flood [...] Read more.
In recent decades, natural hazards have caused major disasters in natural and man-made environments. Floods are one of the most devasting natural hazards, with high levels of mortality, destruction of infrastructure, and large financial losses. This study presents a methodological approach for flood risk management at lakes and adjacent areas that is based on the implementation of the EU Floods Directive (2007/60/EC) in Greece. Contemporary engineering approaches have been used for the estimation of the inflow hydrographs. The hydraulic–hydrodynamic simulations were implemented in the following order: (a) hydrologic modeling of lake tributaries and estimation flood flow inflow to the lake, (b) flood inundation modeling of lake tributaries, (c) simulation of the lake as a closed system, (d) simulation of the lake outflows to the adjacent areas, and (e) simulation of flood inundation of rural and urban areas adjacent to the lake. The hydrologic modeling was performed using the HEC-HMS model, and the hydraulic-hydrodynamic simulations were implemented with the use of the two-dimensional HEC-RAS model. The simulations were applied to three soil moisture conditions (dry, medium and wet) and three return periods (T = 50, T = 100 and T = 1000 years) and a methodology was followed for the flood inundation modeling in urban areas. Upper and lower estimates on water depths, flow velocities and inundation areas are estimated for all inflow hydrographs and for varying roughness coefficient values. The proposed methodology presents the necessary steps and the results for the assessment of flood risk management and mapping for lake and adjacent urban and rural areas. The methodology was applied to Lake Pamvotida in Epirus, Greece, Ioannina. Full article
(This article belongs to the Proceedings of ECWS-3)
Show Figures

Figure 1

8 pages, 1355 KiB  
Proceeding Paper
The Effect of Sample Size on Bivariate Rainfall Frequency Analysis of Extreme Precipitation
by Nikoletta Stamatatou, Lampros Vasiliades and Athanasios Loukas
Proceedings 2019, 7(1), 19; https://doi.org/10.3390/ECWS-3-05815 - 15 Nov 2018
Cited by 1 | Viewed by 1206
Abstract
The objective of this study is to compare univariate and joint bivariate return periods of extreme precipitation that all rely on different probability concepts in selected meteorological stations in Cyprus. Pairs of maximum rainfall depths with corresponding durations are estimated and compared using [...] Read more.
The objective of this study is to compare univariate and joint bivariate return periods of extreme precipitation that all rely on different probability concepts in selected meteorological stations in Cyprus. Pairs of maximum rainfall depths with corresponding durations are estimated and compared using annual maximum series (AMS) for the complete period of the analysis and 30-year subsets for selected data periods. Marginal distributions of extreme precipitation are examined and used for the estimation of typical design periods. The dependence between extreme rainfall and duration is then assessed by an exploratory data analysis using K-plots and Chi-plots and the consistency of their relationship is quantified by Kendall’s correlation coefficient. Copulas from Archimedean, Elliptical, and Extreme Value families are fitted using a pseudo-likelihood estimation method, evaluated according to the corrected Akaike Information Criterion and verified using both graphical approaches and a goodness-of-fit test based on the Cramér-von Mises statistic. The selected copula functions and the corresponding conditional and joint return periods are calculated and the results are compared with the marginal univariate estimations of each variable. Results highlight the effect of sample size on univariate and bivariate rainfall frequency analysis for hydraulic engineering design practices. Full article
(This article belongs to the Proceedings of ECWS-3)
Show Figures

Figure 1

8 pages, 684 KiB  
Proceeding Paper
Bivariate Flood Frequency Analysis Using Copulas
by Nikoletta Stamatatou, Lampros Vasiliades and Athanasios Loukas
Proceedings 2018, 2(11), 635; https://doi.org/10.3390/proceedings2110635 - 3 Aug 2018
Cited by 6 | Viewed by 2867
Abstract
Flood frequency estimation for the design of hydraulic structures is usually performed as a univariate analysis of flood event magnitudes. However, recent studies show that for accurate return period estimation of the flood events, the dependence and the correlation pattern among flood attribute [...] Read more.
Flood frequency estimation for the design of hydraulic structures is usually performed as a univariate analysis of flood event magnitudes. However, recent studies show that for accurate return period estimation of the flood events, the dependence and the correlation pattern among flood attribute characteristics, such as peak discharge, volume and duration should be taken into account in a multivariate framework. The primary goal of this study is to compare univariate and joint bivariate return periods of floods that all rely on different probability concepts in Yermasoyia watershed, Cyprus. Pairs of peak discharge with corresponding flood volumes are estimated and compared using annual maximum series (AMS) and peaks over threshold (POT) approaches. The Lyne-Hollick recursive digital filter is applied to separate baseflow from quick flow and to subsequently estimate flood volumes from the quick flow timeseries. Marginal distributions of flood peaks and volumes are examined and used for the estimation of typical design periods. The dependence between peak discharges and volumes is then assessed by an exploratory data analysis using K-plots and Chi-plots, and the consistency of their relationship is quantified by Kendall’s correlation coefficient. Copulas from Archimedean, Elliptical and Extreme Value families are fitted using a pseudo-likelihood estimation method, verified using both graphical approaches and a goodness-of-fit test based on the Cramér-von Mises statistic and evaluated according to the corrected Akaike Information Criterion. The selected copula functions and the corresponding joint return periods are calculated and the results are compared with the marginal univariate estimations of each variable. Results indicate the importance of the bivariate analysis in the estimation of design return period of the hydraulic structures. Full article
(This article belongs to the Proceedings of EWaS3 2018)
Show Figures

Figure 1

Back to TopTop