Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Authors = Jindrich Cinatl

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3048 KiB  
Article
Colchicine Binding Site Tubulin Inhibitors Impair Vincristine-Resistant Neuroblastoma Cell Function
by Cinthia N. Reed, Kaylee B. Garrison, Joshua Thammathong, Jindrich Cinatl, Martin Michaelis, Souvik Banerjee and April M. Weissmiller
Molecules 2025, 30(10), 2186; https://doi.org/10.3390/molecules30102186 - 16 May 2025
Viewed by 1050
Abstract
High-risk neuroblastoma remains a clinically challenging pediatric cancer, with an approximate five-year survival rate of ~60%. Frontline therapy for this group of patients includes surgery and intensive chemotherapy that involves combinations of the tubulin inhibitor vincristine with several other chemotherapeutics. Unfortunately, unresponsiveness to [...] Read more.
High-risk neuroblastoma remains a clinically challenging pediatric cancer, with an approximate five-year survival rate of ~60%. Frontline therapy for this group of patients includes surgery and intensive chemotherapy that involves combinations of the tubulin inhibitor vincristine with several other chemotherapeutics. Unfortunately, unresponsiveness to therapy and relapse are common, with tumors often displaying resistance to vincristine. Recently, we characterized a novel set of tubulin inhibitors that are distinct from vincristine and bind within the colchicine binding site present on tubulin monomers. Colchicine binding site inhibitors (CBSIs) have gained traction as improved chemotherapeutics due to their potential to overcome tubulin inhibitor-induced resistance. In this study, we investigate the functional impact of CBSI treatment on multiple neuroblastoma cell lines, including those that are vincristine-resistant. We demonstrate that our newly developed compounds are effective at disrupting cell division in non-resistant and resistant cells and have cellular activity against vincristine-resistant cell lines. Interestingly, we find that vincristine-resistant cell lines differ in their ability to undergo apoptotic cell death in response to CBSI treatment. Taken together, these findings provide a solid foundation to further investigate the utility of CBSIs for neuroblastoma treatment, while highlighting the distinct resistance mechanisms that can emerge in these childhood cancers. Full article
(This article belongs to the Special Issue 10th Anniversary of the Bioorganic Chemistry Section of Molecules)
Show Figures

Figure 1

17 pages, 2975 KiB  
Article
Artesunate Inhibits Metastatic Potential in Cisplatin-Resistant Bladder Cancer Cells by Altering Integrins
by Olesya Vakhrusheva, Fuguang Zhao, Sascha Dennis Markowitsch, Kimberly Sue Slade, Maximilian Peter Brandt, Igor Tsaur, Jindrich Cinatl, Martin Michaelis, Thomas Efferth, Roman Alexander Blaheta, Axel Haferkamp and Eva Juengel
Cells 2025, 14(8), 570; https://doi.org/10.3390/cells14080570 - 10 Apr 2025
Viewed by 770
Abstract
The survival of patients with locally advanced and metastatic bladder cancer (BCa) is persistently low. Hence, new treatment options are urgently needed. Artesunate (ART) a derivative of artemisinin, used in Traditional Chinese Medicine, shows anti-tumor activity extending over a broad spectrum of human [...] Read more.
The survival of patients with locally advanced and metastatic bladder cancer (BCa) is persistently low. Hence, new treatment options are urgently needed. Artesunate (ART) a derivative of artemisinin, used in Traditional Chinese Medicine, shows anti-tumor activity extending over a broad spectrum of human cancers. As we have previously shown, ART inhibits growth in cisplatin-sensitive (parental) and cisplatin-resistant BCa cells. However, how ART acts on the metastatic potential of BCa remained unclear. To clarify, we applied ART to parental and cisplatin-resistant RT4, RT112, T24, and TCCSup BCa cell lines. We examined tumor cell adhesion to vascular endothelium and immobilized collagen and evaluated chemotactic activity, migration, and invasive activity of the BCa cells. Adhesion receptors, integrin α and β subtypes, integrin-linked kinase (ILK), and focal adhesion kinase (FAK) were investigated. The functional relevance of integrin expression altered by ART was determined by blocking studies. ART significantly reduced tumor cell adhesion to vascular endothelium and immobilized collagen in parental as well as in cisplatin-resistant BCa cells. Depending on cell type, ART suppressed tumor cell motility and diminished integrin expression (surface and total). Functional blocking of integrins altered by ART reduced cell adhesion and invasion of the BCa cells. Thus, the metastatic potential of parental and cisplatin-resistant BCa cells was significantly inhibited by ART, making it a promising treatment option for patients with advanced or therapy-resistant BCa. Full article
Show Figures

Graphical abstract

16 pages, 4517 KiB  
Article
Sulforaphane Inhibits Adhesion and Migration of Cisplatin- and Gemcitabine-Resistant Bladder Cancer Cells In Vitro
by Hui Xie, Jochen Rutz, Sebastian Maxeiner, Timothy Grein, Anita Thomas, Eva Juengel, Felix K.-H. Chun, Jindrich Cinatl, Axel Haferkamp, Igor Tsaur and Roman A. Blaheta
Nutrients 2024, 16(5), 623; https://doi.org/10.3390/nu16050623 - 23 Feb 2024
Cited by 2 | Viewed by 2191
Abstract
Only 20% of patients with muscle-invasive bladder carcinoma respond to cisplatin-based chemotherapy. Since the natural phytochemical sulforaphane (SFN) exhibits antitumor properties, its influence on the adhesive and migratory properties of cisplatin- and gemcitabine-sensitive and cisplatin- and gemcitabine-resistant RT4, RT112, T24, and TCCSUP bladder [...] Read more.
Only 20% of patients with muscle-invasive bladder carcinoma respond to cisplatin-based chemotherapy. Since the natural phytochemical sulforaphane (SFN) exhibits antitumor properties, its influence on the adhesive and migratory properties of cisplatin- and gemcitabine-sensitive and cisplatin- and gemcitabine-resistant RT4, RT112, T24, and TCCSUP bladder cancer cells was evaluated. Mechanisms behind the SFN influence were explored by assessing levels of the integrin adhesion receptors β1 (total and activated) and β4 and their functional relevance. To evaluate cell differentiation processes, E- and N-cadherin, vimentin and cytokeratin (CK) 8/18 expression were examined. SFN down-regulated bladder cancer cell adhesion with cell line and resistance-specific differences. Different responses to SFN were reflected in integrin expression that depended on the cell line and presence of resistance. Chemotactic movement of RT112, T24, and TCCSUP (RT4 did not migrate) was markedly blocked by SFN in both chemo-sensitive and chemo-resistant cells. Integrin-blocking studies indicated β1 and β4 as chemotaxis regulators. N-cadherin was diminished by SFN, particularly in sensitive and resistant T24 and RT112 cells, whereas E-cadherin was increased in RT112 cells (not detectable in RT4 and TCCSup cells). Alterations in vimentin and CK8/18 were also apparent, though not the same in all cell lines. SFN exposure resulted in translocation of E-cadherin (RT112), N-cadherin (RT112, T24), and vimentin (T24). SFN down-regulated adhesion and migration in chemo-sensitive and chemo-resistant bladder cancer cells by acting on integrin β1 and β4 expression and inducing the mesenchymal–epithelial translocation of cadherins and vimentin. SFN does, therefore, possess potential to improve bladder cancer therapy. Full article
(This article belongs to the Special Issue The Effect of Dietary Bioactive Compounds on Cancer Prevention)
Show Figures

Graphical abstract

15 pages, 2540 KiB  
Article
Alcohol Promotes Lipogenesis in Sebocytes—Implications for Acne
by Johannes Kleemann, Jindrich Cinatl, Stephanie Hoffmann, Nadja Zöller, Deniz Özistanbullu, Christos C. Zouboulis, Roland Kaufmann and Stefan Kippenberger
Cells 2024, 13(4), 328; https://doi.org/10.3390/cells13040328 - 11 Feb 2024
Cited by 1 | Viewed by 2903
Abstract
The oral consumption of alcohol (ethanol) has a long tradition in humans and is an integral part of many cultures. The causal relationship between ethanol consumption and numerous diseases is well known. In addition to the well-described harmful effects on the liver and [...] Read more.
The oral consumption of alcohol (ethanol) has a long tradition in humans and is an integral part of many cultures. The causal relationship between ethanol consumption and numerous diseases is well known. In addition to the well-described harmful effects on the liver and pancreas, there is also evidence that ethanol abuse triggers pathological skin conditions, including acne. In the present study, we addressed this issue by investigating the effect of ethanol on the energy metabolism in human SZ95 sebocytes, with particular focus on qualitative and quantitative lipogenesis. It was found that ethanol is a strong trigger for lipogenesis, with moderate effects on cell proliferation and toxicity. We identified the non-oxidative metabolism of ethanol, which produced fatty acid ethyl esters (FAEEs), as relevant for the lipogenic effect—the oxidative metabolism of ethanol does not contribute to lipogenesis. Correspondingly, using the Seahorse extracellular flux analyzer, we found an inhibition of the mitochondrial oxygen consumption rate as a measure of mitochondrial ATP production by ethanol. The ATP production rate from glycolysis was not affected. These data corroborate that ethanol-induced lipogenesis is independent from oxygen. In sum, our results give a causal explanation for the prevalence of acne in heavy drinkers, confirming that alcoholism should be considered as a systemic disease. Moreover, the identification of key factors driving ethanol-dependent lipogenesis may also be relevant in the treatment of acne vulgaris. Full article
(This article belongs to the Collection Research Advances in Cellular Metabolism)
Show Figures

Graphical abstract

23 pages, 4665 KiB  
Article
Loss of Key EMT-Regulating miRNAs Highlight the Role of ZEB1 in EGFR Tyrosine Kinase Inhibitor-Resistant NSCLC
by Linus Gohlke, Ahmad Alahdab, Angela Oberhofer, Karolina Worf, Stefan Holdenrieder, Martin Michaelis, Jindrich Cinatl and Christoph A Ritter
Int. J. Mol. Sci. 2023, 24(19), 14742; https://doi.org/10.3390/ijms241914742 - 29 Sep 2023
Cited by 8 | Viewed by 2541
Abstract
Despite recent advances in the treatment of non-small cell lung cancer (NSCLC), acquired drug resistance to targeted therapy remains a major obstacle. Epithelial-mesenchymal transition (EMT) has been identified as a key resistance mechanism in NSCLC. Here, we investigated the mechanistic role of key [...] Read more.
Despite recent advances in the treatment of non-small cell lung cancer (NSCLC), acquired drug resistance to targeted therapy remains a major obstacle. Epithelial-mesenchymal transition (EMT) has been identified as a key resistance mechanism in NSCLC. Here, we investigated the mechanistic role of key EMT-regulating small non-coding microRNAs (miRNAs) in sublines of the NSCLC cell line HCC4006 adapted to afatinib, erlotinib, gefitinib, or osimertinib. The most differentially expressed miRNAs derived from extracellular vesicles were associated with EMT, and their predicted target ZEB1 was significantly overexpressed in all resistant cell lines. Transfection of a miR-205-5p mimic partially reversed EMT by inhibiting ZEB1, restoring CDH1 expression, and inhibiting migration in erlotinib-resistant cells. Gene expression of EMT-markers, transcription factors, and miRNAs were correlated during stepwise osimertinib adaptation of HCC4006 cells. Temporally relieving cells of osimertinib reversed transition trends, suggesting that the implementation of treatment pauses could provide prolonged benefits for patients. Our results provide new insights into the contribution of miRNAs to drug-resistant NSCLC harboring EGFR-activating mutations and highlight their role as potential biomarkers and therapeutic targets. Full article
(This article belongs to the Special Issue Molecular Research on Non-small Cell Lung Cancer (NSCLC) Therapy)
Show Figures

Figure 1

20 pages, 3568 KiB  
Article
Identification of Z-Tyr-Ala-CHN2, a Cathepsin L Inhibitor with Broad-Spectrum Cell-Specific Activity against Coronaviruses, including SARS-CoV-2
by Jordi Doijen, Koen Temmerman, Christel Van den Eynde, Annick Diels, Nick Van den Broeck, Michiel Van Gool, Inha Heo, Steffen Jaensch, Marleen Zwaagstra, Mayra Diosa Toro, Winston Chiu, Steven De Jonghe, Pieter Leyssen, Denisa Bojkova, Sandra Ciesek, Jindrich Cinatl, Lore Verschueren, Christophe Buyck, Frank Van Kuppeveld, Johan Neyts, Marnix Van Loock and Ellen Van Dammeadd Show full author list remove Hide full author list
Microorganisms 2023, 11(3), 717; https://doi.org/10.3390/microorganisms11030717 - 10 Mar 2023
Cited by 3 | Viewed by 3688
Abstract
The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is partly under control by vaccination. However, highly potent and safe antiviral drugs for SARS-CoV-2 are still needed to avoid development of severe COVID-19. We report the discovery of a [...] Read more.
The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is partly under control by vaccination. However, highly potent and safe antiviral drugs for SARS-CoV-2 are still needed to avoid development of severe COVID-19. We report the discovery of a small molecule, Z-Tyr-Ala-CHN2, which was identified in a cell-based antiviral screen. The molecule exerts sub-micromolar antiviral activity against SARS-CoV-2, SARS-CoV-1, and human coronavirus 229E. Time-of-addition studies reveal that Z-Tyr-Ala-CHN2 acts at the early phase of the infection cycle, which is in line with the observation that the molecule inhibits cathepsin L. This results in antiviral activity against SARS-CoV-2 in VeroE6, A549-hACE2, and HeLa-hACE2 cells, but not in Caco-2 cells or primary human nasal epithelial cells since the latter two cell types also permit entry via transmembrane protease serine subtype 2 (TMPRSS2). Given their cell-specific activity, cathepsin L inhibitors still need to prove their value in the clinic; nevertheless, the activity profile of Z-Tyr-Ala-CHN2 makes it an interesting tool compound for studying the biology of coronavirus entry and replication. Full article
(This article belongs to the Special Issue SARS-CoV-2/COVID-19: Infection Models, Therapeutics and Vaccines)
Show Figures

Figure 1

19 pages, 3321 KiB  
Article
Functional Downregulation of PD-L1 and PD-L2 by CpG and non-CpG Oligonucleotides in Melanoma Cells
by Johannes Kleemann, Katja Steinhorst, Veronika König, Nadja Zöller, Jindrich Cinatl, Deniz Özistanbullu, Roland Kaufmann, Markus Meissner and Stefan Kippenberger
Cancers 2022, 14(19), 4698; https://doi.org/10.3390/cancers14194698 - 27 Sep 2022
Cited by 3 | Viewed by 2315
Abstract
The clinical application of immune checkpoint inhibitors represents a breakthrough progress in the treatment of metastasized melanoma and other tumor entities. In the present study, it was hypothesized that oligonucleotides (ODNs), known as modulators of the immune response, have an impact on the [...] Read more.
The clinical application of immune checkpoint inhibitors represents a breakthrough progress in the treatment of metastasized melanoma and other tumor entities. In the present study, it was hypothesized that oligonucleotides (ODNs), known as modulators of the immune response, have an impact on the endogenous expression of checkpoint molecules, namely PD-L1 and PD-L2 (PD-L1/2). IFNγ-stimulated melanoma cells (A375, SK-Mel-28) were treated with different synthetically manufactured oligonucleotides which differed in sequence, length and backbone composition. It was found that a variety of different ODN sequences significantly suppressed PD-L1/2 expression. This effect was dependent on length and phosphorothioate (PTO) backbone. In particular, a sequence containing solely guanines (nCpG-6-PTO) was highly effective in downregulating PD-L1/2 at the protein, mRNA and promoter levels. Mechanistically, we gave evidence that ODNs with G-quartet-forming motifs suppress the interferon signaling axis (JAK/STAT/IRF1). Our findings identify a subset of ODNs as interesting pharmacological compounds that could expand the arsenal of targeted therapies to combat the immunological escape of tumor cells. Full article
Show Figures

Figure 1

18 pages, 5049 KiB  
Article
Plant-Derived Sulforaphane Suppresses Growth and Proliferation of Drug-Sensitive and Drug-Resistant Bladder Cancer Cell Lines In Vitro
by Hui Xie, Jochen Rutz, Sebastian Maxeiner, Timothy Grein, Anita Thomas, Eva Juengel, Felix K.-H. Chun, Jindrich Cinatl, Axel Haferkamp, Igor Tsaur and Roman A. Blaheta
Cancers 2022, 14(19), 4682; https://doi.org/10.3390/cancers14194682 - 26 Sep 2022
Cited by 20 | Viewed by 2606
Abstract
Combined cisplatin–gemcitabine (GC) application is standard for treating muscle-invasive bladder cancer. However, since rapid resistance to treatment often develops, many patients turn to supplements in the form of plant-based compounds. Sulforaphane (SFN), derived from cruciferous vegetables, is one such compound, and the present [...] Read more.
Combined cisplatin–gemcitabine (GC) application is standard for treating muscle-invasive bladder cancer. However, since rapid resistance to treatment often develops, many patients turn to supplements in the form of plant-based compounds. Sulforaphane (SFN), derived from cruciferous vegetables, is one such compound, and the present study was designed to investigate its influence on growth and proliferation in a panel of drug-sensitive bladder cancer cell lines, as well as their gemcitabine- and cisplatin-resistant counterparts. Chemo-sensitive and -resistant RT4, RT112, T24, and TCCSUP cell lines were exposed to SFN in different concentrations, and tumor growth, proliferation, and clone formation were evaluated, in addition to apoptosis and cell cycle progression. Means of action were investigated by assaying cell-cycle-regulating proteins and the mechanistic target of rapamycin (mTOR)/AKT signaling cascade. SFN significantly inhibited growth, proliferation, and clone formation in all four tumor cell lines. Cells were arrested in the G2/M and/or S phase, and alteration of the CDK–cyclin axis was closely associated with cell growth inhibition. The AKT/mTOR signaling pathway was deactivated in three of the cell lines. Acetylation of histone H3 was up-regulated. SFN, therefore, does exert tumor-suppressive properties in cisplatin- and gemcitabine-resistant bladder cancer cells and could be beneficial in optimizing bladder cancer therapy. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

18 pages, 8012 KiB  
Article
Allyl-, Butyl- and Phenylethyl-Isothiocyanate Modulate Akt–mTOR and Cyclin–CDK Signaling in Gemcitabine- and Cisplatin-Resistant Bladder Cancer Cell Lines
by Jochen Rutz, Sebastian Maxeiner, Timothy Grein, Marlon Sonnenburg, Salma El Khadir, Nino Makhatelashvili, Johanna Mann, Hui Xie, Jindrich Cinatl, Anita Thomas, Felix K.-H. Chun, Axel Haferkamp, Roman A. Blaheta and Igor Tsaur
Int. J. Mol. Sci. 2022, 23(19), 10996; https://doi.org/10.3390/ijms231910996 - 20 Sep 2022
Cited by 8 | Viewed by 2420
Abstract
Combined cisplatin–gemcitabine treatment causes rapid resistance development in patients with advanced urothelial carcinoma. The present study investigated the potential of the natural isothiocyanates (ITCs) allyl-isothiocyanate (AITC), butyl-isothiocyanate (BITC), and phenylethyl-isothiocyanate (PEITC) to suppress growth and proliferation of gemcitabine- and cisplatin-resistant bladder cancer cells [...] Read more.
Combined cisplatin–gemcitabine treatment causes rapid resistance development in patients with advanced urothelial carcinoma. The present study investigated the potential of the natural isothiocyanates (ITCs) allyl-isothiocyanate (AITC), butyl-isothiocyanate (BITC), and phenylethyl-isothiocyanate (PEITC) to suppress growth and proliferation of gemcitabine- and cisplatin-resistant bladder cancer cells lines. Sensitive and gemcitabine- and cisplatin-resistant RT112, T24, and TCCSUP cells were treated with the ITCs, and tumor cell growth, proliferation, and clone formation were evaluated. Apoptosis induction and cell cycle progression were investigated as well. The molecular mode of action was investigated by evaluating cell cycle-regulating proteins (cyclin-dependent kinases (CDKs) and cyclins A and B) and the mechanistic target of the rapamycin (mTOR)-AKT signaling pathway. The ITCs significantly inhibited growth, proliferation and clone formation of all tumor cell lines (sensitive and resistant). Cells were arrested in the G2/M phase, independent of the type of resistance. Alterations of both the CDK–cyclin axis and the Akt–mTOR signaling pathway were observed in AITC-treated T24 cells with minor effects on apoptosis induction. In contrast, AITC de-activated Akt–mTOR signaling and induced apoptosis in RT112 cells, with only minor effects on CDK expression. It is concluded that AITC, BITC, and PEITC exert tumor-suppressive properties on cisplatin- and gemcitabine-resistant bladder cancer cells, whereby the molecular action may differ among the cell lines. The integration of these ITCs into the gemcitabine-/cisplatin-based treatment regimen might optimize bladder cancer therapy. Full article
(This article belongs to the Special Issue Bioactive Phytochemicals for Cancer Prevention and Treatment 3.0)
Show Figures

Figure 1

18 pages, 1348 KiB  
Article
In Vitro Safety, Off-Target and Bioavailability Profile of the Antiviral Compound Silvestrol
by Susanne Schiffmann, Sandra Gunne, Thomas Ulshöfer, Marina Henke, Luise A. Roser, Ann-Kathrin Schneider, Jindrich Cinatl, Dominique Thomas, Yannick Schreiber, Pia Viktoria Wagner, Arnold Grünweller and Michael J. Parnham
Pharmaceuticals 2022, 15(9), 1086; https://doi.org/10.3390/ph15091086 - 31 Aug 2022
Cited by 10 | Viewed by 5142
Abstract
We characterized the in vitro safety and bioavailability profile of silvestrol, a compound effective against various viruses, such as corona- and Ebolaviruses, with an EC50 value of about 5 nM. The cytotoxic profile of silvestrol was assessed in various cancer cell lines, [...] Read more.
We characterized the in vitro safety and bioavailability profile of silvestrol, a compound effective against various viruses, such as corona- and Ebolaviruses, with an EC50 value of about 5 nM. The cytotoxic profile of silvestrol was assessed in various cancer cell lines, as well as the mutagenic and genotoxic potential with Ames and micronuclei tests, respectively. To identify off-target effects, we investigated whether silvestrol modulates G-protein coupled receptor (GPCR) signaling pathways. To predict the bioavailability of silvestrol, its stability, permeability and cellular uptake were determined. Silvestrol reduced viability in a cell-type-dependent manner, mediated no off-target effects via GPCRs, had no mutagenic potential and minor genotoxic effects at 50 nM. Silvestrol did not disturb cell barrier integrity, showed low membrane permeability, was stable in liver microsomes and exhibited good cellular uptake. Efficient cellular uptake and increased cytotoxicity were observed in cell lines with a low expression level of the transport protein P-glycoprotein, the known efflux transporter of silvestrol. In conclusion, silvestrol showed low permeability but good cellular uptake and high stability. Cell-type-dependent cytotoxicity seems to be caused by the accumulation of silvestrol in cells lacking the ability to expel silvestrol due to low P-glycoprotein levels. Full article
Show Figures

Figure 1

16 pages, 3861 KiB  
Article
Amygdalin Exerts Antitumor Activity in Taxane-Resistant Prostate Cancer Cells
by Igor Tsaur, Anita Thomas, Michelle Monecke, Marion Zugelder, Jochen Rutz, Timothy Grein, Sebastian Maxeiner, Hui Xie, Felix K.-H. Chun, Florian Rothweiler, Jindrich Cinatl, Martin Michaelis, Axel Haferkamp and Roman A. Blaheta
Cancers 2022, 14(13), 3111; https://doi.org/10.3390/cancers14133111 - 24 Jun 2022
Cited by 10 | Viewed by 3637
Abstract
Despite recent advances in the treatment of metastatic prostate cancer (PCa), resistance development after taxane treatments is inevitable, necessitating effective options to combat drug resistance. Previous studies indicated antitumoral properties of the natural compound amygdalin. However, whether amygdalin acts on drug-resistant tumor cells [...] Read more.
Despite recent advances in the treatment of metastatic prostate cancer (PCa), resistance development after taxane treatments is inevitable, necessitating effective options to combat drug resistance. Previous studies indicated antitumoral properties of the natural compound amygdalin. However, whether amygdalin acts on drug-resistant tumor cells remains questionable. An in vitro study was performed to investigate the influence of amygdalin (10 mg/mL) on the growth of a panel of therapy-naïve and docetaxel- or cabazitaxel-resistant PCa cell lines (PC3, DU145, and LNCaP cells). Tumor growth, proliferation, clonal growth, and cell cycle progression were investigated. The cell cycle regulating proteins (phospho)cdk1, (phospho)cdk2, cyclin A, cyclin B, p21, and p27 and the mammalian target of rapamycin (mTOR) pathway proteins (phospho)Akt, (phospho)Raptor, and (phospho)Rictor as well as integrin β1 and the cytoskeletal proteins vimentin, ezrin, talin, and cytokeratin 8/18 were assessed. Furthermore, chemotactic activity and adhesion to extracellular matrix components were analyzed. Amygdalin dose-dependently inhibited tumor growth and reduced tumor clones in all (parental and resistant) PCa cell lines, accompanied by a G0/G1 phase accumulation. Cell cycle regulating proteins were significantly altered by amygdalin. A moderate influence of amygdalin on tumor cell adhesion and chemotaxis was observed as well, paralleled by modifications of cytoskeletal proteins and the integrin β1 expression level. Amygdalin may, therefore, block tumor growth and disseminative characteristics of taxane-resistant PCa cells. Further studies are warranted to determine amygdalin’s value as an antitumor drug. Full article
(This article belongs to the Special Issue Prostate Cancer Therapy)
Show Figures

Figure 1

15 pages, 2160 KiB  
Article
Value of c-MET and Associated Signaling Elements for Predicting Outcomes and Targeted Therapy in Penile Cancer
by Anita Thomas, Kimberly Sue Slade, Roman A. Blaheta, Sascha D. Markowitsch, Philipp Stenzel, Katrin E. Tagscherer, Wilfried Roth, Mario Schindeldecker, Martin Michaelis, Florian Rothweiler, Jaroslav Cinatl, Robert Dotzauer, Olesya Vakhrusheva, Maarten Albersen, Axel Haferkamp, Eva Juengel, Jindrich Cinatl and Igor Tsaur
Cancers 2022, 14(7), 1683; https://doi.org/10.3390/cancers14071683 - 25 Mar 2022
Cited by 8 | Viewed by 3047
Abstract
Whereas the lack of biomarkers in penile cancer (PeCa) impedes the development of efficacious treatment protocols, preliminary evidence suggests that c-MET and associated signaling elements may be dysregulated in this disorder. In the following study, we investigated whether c-MET and associated key molecular [...] Read more.
Whereas the lack of biomarkers in penile cancer (PeCa) impedes the development of efficacious treatment protocols, preliminary evidence suggests that c-MET and associated signaling elements may be dysregulated in this disorder. In the following study, we investigated whether c-MET and associated key molecular elements may have prognostic and therapeutic utility in PeCa. Formalin-fixed, paraffin-embedded tumor tissue from therapy-naïve patients with invasive PeCa was used for tissue microarray (TMA) analysis. Immunohistochemical staining was performed to determine the expression of the proteins c-MET, PPARg, β-catenin, snail, survivin, and n-MYC. In total, 94 PeCa patients with available tumor tissue were included. The median age was 64.9 years. High-grade tumors were present in 23.4%, and high-risk HPV was detected in 25.5%. The median follow-up was 32.5 months. High expression of snail was associated with HPV-positive tumors. Expression of β-catenin was inversely associated with grading. In both univariate COX regression analysis and the log-rank test, an increased expression of PPARg and c-MET was predictive of inferior disease-specific survival (DSS). Moreover, in multivariate analysis, a higher expression of c-MET was independently associated with worse DSS. Blocking c-MET with cabozantinib and tivantinib induced a significant decrease in viability in the primary PeCa cell line UKF-PeC3 isolated from the tumor tissue as well as in cisplatin- and osimertinib-resistant sublines. Strikingly, a higher sensitivity to tivantinib could be detected in the latter, pointing to the promising option of utilizing this agent in the second-line treatment setting. Full article
Show Figures

Figure 1

14 pages, 979 KiB  
Article
Ibuprofen, Flurbiprofen, Etoricoxib or Paracetamol Do Not Influence ACE2 Expression and Activity In Vitro or in Mice and Do Not Exacerbate In-Vitro SARS-CoV-2 Infection
by Natasja de Bruin, Ann-Kathrin Schneider, Philipp Reus, Sonja Talmon, Sandra Ciesek, Denisa Bojkova, Jindrich Cinatl, Imran Lodhi, Bruce Charlesworth, Simon Sinclair, Graham Pennick, William F. Laughey, Philip Gribbon, Aimo Kannt and Susanne Schiffmann
Int. J. Mol. Sci. 2022, 23(3), 1049; https://doi.org/10.3390/ijms23031049 - 19 Jan 2022
Cited by 18 | Viewed by 7495
Abstract
SARS-CoV-2 uses the human cell surface protein angiotensin converting enzyme 2 (ACE2) as the receptor by which it gains access into lung and other tissue. Early in the pandemic, there was speculation that a number of commonly used medications—including ibuprofen and other non-steroidal [...] Read more.
SARS-CoV-2 uses the human cell surface protein angiotensin converting enzyme 2 (ACE2) as the receptor by which it gains access into lung and other tissue. Early in the pandemic, there was speculation that a number of commonly used medications—including ibuprofen and other non-steroidal anti-inflammatory drugs (NSAIDs)—have the potential to upregulate ACE2, thereby possibly facilitating viral entry and increasing the severity of COVID-19. We investigated the influence of the NSAIDS with a range of cyclooxygenase (COX)1 and COX2 selectivity (ibuprofen, flurbiprofen, etoricoxib) and paracetamol on the level of ACE2 mRNA/protein expression and activity as well as their influence on SARS-CoV-2 infection levels in a Caco-2 cell model. We also analysed the ACE2 mRNA/protein levels and activity in lung, heart and aorta in ibuprofen treated mice. The drugs had no effect on ACE2 mRNA/protein expression and activity in the Caco-2 cell model. There was no up-regulation of ACE2 mRNA/protein expression and activity in lung, heart and aorta tissue in ibuprofen-treated mice in comparison to untreated mice. Viral load was significantly reduced by both flurbiprofen and ibuprofen at high concentrations. Ibuprofen, flurbiprofen, etoricoxib and paracetamol demonstrated no effects on ACE2 expression or activity in vitro or in vivo. Higher concentrations of ibuprofen and flurbiprofen reduced SARS-CoV-2 replication in vitro. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

11 pages, 2422 KiB  
Article
Targeting the Pentose Phosphate Pathway for SARS-CoV-2 Therapy
by Denisa Bojkova, Rui Costa, Philipp Reus, Marco Bechtel, Mark-Christian Jaboreck, Ruth Olmer, Ulrich Martin, Sandra Ciesek, Martin Michaelis and Jindrich Cinatl
Metabolites 2021, 11(10), 699; https://doi.org/10.3390/metabo11100699 - 13 Oct 2021
Cited by 32 | Viewed by 10138
Abstract
SARS-CoV-2 is causing the coronavirus disease 2019 (COVID-19) pandemic, for which effective pharmacological therapies are needed. SARS-CoV-2 induces a shift of the host cell metabolism towards glycolysis, and the glycolysis inhibitor 2-deoxy-d-glucose (2DG), which interferes with SARS-CoV-2 infection, is under development [...] Read more.
SARS-CoV-2 is causing the coronavirus disease 2019 (COVID-19) pandemic, for which effective pharmacological therapies are needed. SARS-CoV-2 induces a shift of the host cell metabolism towards glycolysis, and the glycolysis inhibitor 2-deoxy-d-glucose (2DG), which interferes with SARS-CoV-2 infection, is under development for the treatment of COVID-19 patients. The glycolytic pathway generates intermediates that supply the non-oxidative branch of the pentose phosphate pathway (PPP). In this study, the analysis of proteomics data indicated increased transketolase (TKT) levels in SARS-CoV-2-infected cells, suggesting that a role is played by the non-oxidative PPP. In agreement, the TKT inhibitor benfooxythiamine (BOT) inhibited SARS-CoV-2 replication and increased the anti-SARS-CoV-2 activity of 2DG. In conclusion, SARS-CoV-2 infection is associated with changes in the regulation of the PPP. The TKT inhibitor BOT inhibited SARS-CoV-2 replication and increased the activity of the glycolysis inhibitor 2DG. Notably, metabolic drugs like BOT and 2DG may also interfere with COVID-19-associated immunopathology by modifying the metabolism of immune cells in addition to inhibiting SARS-CoV-2 replication. Hence, they may improve COVID-19 therapy outcomes by exerting antiviral and immunomodulatory effects. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Figure 1

14 pages, 2288 KiB  
Article
A Potential Role of the CD47/SIRPalpha Axis in COVID-19 Pathogenesis
by Katie-May McLaughlin, Denisa Bojkova, Joshua D. Kandler, Marco Bechtel, Philipp Reus, Trang Le, Florian Rothweiler, Julian U. G. Wagner, Andreas Weigert, Sandra Ciesek, Mark N. Wass, Martin Michaelis and Jindrich Cinatl
Curr. Issues Mol. Biol. 2021, 43(3), 1212-1225; https://doi.org/10.3390/cimb43030086 - 22 Sep 2021
Cited by 9 | Viewed by 16172
Abstract
The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the [...] Read more.
The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and air−liquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

Back to TopTop