The Effect of Sample Size on Bivariate Rainfall Frequency Analysis of Extreme Precipitation †
Abstract
:1. Introduction
2. Study Area and Rainfall Database
3. Methodology
4. Results
4.1. Univariate Analysis
4.2. Bivariate Analysis
5. Concluding Remarks
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Singh, V.P. Bivariate rainfall frequency distributions using Archimedean copulas. J. Hydrol. 2007, 332, 93–109. [Google Scholar] [CrossRef]
- De Michele, C.; Salvadori, G. A Generalized Pareto intensity-duration model of storm rainfall exploiting 2-Copulas. J. Geophys. Res.-Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Favre, A.C.; El Adlouni, S.; Perreault, L.; Thiémonge, N.; Bobée, B. Multivariate hydrological frequency analysis using copulas. Water Resour. Res. 2004, 40, W01101. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C. Frequency analysis via copulas: theoretical aspects and applications to hydrological events. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C.; Kottegoda, N.T.; Rosso, R. Extremes in Nature. In An Approach Using Copulas; Springer: Dordrecht, the Netherlands, 2007; Volume 56, p. 292. [Google Scholar]
- Genest, C.; Favre, A.C. Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask. J. Hydrol. Eng. 2007, 12, 347–368. [Google Scholar] [CrossRef]
- Juri, A.; Wüthrich, M.V. Copula convergence theorems for tail events. Insur. Math. Econ. 2002, 30, 405–420. [Google Scholar] [CrossRef]
- Papaioannou, G.S.; Kohnová, T.; Bacigal, J.; Szolgay, K.; Hlavčová, A.; Loukas, A. Joint Modelling of Flood Peaks and Volumes: A Copula Application for the Danube River. J. Hydrol. Hydromech. 2016, 64, 382–392. [Google Scholar] [CrossRef]
- Sklar, A. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 1959, 8, 229–231. [Google Scholar]
- Gräler, B.; Vandenberghe, S.; Petroselli, A.; Grimaldi, S.; Baets, B.D.; Verhoest, N.E.C. Multivariate return periods in hydrology: A critical and practical review focusing on synthetic design hydrograph estimation. Hydrol. Earth Syst. Sci. 2013, 17, 1281–1296. [Google Scholar] [CrossRef]
- Salvadori, G. Bivariate return periods via 2-copulas. Stat. Methodol 2004, 1, 129–144. [Google Scholar] [CrossRef]
- Pashiardis, S. Compilation of Rainfall Curves in Cyprus; Meteorological Note No. 15; Meteorological Service, Ministry of Agriculture, Natural Resources and Environment: Nicosia, Cyprus, 2009. [Google Scholar]
- Hadjiioannou, L. Rainfall Intensities in Cyprus and Return Periods; Meteorological Note No. 16; Meteorological Service, Ministry of Agriculture, Natural Resources and Environment: Nicosia, Cyprus, 1995. [Google Scholar]
- Genest, C.; Rémillard, B.; Beaudoin, D. Goodness-of-fit tests for copulas: a review and a power study. Insur. Math. Econ. 2009, 44, 199–213. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory; Petrov, B.N., Csaki, F., Eds.; Academiai Kiado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Brunner, M.I.; Favre, A.C.; Seibert, J. Bivariate return periods and their importance for flood peak and volume estimation. Wiley Interdiscip. Rev. Water. 2016, 3, 819–833. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C.; Durante, F. On the return period and design in a multivariate framework. Hydrol. Earth Syst. Sci. 2011, 15, 3293–3305. [Google Scholar] [CrossRef]
- Salvadori, G.; Durante, F; Tomasicchio, G.R.; D’Alessandro, F. Practical guidelines for the multivariate assessment of the structural risk in coastal and offshore engineering. Coast Eng. 2014, 95, 77–83. [Google Scholar] [CrossRef]
1st Data Sample | 2nd Data Sample | 3rd Data Sample | 4th Data Sample | |
---|---|---|---|---|
Years | 1920-2010 | 1920-1950 | 1950-1980 | 1980-2010 |
Number of Events | 90 | 30 | 30 | 30 |
Kendall’s tau | 0.35 | 0.33 | 0.26 | 0.59 |
Variable: Rainfall Depth | ||||
Sampling Method | AMS | AMS | AMS | AMS |
Marginal Distribution | GEV | GEV | GEV | GEV |
Distribution Parameters (μ,σ,ξ) | 7.79, 3.47, -0.07 | 8.70, 3.39, -0.19 | 6.87, 2.82, 0.14 | 7.74, 3.80, -0.06 |
Kolmogorov Smirnov Test (p>0.05) | 0.7835 | 0.9878 | 0.9412 | 0.8746 |
Variable: Rainfall Duration | ||||
Sampling Method | Corresponding value | Corresponding value | Corresponding value | Corresponding value |
Marginal Distribution | GEV | GEV | GEV | GEV |
Distribution Parameters (μ,σ,ξ) | 5.42, 2.65, -0.02 | 5.52, 2.89, -0.20 | 6.12, 2.85, -0.07 | 4.83, 2.18, 0.10 |
Kolmogorov Smirnov Test (p>0.05) | 0.4212 | 0.5704 | 0.5942 | 0.6988 |
Copula Model | Gaussian (par = 0.54, tau = 0.36) | Clayton (par=0.81, tau=0.29) | Frank (par=2.34, tau=0.25) | Gumbel (par=2.63, tau=0.62) |
Von Mises (bootstrap) (p>0.05) | 0.18 | 0.44 | 0.97 | 0.24 |
Return Level (years): | 2 | 5 | 10 | 25 | 50 | 100 | 200 | 500 |
Rainfall Depth - dual (cm) | 7.58 | 10.83 | 13.10 | 16.65 | 18.94 | 20.98 | 22.70 | 25.05 |
Rainfall Depth - cooperative (cm) | 10.62 | 14.20 | 16.41 | 19.04 | 20.88 | 22.60 | 24.24 | 26.79 |
Rainfall Duration - dual (d) | 5.19 | 7.61 | 9.12 | 9.88 | 10.22 | 10.50 | 10.98 | 11.61 |
Rainfall Duration - cooperative (d) | 7.55 | 10.47 | 12.36 | 14.72 | 16.45 | 18.16 | 19.81 | 21.60 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamatatou, N.; Vasiliades, L.; Loukas, A. The Effect of Sample Size on Bivariate Rainfall Frequency Analysis of Extreme Precipitation. Proceedings 2019, 7, 19. https://doi.org/10.3390/ECWS-3-05815
Stamatatou N, Vasiliades L, Loukas A. The Effect of Sample Size on Bivariate Rainfall Frequency Analysis of Extreme Precipitation. Proceedings. 2019; 7(1):19. https://doi.org/10.3390/ECWS-3-05815
Chicago/Turabian StyleStamatatou, Nikoletta, Lampros Vasiliades, and Athanasios Loukas. 2019. "The Effect of Sample Size on Bivariate Rainfall Frequency Analysis of Extreme Precipitation" Proceedings 7, no. 1: 19. https://doi.org/10.3390/ECWS-3-05815
APA StyleStamatatou, N., Vasiliades, L., & Loukas, A. (2019). The Effect of Sample Size on Bivariate Rainfall Frequency Analysis of Extreme Precipitation. Proceedings, 7(1), 19. https://doi.org/10.3390/ECWS-3-05815