Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Authors = Jozef Kaiser

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8464 KiB  
Article
Deviations of the SLM Produced Lattice Structures and Their Influence on Mechanical Properties
by Radek Vrána, Tomáš Koutecký, Ondřej Červinek, Tomáš Zikmund, Libor Pantělejev, Jozef Kaiser and Daniel Koutný
Materials 2022, 15(9), 3144; https://doi.org/10.3390/ma15093144 - 26 Apr 2022
Cited by 19 | Viewed by 3736
Abstract
Selective laser melting (SLM) is an additive manufacturing technology suitable for producing cellular lattice structures using fine metal powder and a laser beam. However, the shape and dimensional deviations occur on the thin struts during manufacturing, influencing the mechanical properties of the structure. [...] Read more.
Selective laser melting (SLM) is an additive manufacturing technology suitable for producing cellular lattice structures using fine metal powder and a laser beam. However, the shape and dimensional deviations occur on the thin struts during manufacturing, influencing the mechanical properties of the structure. There are attempts in the literature to describe the actual shape of the struts’ geometry, however, on a smaller data sample only, and there is a lack of a universal FEA material model applicable to a wider range of lattice structure diameters. To describe the actual dimensions of the struts, a set of lattice structures, with diameters ranging from 0.6 to 3.0 mm, were manufactured using SLM. These samples were digitized using micro-computed tomography (μCT) and fully analyzed for shape and dimensions. The results show large deviations in diameters of inscribed and circumscribed cylinders, indicating an elliptical shape of the struts. With increasing lattice structure diameter, the deviations decreased. In terms of the effect of the shape and dimensions on the mechanical properties, the Gaussian cylinder was found to describe struts in the diameter range of 1.5 to 3.0 mm sufficiently well. For smaller diameters, it is appropriate to represent the actual cross-section by an ellipse. The use of substitute ellipses, in combination with the compression test results, has resulted in FEA material model that can be used for the 0.6 to 3.0 mm struts’ diameter range. The model has fixed Young’s and tangential modules for these diameters and is controlled only by the yield strength parameter (YST). Full article
Show Figures

Figure 1

25 pages, 8058 KiB  
Article
Lumbar Interbody Fusion Conducted on a Porcine Model with a Bioresorbable Ceramic/Biopolymer Hybrid Implant Enriched with Hyperstable Fibroblast Growth Factor 2
by Milan Krticka, Ladislav Planka, Lucy Vojtova, Vladimir Nekuda, Premysl Stastny, Radek Sedlacek, Adam Brinek, Michaela Kavkova, Eduard Gopfert, Vera Hedvicakova, Michala Rampichova, Leos Kren, Kvetoslava Liskova, Daniel Ira, Jana Dorazilová, Tomas Suchy, Tomas Zikmund, Jozef Kaiser, David Stary, Martin Faldyna and Martin Trunecadd Show full author list remove Hide full author list
Biomedicines 2021, 9(7), 733; https://doi.org/10.3390/biomedicines9070733 - 25 Jun 2021
Cited by 6 | Viewed by 3953
Abstract
Many growth factors have been studied as additives accelerating lumbar fusion rates in different animal models. However, their low hydrolytic and thermal stability both in vitro and in vivo limits their workability and use. In the proposed work, a stabilized vasculogenic and prohealing [...] Read more.
Many growth factors have been studied as additives accelerating lumbar fusion rates in different animal models. However, their low hydrolytic and thermal stability both in vitro and in vivo limits their workability and use. In the proposed work, a stabilized vasculogenic and prohealing fibroblast growth factor-2 (FGF2-STAB®) exhibiting a functional half-life in vitro at 37 °C more than 20 days was applied for lumbar fusion in combination with a bioresorbable scaffold on porcine models. An experimental animal study was designed to investigate the intervertebral fusion efficiency and safety of a bioresorbable ceramic/biopolymer hybrid implant enriched with FGF2-STAB® in comparison with a tricortical bone autograft used as a gold standard. Twenty-four experimental pigs underwent L2/3 discectomy with implantation of either the tricortical iliac crest bone autograft or the bioresorbable hybrid implant (BHI) followed by lateral intervertebral fixation. The quality of spinal fusion was assessed by micro-computed tomography (micro-CT), biomechanical testing, and histological examination at both 8 and 16 weeks after the surgery. While 8 weeks after implantation, micro-CT analysis demonstrated similar fusion quality in both groups, in contrast, spines with BHI involving inorganic hydroxyapatite and tricalcium phosphate along with organic collagen, oxidized cellulose, and FGF2- STAB® showed a significant increase in a fusion quality in comparison to the autograft group 16 weeks post-surgery (p = 0.023). Biomechanical testing revealed significantly higher stiffness of spines treated with the bioresorbable hybrid implant group compared to the autograft group (p < 0.05). Whilst histomorphological evaluation showed significant progression of new bone formation in the BHI group besides non-union and fibrocartilage tissue formed in the autograft group. Significant osteoinductive effects of BHI based on bioceramics, collagen, oxidized cellulose, and FGF2-STAB® could improve outcomes in spinal fusion surgery and bone tissue regeneration. Full article
(This article belongs to the Special Issue Bone Tissue Regeneration: Biology and Strategies)
Show Figures

Figure 1

13 pages, 2814 KiB  
Technical Note
Methodology for the Implementation of Internal Standard to Laser-Induced Breakdown Spectroscopy Analysis of Soft Tissues
by Anna Šindelářová, Pavel Pořízka, Pavlína Modlitbová, Lucie Vrlíková, Kateřina Kiss, Milan Kaška, David Prochazka, Jakub Vrábel, Marcela Buchtová and Jozef Kaiser
Sensors 2021, 21(3), 900; https://doi.org/10.3390/s21030900 - 29 Jan 2021
Cited by 20 | Viewed by 4046
Abstract
The improving performance of the laser-induced breakdown spectroscopy (LIBS) triggered its utilization in the challenging topic of soft tissue analysis. Alterations of elemental content within soft tissues are commonly assessed and provide further insights in biological research. However, the laser ablation of soft [...] Read more.
The improving performance of the laser-induced breakdown spectroscopy (LIBS) triggered its utilization in the challenging topic of soft tissue analysis. Alterations of elemental content within soft tissues are commonly assessed and provide further insights in biological research. However, the laser ablation of soft tissues is a complex issue and demands a priori optimization, which is not straightforward in respect to a typical LIBS experiment. Here, we focus on implementing an internal standard into the LIBS elemental analysis of soft tissue samples. We achieve this by extending routine methodology for optimization of soft tissues analysis with a standard spiking method. This step enables a robust optimization procedure of LIBS experimental settings. Considering the implementation of LIBS analysis to the histological routine, we avoid further alterations of the tissue structure. Therefore, we propose a unique methodology of sample preparation, analysis, and subsequent data treatment, which enables the comparison of signal response from heterogenous matrix for different LIBS parameters. Additionally, a brief step-by-step process of optimization to achieve the highest signal-to-noise ratio (SNR) is described. The quality of laser–tissue interaction is investigated on the basis of the zinc signal response, while selected experimental parameters (e.g., defocus, gate delay, laser energy, and ambient atmosphere) are systematically modified. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

14 pages, 3748 KiB  
Article
Lyophilized Polyvinylpyrrolidone Hydrogel for Culture of Human Oral Mucosa Stem Cells
by Carolina Oliver-Urrutia, Raúl Rosales Ibañez, Miriam V. Flores-Merino, Lucy Vojtova, Jakub Salplachta, Ladislav Čelko, Jozef Kaiser and Edgar B. Montufar
Materials 2021, 14(1), 227; https://doi.org/10.3390/ma14010227 - 5 Jan 2021
Cited by 13 | Viewed by 5269
Abstract
This work shows the synthesis of a polyvinylpyrrolidone (PVP) hydrogel by heat-activated polymerization and explores the production of hydrogels with an open porous network by lyophilisation to allow the three-dimensional culture of human oral mucosa stem cells (hOMSCs). The swollen hydrogel showed a [...] Read more.
This work shows the synthesis of a polyvinylpyrrolidone (PVP) hydrogel by heat-activated polymerization and explores the production of hydrogels with an open porous network by lyophilisation to allow the three-dimensional culture of human oral mucosa stem cells (hOMSCs). The swollen hydrogel showed a storage modulus similar to oral mucosa and elastic solid rheological behaviour without sol transition. A comprehensive characterization of porosity by scanning electron microscopy, mercury intrusion porosimetry and nano-computed tomography (with spatial resolution below 1 μm) showed that lyophilisation resulted in the heterogeneous incorporation of closed oval-like pores in the hydrogel with broad size distribution (5 to 180 μm, d50 = 65 μm). Human oral mucosa biopsies were used to isolate hOMSCs, expressing typical markers of mesenchymal stem cells in more than 95% of the cell population. Direct contact cytotoxicity assay demonstrated that PVP hydrogel have no negative effect on cell metabolic activity, allowing the culture of hOMSCs with normal fusiform morphology. Pore connectivity should be improved in future to allow cell growth in the bulk of the PVP hydrogel. Full article
Show Figures

Figure 1

20 pages, 19368 KiB  
Article
Complete Ring Artifacts Reduction Procedure for Lab-Based X-ray Nano CT Systems
by Jakub Šalplachta, Tomáš Zikmund, Marek Zemek, Adam Břínek, Yoshihiro Takeda, Kazuhiko Omote and Jozef Kaiser
Sensors 2021, 21(1), 238; https://doi.org/10.3390/s21010238 - 1 Jan 2021
Cited by 15 | Viewed by 6432
Abstract
In this article, we introduce a new ring artifacts reduction procedure that combines several ideas from existing methods into one complex and robust approach with a goal to overcome their individual weaknesses and limitations. The procedure differentiates two types of ring artifacts according [...] Read more.
In this article, we introduce a new ring artifacts reduction procedure that combines several ideas from existing methods into one complex and robust approach with a goal to overcome their individual weaknesses and limitations. The procedure differentiates two types of ring artifacts according to their cause and character in computed tomography (CT) data. Each type is then addressed separately in the sinogram domain. The novel iterative schemes based on relative total variations (RTV) were integrated to detect the artifacts. The correction process uses the image inpainting, and the intensity deviations smoothing method. The procedure was implemented in scope of lab-based X-ray nano CT with detection systems based on charge-coupled device (CCD) and scientific complementary metal–oxide–semiconductor (sCMOS) technologies. The procedure was then further tested and optimized on the simulated data and the real CT data of selected samples with different compositions. The performance of the procedure was quantitatively evaluated in terms of the artifacts’ detection accuracy, the comparison with existing methods, and the ability to preserve spatial resolution. The results show a high efficiency of ring removal and the preservation of the original sample’s structure. Full article
(This article belongs to the Special Issue Tomography Sensing Technologies)
Show Figures

Figure 1

19 pages, 3442 KiB  
Article
A Simple Drug Delivery System for Platelet-Derived Bioactive Molecules, to Improve Melanocyte Stimulation in Vitiligo Treatment
by Karolina Vocetkova, Vera Sovkova, Matej Buzgo, Vera Lukasova, Radek Divin, Michala Rampichova, Pavel Blazek, Tomas Zikmund, Jozef Kaiser, Zdenek Karpisek, Evzen Amler and Eva Filova
Nanomaterials 2020, 10(9), 1801; https://doi.org/10.3390/nano10091801 - 10 Sep 2020
Cited by 11 | Viewed by 4193
Abstract
Vitiligo is the most common depigmentation disorder of the skin. Currently, its therapy focuses on the halting of the immune response and stimulation of the regenerative processes, leading to the restoration of normal melanocyte function. Platelet-rich plasma (PRP) represents a safe and cheap [...] Read more.
Vitiligo is the most common depigmentation disorder of the skin. Currently, its therapy focuses on the halting of the immune response and stimulation of the regenerative processes, leading to the restoration of normal melanocyte function. Platelet-rich plasma (PRP) represents a safe and cheap regenerative therapy option, as it delivers a wide spectrum of native growth factors, cytokines and other bioactive molecules. The aim of this study was to develop a simple delivery system to prolong the effects of the bioactive molecules released from platelets. The surface of electrospun and centrifugally spun poly-ε-caprolactone (PCL) fibrous scaffolds was functionalized with various concentrations of platelets; the influence of the morphology of the scaffolds and the concentration of the released platelet-derived bioactive molecules on melanocytes, was then assessed. An almost two-fold increase in the amount of the released bioactive molecules was detected on the centrifugally spun vs. electrospun scaffolds, and a sustained 14-day release of the bioactive molecules was demonstrated. A strong concentration-dependent response of melanocyte to the bioactive molecules was observed; higher concentrations of bioactive molecules resulted in improved metabolic activity and proliferation of melanocytes. This simple system improves melanocyte viability, offers on-site preparation and is suitable for prolonged topical PRP administration. Full article
Show Figures

Figure 1

14 pages, 3310 KiB  
Article
Effects of Cryopreservation on Cell Metabolic Activity and Function of Biofabricated Structures Laden with Osteoblasts
by Laura G. Hernández-Tapia, Zdenka Fohlerová, Jan Žídek, Marco A. Alvarez-Perez, Ladislav Čelko, Jozef Kaiser and Edgar B. Montufar
Materials 2020, 13(8), 1966; https://doi.org/10.3390/ma13081966 - 22 Apr 2020
Cited by 16 | Viewed by 3511
Abstract
Biofabrication and maturation of bone constructs is a long-term task that requires a high degree of specialization. This specialization falls onto the hierarchy complexity of the bone tissue that limits the transfer of this technology to the clinic. This work studied the effects [...] Read more.
Biofabrication and maturation of bone constructs is a long-term task that requires a high degree of specialization. This specialization falls onto the hierarchy complexity of the bone tissue that limits the transfer of this technology to the clinic. This work studied the effects of the short-term cryopreservation on biofabricated osteoblast-containing structures, with the final aim to make them steadily available in biobanks. The biological responses studied include the osteoblast post-thawing metabolic activity and the recovery of the osteoblastic function of 3D-bioprinted osteoblastic structures and beta tricalcium phosphate (β-TCP) scaffolds infiltrated with osteoblasts encapsulated in a hydrogel. The obtained structures were cryopreserved at −80 °C for 7 days using dimethyl sulfoxide (DMSO) as cryoprotectant additive. After thawing the structures were cultured up to 14 days. The results revealed fundamental biological aspects for the successful cryopreservation of osteoblast constructs. In summary, immature osteoblasts take longer to recover than mature osteoblasts. The pre-cryopreservation culture period had an important effect on the metabolic activity and function maintain, faster recovering normal values when cryopreserved after longer-term culture (7 days). The use of β-TCP scaffolds further improved the osteoblast survival after cryopreservation, resulting in similar levels of alkaline phosphatase activity in comparison with the non-preserved structures. These results contribute to the understanding of the biology of cryopreserved osteoblast constructs, approaching biofabrication to the clinical practice. Full article
(This article belongs to the Special Issue Biocompatible and Biodegradable 3D Scaffolds)
Show Figures

Graphical abstract

20 pages, 16040 KiB  
Article
Selective Laser Melting Strategy for Fabrication of Thin Struts Usable in Lattice Structures
by Radek Vrána, Daniel Koutný, David Paloušek, Libor Pantělejev, Jan Jaroš, Tomáš Zikmund and Jozef Kaiser
Materials 2018, 11(9), 1763; https://doi.org/10.3390/ma11091763 - 18 Sep 2018
Cited by 36 | Viewed by 7309
Abstract
This paper deals with the selective laser melting (SLM) processing strategy for strut-lattice structure production which uses only contour lines and allows the porosity and roughness level to be managed based on combination of the input and linear energy parameters. To evaluate the [...] Read more.
This paper deals with the selective laser melting (SLM) processing strategy for strut-lattice structure production which uses only contour lines and allows the porosity and roughness level to be managed based on combination of the input and linear energy parameters. To evaluate the influence of a laser scanning strategy on material properties and surface roughness a set of experiments was performed. The single welds test was used to find the appropriate processing parameters to achieve continuous welds with known width. Strut samples were used to find a suitable value of weld overlapping and to clarify the influence of input and linear laser energy on the strut porosity and surface roughness. The samples of inclined hollow struts were used to compare the wall thickness with single welds width; the results showed about 25% wider welds in the case of a hollow strut. Using the proposed SLM strategy it is possible to reach a significantly lower porosity and surface roughness of the struts. The best results for struts with an inclination of 35.26° were achieved with 25% track overlapping, input energy in the range from 9 J to 10.5 J and linear energy Elin from 0.25 to 0.4 J/mm; in particular, the relative density of 99.83% and the surface roughness on the side of the strut of Ra 14.6 μm in an as-built state was achieved. Full article
Show Figures

Figure 1

9 pages, 1849 KiB  
Short Note
Time-Dependent Growth of Silica Shells on CdTe Quantum Dots
by Pavlína Modlitbová, Karel Klepárník, Zdeněk Farka, Pavel Pořízka, Petr Skládal, Karel Novotný and Jozef Kaiser
Nanomaterials 2018, 8(6), 439; https://doi.org/10.3390/nano8060439 - 16 Jun 2018
Cited by 8 | Viewed by 4832
Abstract
The purpose of this study is to investigate the time dependent growth of silica shells on CdTe quantum dots to get their optimum thicknesses for practical applications. The core/shell structured silica-coated CdTe quantum dots (CdTe/SiO2 QDs) were synthesized by the Ströber process, [...] Read more.
The purpose of this study is to investigate the time dependent growth of silica shells on CdTe quantum dots to get their optimum thicknesses for practical applications. The core/shell structured silica-coated CdTe quantum dots (CdTe/SiO2 QDs) were synthesized by the Ströber process, which used CdTe QDs co-stabilized by mercaptopropionic acid. The coating procedure used silane primer (3-mercaptopropyltrimethoxysilane) in order to make the quantum dots (QDs) surface vitreophilic. The total size of QDs was dependent on both the time of silica shell growth in the presence of sodium silicate, and on the presence of ethanol during this growth. The size of particles was monitored during the first 72 h using two principally different methods: Dynamic Light Scattering (DLS), and Scanning Electron Microscopy (SEM). The data obtained by both methods were compared and reasons for differences discussed. Without ethanol precipitation, the silica shell thickness grew slowly and increased the nanoparticle total size from approximately 23 nm up to almost 30 nm (DLS data), and up to almost 60 nm (SEM data) in three days. During the same time period but in the presence of ethanol, the size of CdTe/SiO2 QDs increased more significantly: up to 115 nm (DLS data) and up to 83 nm (SEM data). The variances occurring between silica shell thicknesses caused by different methods of silica growth, as well as by different evaluation methods, were discussed. Full article
(This article belongs to the Special Issue Preparation, Characterization and Utility of Quantum Dots)
Show Figures

Graphical abstract

18 pages, 32389 KiB  
Article
Influence of Scanning Strategies on Processing of Aluminum Alloy EN AW 2618 Using Selective Laser Melting
by Daniel Koutny, David Palousek, Libor Pantelejev, Christian Hoeller, Rudolf Pichler, Lukas Tesicky and Jozef Kaiser
Materials 2018, 11(2), 298; https://doi.org/10.3390/ma11020298 - 14 Feb 2018
Cited by 97 | Viewed by 8818
Abstract
This paper deals with various selective laser melting (SLM) processing strategies for aluminum 2618 powder in order to get material densities and properties close to conventionally-produced, high-strength 2618 alloy. To evaluate the influence of laser scanning strategies on the resulting porosity and mechanical [...] Read more.
This paper deals with various selective laser melting (SLM) processing strategies for aluminum 2618 powder in order to get material densities and properties close to conventionally-produced, high-strength 2618 alloy. To evaluate the influence of laser scanning strategies on the resulting porosity and mechanical properties a row of experiments was done. Three types of samples were used: single-track welds, bulk samples and samples for tensile testing. Single-track welds were used to find the appropriate processing parameters for achieving continuous and well-shaped welds. The bulk samples were built with different scanning strategies with the aim of reaching a low relative porosity of the material. The combination of the chessboard strategy with a 2 × 2 mm field size fabricated with an out-in spiral order was found to eliminate a major lack of fusion defects. However, small cracks in the material structure were found over the complete range of tested parameters. The decisive criteria was the elimination of small cracks that drastically reduced mechanical properties. Reduction of the thermal gradient using support structures or fabrication under elevated temperatures shows a promising approach to eliminating the cracks. Mechanical properties of samples produced by SLM were compared with the properties of extruded material. The results showed that the SLM-processed 2618 alloy could only reach one half of the yield strength and tensile strength of extruded material. This is mainly due to the occurrence of small cracks in the structure of the built material. Full article
Show Figures

Figure 1

28 pages, 1720 KiB  
Review
Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review
by Pavel Pořízka, Petra Prochazková, David Prochazka, Lucia Sládková, Jan Novotný, Michal Petrilak, Michal Brada, Ota Samek, Zdeněk Pilát, Pavel Zemánek, Vojtěch Adam, René Kizek, Karel Novotný and Jozef Kaiser
Sensors 2014, 14(9), 17725-17752; https://doi.org/10.3390/s140917725 - 23 Sep 2014
Cited by 55 | Viewed by 12995
Abstract
Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent [...] Read more.
Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail. Full article
(This article belongs to the Special Issue Advances in Optical Biosensors)
Show Figures

29 pages, 841 KiB  
Review
Modern Micro and Nanoparticle-Based Imaging Techniques
by Marketa Ryvolova, Jana Chomoucka, Jana Drbohlavova, Pavel Kopel, Petr Babula, David Hynek, Vojtech Adam, Tomas Eckschlager, Jaromir Hubalek, Marie Stiborova, Jozef Kaiser and Rene Kizek
Sensors 2012, 12(11), 14792-14820; https://doi.org/10.3390/s121114792 - 2 Nov 2012
Cited by 81 | Viewed by 13623
Abstract
The requirements for early diagnostics as well as effective treatment of insidious diseases such as cancer constantly increase the pressure on development of efficient and reliable methods for targeted drug/gene delivery as well as imaging of the treatment success/failure. One of the most [...] Read more.
The requirements for early diagnostics as well as effective treatment of insidious diseases such as cancer constantly increase the pressure on development of efficient and reliable methods for targeted drug/gene delivery as well as imaging of the treatment success/failure. One of the most recent approaches covering both the drug delivery as well as the imaging aspects is benefitting from the unique properties of nanomaterials. Therefore a new field called nanomedicine is attracting continuously growing attention. Nanoparticles, including fluorescent semiconductor nanocrystals (quantum dots) and magnetic nanoparticles, have proven their excellent properties for in vivo imaging techniques in a number of modalities such as magnetic resonance and fluorescence imaging, respectively. In this article, we review the main properties and applications of nanoparticles in various in vitro imaging techniques, including microscopy and/or laser breakdown spectroscopy and in vivo methods such as magnetic resonance imaging and/or fluorescence-based imaging. Moreover the advantages of the drug delivery performed by nanocarriers such as iron oxides, gold, biodegradable polymers, dendrimers, lipid based carriers such as liposomes or micelles are also highlighted. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

19 pages, 656 KiB  
Article
Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions
by Olga Krystofova, Violetta Shestivska, Michaela Galiova, Karel Novotny, Jozef Kaiser, Josef Zehnalek, Petr Babula, Radka Opatrilova, Vojtech Adam and Rene Kizek
Sensors 2009, 9(7), 5040-5058; https://doi.org/10.3390/s90705040 - 25 Jun 2009
Cited by 54 | Viewed by 19435
Abstract
In this study, the influence of lead (II) ions on sunflower growth and biochemistry was investigated from various points of view. Sunflower plants were treated with 0, 10, 50, 100 and/or 500 µM Pb-EDTA for eight days. We observed alterations in growth in [...] Read more.
In this study, the influence of lead (II) ions on sunflower growth and biochemistry was investigated from various points of view. Sunflower plants were treated with 0, 10, 50, 100 and/or 500 µM Pb-EDTA for eight days. We observed alterations in growth in all experimental groups compared with non-treated control plants. Further we determined total content of proteins by a Bradford protein assay. By the eighth day of the experiment, total protein contents in all treated plants were much lower compared to control. Particularly noticeable was the loss of approx. 8 µg/mL or 15 µg/mL in shoots or roots of plants treated with 100 mM Pb-EDTA. We also focused our attention on the activity of alanine transaminase (ALT), aspartate transaminase (AST) and urease. Activity of the enzymes increased with increasing length of the treatment and applied concentration of lead (II) ions. This increase corresponds well with a higher metabolic activity of treated plants. Contents of cysteine, reduced glutathione (GSH), oxidized glutathione (GSSG) and phytochelatin 2 (PC2) were determined by high performance liquid chromatography with electrochemical detection. Cysteine content declined in roots of plants with the increasing time of treatment of plants with Pb-EDTA and the concentration of toxic substance. Moreover, we observed ten times higher content of cysteine in roots in comparison with shoots. The observed reduction of cysteine content probably relates with its utilization for biosynthesis of GSH and phytochelatins, because the content of GSH and PC2 was similar in roots and shoots and increased with increased treatment time and concentration of Pb-EDTA. Moreover, we observed oxidative stress caused by Pb-EDTA in roots where the GSSG/GSH ratio was about 0.66. In shoots, the oxidative stress was less distinctive, with a GSSG/GSH ratio 0.14. We also estimated the rate of phytochelatin biosynthesis from the slope of linear equations plotted with data measured in the particular experimental group. The highest rate was detected in roots treated with 100 µM of Pb-EDTA. To determine heavy metal ions many analytical instruments can be used, however, most of them are only able to quantify total content of the metals. This problem can be overcome using laser induced breakdown spectroscopy, because it is able to provide a high spatial-distribution of metal ions in different types of materials, including plant tissues. Data obtained were used to assemble 3D maps of Pb and Mg distribution. Distribution of these elements is concentrated around main vascular bundle of leaf, which means around midrib. Full article
Show Figures

19 pages, 1301 KiB  
Article
Multi-instrumental Analysis of Tissues of Sunflower Plants Treated with Silver(I) Ions – Plants as Bioindicators of Environmental Pollution
by Sona Krizkova, Pavel Ryant, Olga Krystofova, Vojtech Adam, Michaela Galiova, Miroslava Beklova, Petr Babula, Jozef Kaiser, Karel Novotny, Jan Novotny, Miroslav Liska, Radomir Malina, Josef Zehnalek, Jaromir Hubalek, Ladislav Havel and Rene Kizek
Sensors 2008, 8(1), 445-463; https://doi.org/10.3390/s8010445 - 24 Jan 2008
Cited by 83 | Viewed by 28830
Abstract
The aim of this work is to investigate sunflower plants response on stressinduced by silver(I) ions. The sunflower plants were exposed to silver(I) ions (0, 0.1, 0.5,and 1 mM) for 96 h. Primarily we aimed our attention to observation of basic physiologicalparameters. We [...] Read more.
The aim of this work is to investigate sunflower plants response on stressinduced by silver(I) ions. The sunflower plants were exposed to silver(I) ions (0, 0.1, 0.5,and 1 mM) for 96 h. Primarily we aimed our attention to observation of basic physiologicalparameters. We found that the treated plants embodied growth depression, coloured changes and lack root hairs. Using of autofluorescence of anatomical structures, such aslignified cell walls, it was possible to determine the changes of important shoot and rootstructures, mainly vascular bungles and development of secondary thickening. Thedifferences in vascular bundles organisation, parenchymatic pith development in the rootcentre and the reduction of phloem part of vascular bundles were well observable.Moreover with increasing silver(I) ions concentration the vitality of rhizodermal cellsdeclined; rhizodermal cells early necrosed and were replaced by the cells of exodermis.Further we employed laser induced breakdown spectroscopy for determination of spatialdistribution of silver(I) ions in tissues of the treated plants. The Ag is accumulated mainlyin near-root part of the sample. Moreover basic biochemical indicators of environmentalstress were investigated. The total content of proteins expressively decreased withincreasing silver(I) ions dose and the time of the treatment. As we compare the resultsobtained by protein analysis – the total protein contents in shoot as well as root parts – wecan assume on the transport of the proteins from the roots to shoots. This phenomenon canbe related with the cascade of processes connecting with photosynthesis. The secondbiochemical parameter, which we investigated, was urease activity. If we compared theactivity in treated plants with control, we found out that presence of silver(I) ions markedlyenhanced the activity of urease at all applied doses of this toxic metal. Finally we studiedthe effect of silver(I) ions on activity of urease in in vitro conditions. Full article
Show Figures

Back to TopTop